R. G. Titus, J. V. Bishop, and J. S. Mejia, The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission, Parasite Immunology, vol.86, issue.0, pp.131-141, 2006.
DOI : 10.1016/S0169-4758(99)01472-6

J. G. Valenzuela, High-throughput approaches to study salivary proteins and genes from vectors of disease, Insect Biochemistry and Molecular Biology, vol.32, issue.10, pp.1199-1209, 2002.
DOI : 10.1016/S0965-1748(02)00083-8

R. A. Holt, G. M. Subramanian, A. Halpern, and G. G. Sutton, The Genome Sequence of the Malaria Mosquito Anopheles gambiae, Science, vol.298, issue.5591, pp.129-149, 2002.
DOI : 10.1126/science.1076181

P. Arensburger, K. Megy, R. M. Waterhouse, and J. Abrudan, Sequencing of Culex quinquefasciatus Establishes a Platform for Mosquito Comparative Genomics, Science, vol.330, issue.6000, pp.86-88, 2010.
DOI : 10.1126/science.1191864

I. M. Francischetti, A. Sa-nunes, B. J. Mans, and I. M. Santos, The role of saliva in tick feeding, Frontiers in Bioscience, vol.Volume, issue.14, pp.2051-2088, 2009.
DOI : 10.2741/3363

Z. Huang, A. Das, Y. Qiu, and A. J. Tatem, Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool, International Journal of Health Geographics, vol.11, issue.1, p.33, 2012.
DOI : 10.3201/eid0102.950201

V. Nene, J. R. Wortman, D. Lawson, and B. Haas, Genome Sequence of Aedes aegypti, a Major Arbovirus Vector, Science, vol.316, issue.5832, pp.1718-1723, 2007.
DOI : 10.1126/science.1138878

URL : https://hal.archives-ouvertes.fr/hal-00156214

C. Paupy, H. Delatte, L. Bagny, and V. Corbel, Aedes albopictus, an arbovirus vector: From the darkness to the light, Microbes and Infection, vol.11, issue.14-15, pp.1177-1185, 2009.
DOI : 10.1016/j.micinf.2009.05.005

T. Solomon and D. W. Vaughn, Pathogenesis and Clinical Features of Japanese Encephalitis and West Nile Virus Infections, Curr. Top Microbiol. Immunol, vol.267, pp.171-194, 2002.
DOI : 10.1007/978-3-642-59403-8_9

B. Alexander and M. Maroli, Control of phlebotomine sandflies, Medical and Veterinary Entomology, vol.37, issue.1, pp.1-18, 2003.
DOI : 10.1046/j.1365-2915.2000.00211.x

P. Holzmuller, P. Grébautgr´grébaut, G. Cuny, and D. G. Biron, Tsetse flies, trypanosomes, humans and animals: what is proteomics revealing about their crosstalks?, Expert Review of Proteomics, vol.7, issue.1, pp.113-126, 2010.
DOI : 10.1586/epr.09.92

URL : https://hal.archives-ouvertes.fr/hal-00814847

J. De-la-fuente, A. Estrada-pena, J. M. Venzal, and K. M. Kocan, Overview: ticks as vectors of pathogens that cause disease in humans and animals, Front Biosci, vol.13, pp.6938-6946, 2008.

M. J. Turell, The Arboviruses: Epidemiology and Ecology, Boca Raton, pp.127-152, 1988.

M. Mavale, D. Parashar, A. Sudeep, and M. Gokhale, Venereal Transmission of Chikungunya Virus by Aedes aegypti Mosquitoes (Diptera: Culicidae), American Journal of Tropical Medicine and Hygiene, vol.83, issue.6, pp.1242-1244, 2010.
DOI : 10.4269/ajtmh.2010.09-0577

R. C. Jochim, C. R. Teixeira, A. Laughinghouse, and J. Mu, The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies, BMC Genomics, vol.9, issue.1, p.15, 2008.
DOI : 10.1186/1471-2164-9-15

E. Lasonder, C. J. Janse, G. J. Van-gemert, and G. R. Mair, Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity Induction of a peptide with activity against a broad spectrum of pathogens in the Aedes aegypti salivary gland, following infection with dengue virus, PLoS Pathog PLoS Pathog, 2008.

L. Wasinpiyamongkol, S. Patramool, N. Luplertlop, and P. Surasombatpattana, Blood-feeding and immunogenic Aedes aegypti saliva proteins, PROTEOMICS, vol.2, issue.10, pp.1906-1916, 2010.
DOI : 10.1002/pmic.200900626

URL : https://hal.archives-ouvertes.fr/hal-00820653

C. M. Costa, M. V. Sousa, C. A. Ricart, and J. M. Santana, 2-DE-based proteomic investigation of the saliva of the Amazonian triatomine vectors of Chagas disease: Rhodnius brethesi and Rhodnius robustus, Journal of Proteomics, vol.74, issue.9, pp.1652-1663, 2011.
DOI : 10.1016/j.jprot.2011.02.022

E. Fikrig and S. Narasimhan, Borrelia burgdorferi?traveling incognito? Microbes Infect, pp.1390-1399, 2006.
DOI : 10.1016/j.micinf.2005.12.022

M. Gonzalez-lazaro, R. R. Dinglasan, L. Hernandez-hernandez-fde, and M. H. Rodriguez, Anopheles gambiae Croquemort SCRBQ2, expression profile in the mosquito and its potential interaction with the malaria parasite Plasmodium berghei, Insect Biochemistry and Molecular Biology, vol.39, issue.5-6, pp.395-402, 2009.
DOI : 10.1016/j.ibmb.2009.03.008

R. R. Dinglasan, M. Devenport, L. Florens, and J. R. Johnson, The Anopheles gambiae adult midgut peritrophic matrix proteome, Insect Biochemistry and Molecular Biology, vol.39, issue.2, pp.125-134, 2009.
DOI : 10.1016/j.ibmb.2008.10.010

D. Hegedus, M. Erlandson, C. Gillott, and U. Toprak, New Insights into Peritrophic Matrix Synthesis, Architecture, and Function, Annual Review of Entomology, vol.54, issue.1, pp.285-302, 2009.
DOI : 10.1146/annurev.ento.54.110807.090559

A. Popova-butler and D. H. Dean, Proteomic analysis of the mosquito Aedes aegypti midgut brush border membrane vesicles, Journal of Insect Physiology, vol.55, issue.3, pp.264-272, 2009.
DOI : 10.1016/j.jinsphys.2008.12.008

K. Kongsuwan, P. Josh, Y. Zhu, and R. Pearson, Exploring the midgut proteome of partially fed female cattle tick (Rhipicephalus (Boophilus) microplus), Journal of Insect Physiology, vol.56, issue.2, pp.212-226, 2010.
DOI : 10.1016/j.jinsphys.2009.10.003

S. Tchankouo-nguetcheu, H. Khun, L. Pincet, and P. Roux, Differential Protein Modulation in Midguts of Aedes aegypti Infected with Chikungunya and Dengue 2 Viruses, PLoS ONE, vol.5, issue.10, p.13149, 2010.
DOI : 10.1371/journal.pone.0013149.s008

S. Patramool, P. Surasombatpattana, N. Luplertlop, and M. Evénoev´evéno, Proteomic analysis of an Aedes albopictus cell line infected with Dengue serotypes 1 and 3 viruses, Parasites & Vectors, vol.4, issue.1
DOI : 10.1006/jtbi.1996.0346

URL : https://hal.archives-ouvertes.fr/inserm-00617204

A. Rachinsky, F. D. Guerrero, and G. A. Scoles, Proteomic profiling of Rhipicephalus (Boophilus) microplus midgut responses to infection with Babesia bovis, Veterinary Parasitology, vol.152, issue.3-4, pp.294-313, 2008.
DOI : 10.1016/j.vetpar.2007.12.027

M. S. Paingankar, M. D. Gokhale, and D. N. Deobagkar, Dengue-2-virus-interacting polypeptides involved in mosquito cell infection, Archives of Virology, vol.19, issue.11, pp.1453-1461, 2010.
DOI : 10.1007/s00705-010-0728-7

J. D. Haddow, L. R. Haines, R. H. Gooding, and R. W. Olafson, Identification of midgut proteins that are differentially expressed in trypanosome-susceptible and normal tsetse flies (Glossina morsitans morsitans), Insect Biochemistry and Molecular Biology, vol.35, issue.5, pp.425-433, 2005.
DOI : 10.1016/j.ibmb.2005.01.015

C. T. Smartt, S. L. Richards, S. L. Anderson, and J. S. Erickson, West Nile virus infection alters midgut gene expression in Culex pipiens quinquefasciatus Say (Diptera: Culicidae ). Am, J. Trop. Med. Hyg, vol.81, pp.258-263, 2009.

M. Ramalho-ortigao, R. C. Jochim, J. M. Anderson, and P. G. Lawyer, Exploring the midgut transcriptome of Phlebotomus papatasi: comparative analysis of expression profiles of sugar-fed, blood-fed and Leishmania major-infected sandflies, BMC Genomics, vol.8, issue.1, pp.300-317, 2007.
DOI : 10.1186/1471-2164-8-300

R. J. Ursic-bedoya and C. A. Lowenberger, Rhodnius prolixus: Identification of immune-related genes up-regulated in response to pathogens and parasites using suppressive subtractive hybridization, Developmental & Comparative Immunology, vol.31, issue.2, pp.31-109, 2007.
DOI : 10.1016/j.dci.2006.05.008

O. L. Barónbar´barón, R. J. Ursic-bedoya, C. A. Lowenberger, and C. B. Ocampo, Differential gene expression from midguts of refractory and susceptible lines of the mosquito, Aedes aegypti, infected with dengue-2 virus, J. Insect. Sci, vol.10, pp.41-64, 2010.

S. M. Paskewitz and L. Shi, The hemolymph proteome of Anopheles gambiae, Insect Biochemistry and Molecular Biology, vol.35, issue.8, pp.815-824, 2005.
DOI : 10.1016/j.ibmb.2005.03.002

E. Stopforth, A. W. Neitz, and A. R. Gaspar, A proteomics approach for the analysis of hemolymph proteins involved in the immediate defense response of the soft tick, Ornithodoros savignyi, when challenged with Candida albicans, Experimental and Applied Acarology, vol.24, issue.4, pp.309-325, 2010.
DOI : 10.1007/s10493-010-9338-z

J. M. Ribeiro, R. Charlab, V. M. Pham, and M. Garfield, An insight into the salivary transcriptome and proteome of the adult female mosquito Culex pipiens quinquefasciatus, Insect Biochemistry and Molecular Biology, vol.34, issue.6, pp.543-563, 2004.
DOI : 10.1016/j.ibmb.2004.02.008

I. M. Francischetti, Z. Meng, B. J. Mans, and N. Gudderra, An insight into the salivary transcriptome and proteome of the soft tick and vector of epizootic bovine abortion, Ornithodoros coriaceus, Journal of Proteomics, vol.71, issue.5, pp.493-512, 2008.
DOI : 10.1016/j.jprot.2008.07.006

V. Choumet, A. Carmi-leroy, C. Laurent, and P. Lenormand, The salivary glands and saliva ofAnopheles gambiae as an essential step in thePlasmodium life cycle: A global proteomic study, PROTEOMICS, vol.61, issue.8, pp.3384-3394, 2007.
DOI : 10.1002/pmic.200700334

J. Alves-silva, J. M. Ribeiro, J. Van-den-abbeele, and G. Attardo, An insight into the sialome of Glossina morsitans morsitans, BMC Genomics, vol.11, issue.1, p.213, 2010.
DOI : 10.1186/1471-2164-11-213

A. A. James, K. Blackmer, O. Marinotti, and C. R. Ghosn, Isolation and characterization of the gene expressing the major salivary gland protein of the female mosquito, Aedes aegypti, Molecular and Biochemical Parasitology, vol.44, issue.2, pp.245-253, 1991.
DOI : 10.1016/0166-6851(91)90010-4

J. G. Valenzuela, R. Charlab, E. C. Gonzalez, and I. K. De-miranda-santos, The D7 family of salivary proteins in blood sucking diptera, Insect Molecular Biology, vol.22, issue.2, pp.149-155, 2002.
DOI : 10.1021/bi973050y

I. M. Francischetti, B. J. Mans, Z. Meng, and N. Gudderra, An insight into the sialome of the soft tick, Ornithodorus parkeri, Insect Biochemistry and Molecular Biology, vol.38, issue.1, pp.1-21, 2008.
DOI : 10.1016/j.ibmb.2007.09.009

J. M. Ribeiro, B. Arcàarc-`-arcà, F. Lombardo, and E. Calvo, An annotated catalogue of salivary gland transcripts in the adult female mosquito, Aedes aegypti, BMC Genomics, vol.8, issue.1, pp.6-33, 2007.
DOI : 10.1186/1471-2164-8-6

B. Arcàarc-`-arcà, F. Lombardo, A. Lanfrancotti, and L. Spanos, A cluster of four D7-related genes is expressed in the salivary glands of the African malaria vector Anopheles gambiae, Insect Molecular Biology, vol.239, issue.1, pp.47-55, 2002.
DOI : 10.1046/j.1365-2583.1998.740345.x

I. Djegbe, S. Cornelie, M. Rossignol, and E. Demettre, Differential Expression of Salivary Proteins between Susceptible and Insecticide-Resistant Mosquitoes of Culex quinquefasciatus, PLoS ONE, vol.3, issue.113, 2011.
DOI : 10.1371/journal.pone.0017496.s001

A. Oleaga, A. Escudero-poblací-on, E. Camafeita, and R. Erez-s-´-anchez, A proteomic approach to the identification of salivary proteins from the argasid ticks Ornithodoros moubata and Ornithodoros erraticus, Insect Biochemistry and Molecular Biology, vol.37, issue.11
DOI : 10.1016/j.ibmb.2007.07.003

J. Chmelar, C. J. Oliveira, P. Rezacova, and I. M. Francischetti, A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation, Blood, vol.117, issue.2, pp.736-744, 2011.
DOI : 10.1182/blood-2010-06-293241

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031492

J. Hostomskáhostomsk´hostomská, V. Volfovávolfov´volfová, J. Mu, and M. Garfield, Analysis of salivary transcripts and antigens of the sand fly Phlebotomus arabicus, BMC Genomics, vol.10, issue.1, pp.282-289, 2009.
DOI : 10.1186/1471-2164-10-282

N. Collin, R. Gomes, C. Teixeira, and L. Cheng, Sand Fly Salivary Proteins Induce Strong Cellular Immunity in a Natural Reservoir of Visceral Leishmaniasis with Adverse Consequences for Leishmania, PLoS Pathogens, vol.23, issue.5, p.1000441, 2009.
DOI : 10.1371/journal.ppat.1000441.s002

M. C. Monteiro, H. C. Lima, A. A. Souza, and R. G. Titus, Effect of Lutzomyia longipalpis salivary gland extracts on leukocyte migration induced by Leishmania major, Am. J. Trop. Med. Hyg, vol.76, pp.88-94, 2007.

J. W. Hovius, M. Levi, and E. Fikrig, Salivating for Knowledge: Potential Pharmacological Agents in Tick Saliva, PLoS Medicine, vol.25, issue.2, p.43, 2008.
DOI : 10.1371/journal.pmed.0050043.t002

B. Arcàarc-`-arcà, F. Lombardo, I. M. Francischetti, and V. M. Pham, An insight into the sialome of the adult female mosquito Aedes albopictus, Insect Biochemistry and Molecular Biology, vol.37, issue.2, pp.107-127, 2007.
DOI : 10.1016/j.ibmb.2006.10.007

H. Kato, J. M. Anderson, S. Kamhawi, and F. Oliveira, High degree of conservancy among secreted salivary gland proteins from two geographically distant Phlebotomus duboscqi sandflies populations (Mali and Kenya) BMC Genom, pp.226-247, 2006.

J. M. Anderson, F. Oliveira, S. Kamhawi, and B. J. Mans, Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis, BMC Genomics, vol.7, issue.1, pp.52-75, 2006.
DOI : 10.1186/1471-2164-7-52

D. E. Kalume, M. Okulate, J. Zhong, and R. Reddy, A proteomic analysis of salivary glands of femaleAnopheles gambiae mosquito, PROTEOMICS, vol.8, issue.14, pp.3765-3777, 2005.
DOI : 10.1002/pmic.200401210

S. Das, A. Radtke, Y. J. Choi, and A. M. Mendes, Transcriptomic and functional analysis of the Anopheles gambiae salivary gland in relation to blood feeding, BMC Genomics, vol.11, issue.1, pp.566-580, 2010.
DOI : 10.1186/1471-2164-11-566

L. Almeras, A. Fontaine, M. Belghazi, and S. Bourdon, Mosquitoes, Vector-Borne and Zoonotic Diseases, vol.10, issue.4, pp.391-402, 2010.
DOI : 10.1089/vbz.2009.0042

URL : https://hal.archives-ouvertes.fr/pasteur-00516657

L. Almeras, E. Orlandi-pradines, A. Fontaine, and C. Villard, Colonies, Vector-Borne and Zoonotic Diseases, vol.9, issue.5, pp.531-541, 2009.
DOI : 10.1089/vbz.2008.0056

R. D. Madden, J. R. Sauer, and J. W. Dillwith, A Proteomics Approach to Characterizing Tick Salivary Secretions, Experimental and Applied Acarology, vol.28, issue.1-4, pp.77-87, 2002.
DOI : 10.1023/A:1025342015065

P. M. Untalan, F. D. Guerrero, L. R. Haines, and T. W. Pearson, Proteome analysis of abundantly expressed proteins from unfed larvae of the cattle tick, Boophilus microplus, Insect Biochemistry and Molecular Biology, vol.35, issue.2, pp.141-151, 2005.
DOI : 10.1016/j.ibmb.2004.10.009

J. G. Valenzuela, I. M. Francischetti, V. M. Pham, and M. K. Garfield, Exploring the sialome of the tick Ixodes scapularis, J. Exp. Biol, vol.205, pp.2843-2864, 2002.

I. M. Francischetti, M. Pham, V. Mans, B. J. Andersen, and J. F. , The transcriptome of the salivary glands of the female western black-legged tick Ixodes pacificus (Acari: Ixodidae), Insect Biochemistry and Molecular Biology, vol.35, issue.10
DOI : 10.1016/j.ibmb.2005.05.007

J. Chmelar, J. M. Anderson, J. Mu, and R. C. Jochim, Insight into the sialome of the castor bean tick, Ixodes ricinus, BMC Genomics, vol.9, issue.1, pp.233-254, 2008.
DOI : 10.1186/1471-2164-9-233

J. M. Ribeiro, J. M. Anderson, N. C. Manoukis, and Z. Meng, A further insight into the sialome of the tropical bont tick, Amblyomma variegatum, BMC Genomics, vol.10, issue.1, pp.136-147, 2011.
DOI : 10.1186/1471-2164-12-136

F. J. Alarcon-chaidez, J. Sun, and S. K. Wikel, Transcriptome analysis of the salivary glands of Dermacentor andersoni Stiles (Acari: Ixodidae), Insect Biochemistry and Molecular Biology, vol.37, issue.1, pp.48-71, 2007.
DOI : 10.1016/j.ibmb.2006.10.002

C. Nakajima, S. Da, I. Vaz, S. Imamura, and S. Konnai, Random Sequencing of cDNA Library Derived from Partially-Fed Adult Female Haemaphysalis longicornis Salivary Gland, Journal of Veterinary Medical Science, vol.67, issue.11
DOI : 10.1292/jvms.67.1127

S. R. Maruyama, E. Anatriello, J. M. Anderson, and J. M. Ribeiro, The expression of genes coding for distinct types of glycine-rich proteins varies according to the biology of three metastriate ticks, Rhipicephalus (Boophilus) microplus, Rhipicephalus sanguineus and Amblyomma cajennense, BMC Genomics, vol.11, issue.1, pp.363-380, 2010.
DOI : 10.1186/1471-2164-11-363

V. Nene, D. Lee, S. Kang-'a, and R. Skilton, Genes transcribed in the salivary glands of female Rhipicephalus appendiculatus ticks infected with Theileria parva, Insect Biochemistry and Molecular Biology, vol.34, issue.10, pp.1117-1128, 2004.
DOI : 10.1016/j.ibmb.2004.07.002

S. S. Ramabu, M. W. Ueti, K. A. Brayton, and T. V. Baszler, Identification of Anaplasma marginale Proteins Specifically Upregulated during Colonization of the Tick Vector, Infection and Immunity, vol.78, issue.7, pp.3047-3052, 2010.
DOI : 10.1128/IAI.00300-10

G. M. Seo, C. Cheng, J. Tomich, and R. R. Ganta, Total, Membrane, and Immunogenic Proteomes of Macrophage- and Tick Cell-Derived Ehrlichia chaffeensis Evaluated by Liquid Chromatography-Tandem Mass Spectrometry and MALDI-TOF Methods, Infection and Immunity, vol.76, issue.11, pp.4823-4832, 2008.
DOI : 10.1128/IAI.00484-08

J. G. Valenzuela, I. M. Francischetti, V. M. Pham, and M. K. Garfield, Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito, Insect Biochemistry and Molecular Biology, vol.33, issue.7, pp.717-732, 2003.
DOI : 10.1016/S0965-1748(03)00067-5

E. Calvo, J. Andersen, I. M. Francischetti, and M. Del-capurro, The transcriptome of adult female Anopheles darlingi salivary glands, Insect Molecular Biology, vol.205, issue.1, pp.73-88, 2004.
DOI : 10.1046/j.1365-2583.2002.00360.x

B. J. Mans, J. F. Andersen, I. M. Francischetti, and J. G. Valenzuela, Comparative sialomics between hard and soft ticks: Implications for the evolution of blood-feeding behavior, Insect Biochemistry and Molecular Biology, vol.38, issue.1, pp.42-58, 2008.
DOI : 10.1016/j.ibmb.2007.09.003

S. Doucoure, F. Mouchet, S. Cornelie, and J. S. Dehecq, Evaluation of the Human IgG Antibody Response to Aedes albopictus Saliva as a New Specific Biomarker of Exposure to Vector Bites, PLoS Neglected Tropical Diseases, vol.61, issue.2, 1487.
DOI : 10.1371/journal.pntd.0001487.g003

URL : https://hal.archives-ouvertes.fr/hal-01274594

J. M. Ribeiro, P. A. Rossignol, and A. Spielman, Aedes aegypti: Model for blood finding strategy and prediction of parasite manipulation, Experimental Parasitology, vol.60, issue.1, pp.118-132, 1985.
DOI : 10.1016/S0014-4894(85)80029-1

J. M. Ribeiro, J. J. Sarkis, P. A. Rossignol, and A. Spielman, Salivary apyrase of Aedes Aegypti: Characterization and secretory fate, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, vol.79, issue.1, pp.81-86, 1984.
DOI : 10.1016/0305-0491(84)90081-6

P. A. Rossignol and A. M. Rossignol, Simulations of enhanced malaria transmission and host bias induced by modified vector blood location behaviour, Parasitology, vol.18, issue.03, pp.97-363, 1988.
DOI : 10.1016/0022-1910(85)90048-4

J. W. Wekesa, R. S. Copeland, and R. W. Mwangi, Effect of Plasmodium falciparum on blood feeding behavior of naturally infected Anopheles mosquitoes in western Kenya, Am. J. Trop. Med. Hyg, vol.47, pp.484-488, 1992.

T. Lefevre, F. Thomas, A. Schwartz, and E. Levashina, MalariaPlasmodium agent induces alteration in the head proteome of theirAnopheles mosquito host, PROTEOMICS, vol.21, issue.11, pp.1908-1915, 2007.
DOI : 10.1002/pmic.200601021

T. Lefèvrelef-`-lefèvre, F. Thomas, S. Ravel, and D. Patrel, Trypanosoma brucei brucei induces alteration in the head proteome of the tsetse fly vector Glossina palpalis gambiensis, Insect Molecular Biology, vol.186, issue.6, pp.651-660, 2007.
DOI : 10.1111/j.1365-2583.2007.00761.x

P. Uetz, Y. A. Dong, C. Zeretzke, and C. Atzler, Herpesviral Protein Networks and Their Interaction with the Human Proteome, Science, vol.311, issue.5758, pp.239-242, 2006.
DOI : 10.1126/science.1116804

D. Juan, F. Pazos, and A. Valencia, High-confidence prediction of global interactomes based on genome-wide coevolutionary networks, Proc. Natl. Acad. Sci, pp.934-939, 2008.
DOI : 10.1073/pnas.0709671105

J. A. Taylor and R. S. Johnson, Implementation and Uses of Automated de Novo Peptide Sequencing by Tandem Mass Spectrometry, Analytical Chemistry, vol.73, issue.11, pp.2594-2604, 2001.
DOI : 10.1021/ac001196o

J. Vennestrøm and P. M. Jensen, Ixodes ricinus: The potential of two-dimensional gel electrophoresis as a tool for studying host???vector???pathogen interactions, Experimental Parasitology, vol.115, issue.1, pp.53-58, 2007.
DOI : 10.1016/j.exppara.2006.05.008

E. M. Keidel, D. Ribitsch, and F. Lottspeich, Equalizer technology - Equal rights for disparate beads, PROTEOMICS, vol.1216, issue.11, pp.2089-2098, 2010.
DOI : 10.1002/pmic.200900767

S. Ray, P. J. Reddy, R. Jain, and K. Gollapalli, Proteomic technologies for the identification of disease biomarkers in serum: Advances and challenges ahead, PROTEOMICS, vol.19, issue.11, pp.2139-2161, 2011.
DOI : 10.1002/pmic.201000460

L. K. Sirot, M. C. Hardstone, M. E. Helinski, and J. M. Ribeiro, Towards a Semen Proteome of the Dengue Vector Mosquito: Protein Identification and Potential Functions, PLoS Neglected Tropical Diseases, vol.27, issue.3, p.989, 2011.
DOI : 10.1371/journal.pntd.0000989.s006

A. R. Trimnell, G. M. Davies, O. Lissina, and R. S. Hails, A cross-reactive tick cement antigen is a candidate broad-spectrum tick vaccine, Vaccine, vol.23, issue.34, pp.4329-4341, 2005.
DOI : 10.1016/j.vaccine.2005.03.041

J. M. Ribeiro, J. Andersen, M. A. Silva-neto, and V. M. Pham, Exploring the sialome of the blood-sucking bug Rhodnius prolixus, Insect Biochemistry and Molecular Biology, vol.34, issue.1, pp.61-79, 2004.
DOI : 10.1016/j.ibmb.2003.09.004

D. G. Biron, P. Agnew, L. Marchémarch´marché, and L. Renault, Proteome of Aedes aegypti larvae in response to infection by the intracellular parasite Vavraia culicis, International Journal for Parasitology, vol.35, issue.13, pp.1385-1397, 2005.
DOI : 10.1016/j.ijpara.2005.05.015

A. P. Lakxmy, R. Xavier, C. M. Reenajosephine, and Y. W. Lee, Mosquitocidal activity of a native Bacillus thuringiensis isolate Bt ReX02 from Gunung Jerai Forest, Malaysia against Culex quinquefasciatus and Aedes albopictus, Eur. Rev. Med. Pharmacol. Sci, vol.15, pp.149-155, 2011.

M. Villar, A. Torina, Y. Nuñeznu?nuñez, and Z. Zivkovic, Application of highly sensitive saturation labeling to the analysis of differential protein expression in infected ticks from limited samples, Proteome Science, vol.8, issue.1, pp.43-57, 2010.
DOI : 10.1186/1477-5956-8-43