A. Weiss and D. Littman, Signal transduction by lymphocyte antigen receptors, Cell, vol.76, issue.2, pp.263-274, 1994.
DOI : 10.1016/0092-8674(94)90334-4

J. Bertin, L. Wang, Y. Guo, M. Jacobson, and J. Poyet, CARD11 and CARD14 Are Novel Caspase Recruitment Domain (CARD)/Membrane-associated Guanylate Kinase (MAGUK) Family Members that Interact with BCL10 and Activate NF-kappa B, Journal of Biological Chemistry, vol.276, issue.15, pp.11877-11882, 2001.
DOI : 10.1074/jbc.M010512200

J. Jun, L. Wilson, C. Vinuesa, S. Lesage, and M. Blery, Identifying the MAGUK Protein Carma-1 as a Central Regulator of Humoral Immune Responses and Atopy by Genome-Wide Mouse Mutagenesis, Immunity, vol.18, issue.6, pp.751-762, 2003.
DOI : 10.1016/S1074-7613(03)00141-9

T. Egawa, A. B. Favier, B. Sunshine, M. Mirchandani, and K. , Requirement for CARMA1 in Antigen Receptor-Induced NF-??B Activation and Lymphocyte Proliferation, Current Biology, vol.13, issue.14, pp.1252-1258, 2003.
DOI : 10.1016/S0960-9822(03)00491-3

K. Newton and V. Dixit, Mice Lacking the CARD of CARMA1 Exhibit Defective B Lymphocyte Development and Impaired Proliferation of Their B and T Lymphocytes, Current Biology, vol.13, issue.14, pp.1247-1251, 2003.
DOI : 10.1016/S0960-9822(03)00458-5

H. Hara, T. Wada, C. Bakal, I. Kozieradzki, and S. Suzuki, The MAGUK Family Protein CARD11 Is Essential for Lymphocyte Activation, Immunity, vol.18, issue.6, pp.763-775, 2003.
DOI : 10.1016/S1074-7613(03)00148-1

K. Sommer, B. Guo, J. Pomerantz, A. Bandaranayake, and M. Moreno-garcia, Phosphorylation of the CARMA1 Linker Controls NF-??B Activation, Immunity, vol.23, issue.6, pp.561-574, 2005.
DOI : 10.1016/j.immuni.2005.09.014

R. Matsumoto, D. Wang, M. Blonska, H. Li, and M. Kobayashi, Phosphorylation of CARMA1 Plays a Critical Role in T Cell Receptor-Mediated NF-??B Activation, Immunity, vol.23, issue.6, pp.575-585, 2005.
DOI : 10.1016/j.immuni.2005.10.007

K. Ishiguro, T. Green, J. Rapley, H. Wachtel, and C. Giallourakis, Ca2+/Calmodulin-Dependent Protein Kinase II Is a Modulator of CARMA1-Mediated NF-??B Activation, Molecular and Cellular Biology, vol.26, issue.14, pp.5497-5508, 2006.
DOI : 10.1128/MCB.02469-05

M. Thome and R. Weil, Post-translational modifications regulate distinct functions of CARMA1 and BCL10, Trends in Immunology, vol.28, issue.6, pp.281-288, 2007.
DOI : 10.1016/j.it.2007.04.004

W. Chan, T. Schaffer, and J. Pomerantz, A Quantitative Signaling Screen Identifies CARD11 Mutations in the CARD and LATCH Domains That Induce Bcl10 Ubiquitination and Human Lymphoma Cell Survival, Molecular and Cellular Biology, vol.33, issue.2, pp.429-443, 2013.
DOI : 10.1128/MCB.00850-12

A. Eitelhuber, S. Warth, G. Schimmack, M. Duwel, and K. Hadian, Dephosphorylation of Carma1 by PP2A negatively regulates T-cell activation, The EMBO Journal, vol.60, issue.3, pp.594-605, 2011.
DOI : 10.1038/emboj.2010.331

H. Hara and T. Saito, CARD9 versus CARMA1 in innate and adaptive immunity, Trends in Immunology, vol.30, issue.5, pp.234-242, 2009.
DOI : 10.1016/j.it.2009.03.002

O. Gross, A. Gewies, K. Finger, M. Schafer, and T. Sparwasser, Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity, Nature, vol.281, issue.7103, pp.651-656, 2006.
DOI : 10.1002/(SICI)1521-4141(199806)28:06<2045::AID-IMMU2045>3.3.CO;2-#

S. Saijo, N. Fujikado, T. Furuta, S. Chung, and H. Kotaki, Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans, Nature Immunology, vol.42, issue.1, pp.39-46, 2007.
DOI : 10.1038/ni1425

L. Xue, S. Morris, C. Orihuela, E. Tuomanen, and X. Cui, Defective development and function of Bcl10-deficient follicular, marginal zone and B1 B cells, Nature Immunology, vol.4, issue.9, pp.857-865, 2003.
DOI : 10.1038/ni963

J. Ruland, G. Duncan, E. A. Del-barco-barrantes, I. Nguyen, and L. , Bcl10 Is a Positive Regulator of Antigen Receptor???Induced Activation of NF-?? B and Neural Tube Closure, Cell, vol.104, issue.1, pp.33-42, 2001.
DOI : 10.1016/S0092-8674(01)00189-1

S. Hu, M. Du, S. Park, A. Alcivar, and L. Qu, cIAP2 is a ubiquitin protein ligase for BCL10 and is dysregulated in mucosa-associated lymphoid tissue lymphomas, Journal of Clinical Investigation, vol.116, issue.1, pp.174-181, 2006.
DOI : 10.1172/JCI25641DS1

C. Lobry, T. Lopez, A. Israel, and R. Weil, Negative feedback loop in T cell activation through I??B kinase-induced phosphorylation and degradation of Bcl10, Proceedings of the National Academy of Sciences, vol.104, issue.3, pp.908-913, 2007.
DOI : 10.1073/pnas.0606982104

E. Scharschmidt, E. Wegener, V. Heissmeyer, A. Rao, and D. Krappmann, Degradation of Bcl10 Induced by T-Cell Activation Negatively Regulates NF-??B Signaling, Molecular and Cellular Biology, vol.24, issue.9, pp.3860-3873, 2004.
DOI : 10.1128/MCB.24.9.3860-3873.2004

C. Wu and J. Ashwell, NEMO recognition of ubiquitinated Bcl10 is required for T cell receptor-mediated NF-??B activation, Proceedings of the National Academy of Sciences, vol.105, issue.8, pp.3023-3028, 2008.
DOI : 10.1073/pnas.0712313105

H. Zeng, L. Di, G. Fu, Y. Chen, and X. Gao, Phosphorylation of Bcl10 Negatively Regulates T-Cell Receptor-Mediated NF-??B Activation, Molecular and Cellular Biology, vol.27, issue.14, pp.5235-5245, 2007.
DOI : 10.1128/MCB.01645-06

S. Paul, A. Kashyap, W. Jia, Y. He, and B. Schaefer, Selective Autophagy of the Adaptor Protein Bcl10 Modulates T Cell Receptor Activation of NF-??B, Immunity, vol.36, issue.6, pp.947-958, 2012.
DOI : 10.1016/j.immuni.2012.04.008

M. Moreno-garcia, K. Sommer, H. Rincon-arano, M. Brault, and J. Ninomiya-tsuji, Kinase-Independent Feedback of the TAK1/TAB1 Complex on BCL10 Turnover and NF-??B Activation, Molecular and Cellular Biology, vol.33, issue.6, pp.1149-1163, 2013.
DOI : 10.1128/MCB.06407-11

A. Dufner and W. Schamel, B cell antigen receptor-induced activation of an IRAK4-dependent signaling pathway revealed by a MALT1-IRAK4 double knockout mouse model, Cell Communication and Signaling, vol.9, issue.1, p.6, 2011.
DOI : 10.1073/pnas.0510380103

A. Ruefli-brasse, D. French, and V. Dixit, Regulation of NF-??B-Dependent Lymphocyte Activation and Development by Paracaspase, Science, vol.302, issue.5650, pp.1581-1584, 2003.
DOI : 10.1126/science.1090769

J. Ruland, G. Duncan, A. Wakeham, and T. Mak, Differential Requirement for Malt1 in T and B Cell Antigen Receptor Signaling, Immunity, vol.19, issue.5, pp.749-758, 2003.
DOI : 10.1016/S1074-7613(03)00293-0

M. Tusche, L. Ward, F. Vu, D. Mccarthy, and M. Quintela-fandino, Differential requirement of MALT1 for BAFF-induced outcomes in B cell subsets, The Journal of Experimental Medicine, vol.93, issue.12, pp.2671-2683, 2009.
DOI : 10.1038/8767

P. Lucas, M. Yonezumi, N. Inohara, L. Mcallister-lucas, and M. Abazeed, Bcl10 and MALT1, Independent Targets of Chromosomal Translocation in MALT Lymphoma, Cooperate in a Novel NF-kappa B Signaling Pathway, Journal of Biological Chemistry, vol.276, issue.22, pp.19012-19019, 2001.
DOI : 10.1074/jbc.M009984200

A. Uren, K. O-'rourke, L. Aravind, M. Pisabarro, and S. Seshagiri, Identification of Paracaspases and Metacaspases Two Ancient Families of Caspase-like Proteins, One of which Plays a Key Role in MALT Lymphoma, Molecular Cell, vol.6, issue.4, pp.961-967, 2000.
DOI : 10.1016/S1097-2765(00)00094-0

D. Kirchhofer and D. Vucic, Protease activity of MALT1: a mystery unravelled, Biochemical Journal, vol.6, issue.2, pp.3-5, 2012.
DOI : 10.1038/nrm3143

S. Hailfinger, H. Nogai, C. Pelzer, M. Jaworski, and K. Cabalzar, Malt1-dependent RelB cleavage promotes canonical NF-??B activation in lymphocytes and lymphoma cell lines, Proceedings of the National Academy of Sciences, vol.108, issue.35, pp.14596-14601, 2011.
DOI : 10.1073/pnas.1105020108

F. Rebeaud, S. Hailfinger, A. Posevitz-fejfar, M. Tapernoux, and R. Moser, The proteolytic activity of the paracaspase MALT1 is key in T cell activation, Nature Immunology, vol.17, issue.3, pp.272-281, 2008.
DOI : 10.1038/ni1568

C. Wiesmann, L. Leder, J. Blank, A. Bernardi, and S. Melkko, Structural Determinants of MALT1 Protease Activity, Journal of Molecular Biology, vol.419, issue.1-2, pp.4-21, 2012.
DOI : 10.1016/j.jmb.2012.02.018

V. Bhoj and Z. Chen, Ubiquitylation in innate and adaptive immunity, Nature, vol.435, issue.7237, pp.430-437, 2009.
DOI : 10.1038/nature07959

I. Wertz and V. Dixit, Signaling to NF-??B: Regulation by Ubiquitination, Cold Spring Harbor Perspectives in Biology, vol.2, issue.3, p.3350, 2010.
DOI : 10.1101/cshperspect.a003350

A. Oeckinghaus, E. Wegener, V. Welteke, U. Ferch, and S. Arslan, Malt1 ubiquitination triggers NF-??B signaling upon T-cell activation, The EMBO Journal, vol.427, issue.22, pp.4634-4645, 2007.
DOI : 10.1038/sj.emboj.7601897

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080808

B. Boisson, E. Laplantine, C. Prando, S. Giliani, and E. Israelsson, Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency, Nature Immunology, vol.7, issue.12, pp.1178-1186, 2012.
DOI : 10.1016/j.immuni.2008.05.012

S. Sun, CYLD: a tumor suppressor deubiquitinase regulating NF-??B activation and diverse biological processes, Cell Death and Differentiation, vol.25, issue.1, pp.25-34, 2010.
DOI : 10.1038/cdd.2009.43

N. Shembade and E. Harhaj, Regulation of NF-??B signaling by the A20 deubiquitinase, Cellular and Molecular Immunology, vol.12, issue.2, pp.123-130, 2012.
DOI : 10.1038/cmi.2011.59

G. Baier, The PKC gene module: molecular biosystematics to resolve its T cell functions, Immunological Reviews, vol.75, issue.1, pp.64-79, 2003.
DOI : 10.1093/emboj/cdf407

N. Coudronniere, M. Villalba, N. Englund, and A. Altman, NF-kappa B activation induced by T cell receptor/CD28 costimulation is mediated by protein kinase C-theta, Proceedings of the National Academy of Sciences, vol.97, issue.7, pp.3394-3399, 2000.
DOI : 10.1073/pnas.060028097

C. Pfeifhofer, K. Kofler, T. Gruber, N. Tabrizi, and C. Lutz, Mobilization and NFAT Activation in Primary Mouse T Cells, The Journal of Experimental Medicine, vol.260, issue.11, pp.1525-1535, 2003.
DOI : 10.1084/jem.181.2.577

G. Baier-bitterlich, F. Uberall, B. Bauer, F. Fresser, and H. Wachter, Protein kinase C-theta isoenzyme selective stimulation of the transcription factor complex AP-1 in T lymphocytes., Molecular and Cellular Biology, vol.16, issue.4, pp.1842-1850, 1996.
DOI : 10.1128/MCB.16.4.1842

S. Sakaguchi, T. Yamaguchi, T. Nomura, and M. Ono, Regulatory T Cells and Immune Tolerance, Cell, vol.133, issue.5, pp.775-787, 2008.
DOI : 10.1016/j.cell.2008.05.009

K. Kong, T. Yokosuka, A. Canonigo-balancio, N. Isakov, and T. Saito, A motif in the V3 domain of the kinase PKC-?? determines its localization in the immunological synapse and functions in T cells via association with CD28, Nature Immunology, vol.1761, issue.11, pp.1105-1112, 2011.
DOI : 10.4049/jimmunol.0902573

T. Yokosuka, W. Kobayashi, K. Sakata-sogawa, M. Takamatsu, and A. Hashimoto-tane, Spatiotemporal Regulation of T Cell Costimulation by TCR-CD28 Microclusters and Protein Kinase C ?? Translocation, Immunity, vol.29, issue.4, pp.589-601, 2008.
DOI : 10.1016/j.immuni.2008.08.011

N. Isakov and A. Altman, PKC-theta-mediated signal delivery from the TCR/CD28 surface receptors, Frontiers in Immunology, vol.3, p.273, 2012.
DOI : 10.3389/fimmu.2012.00273

S. Park, M. Long, J. Kang, W. Kim, and C. Lee, The Kinase PDK1 Is Essential for B-Cell Receptor Mediated Survival Signaling, PLoS ONE, vol.104, issue.2, p.55378, 2013.
DOI : 10.1371/journal.pone.0055378.s003

S. Park, J. Schulze-luehrman, M. Hayden, N. Hashimoto, and W. Ogawa, The kinase PDK1 integrates T cell antigen receptor and CD28 coreceptor signaling to induce NF-??B and activate T cells, Nature Immunology, vol.173, issue.2, pp.158-166, 2009.
DOI : 10.1182/blood-2004-12-4785

K. Lee, D. Acquisto, F. Hayden, M. Shim, J. Ghosh et al., PDK1 Nucleates T Cell Receptor-Induced Signaling Complex for NF-??B Activation, Science, vol.308, issue.5718, pp.114-118, 2005.
DOI : 10.1126/science.1107107

A. Da-silva, Z. Li, C. De-vera, E. Canto, and P. Findell, Cloning of a novel T-cell protein FYB that binds FYN and SH2-domain-containing leukocyte protein 76 and modulates interleukin 2 production, Proceedings of the National Academy of Sciences, vol.94, issue.14, pp.7493-7498, 1997.
DOI : 10.1073/pnas.94.14.7493

M. Musci, L. Hendricks-taylor, D. Motto, M. Paskind, and J. Kamens, Molecular Cloning of SLAP-130, an SLP-76-associated Substrate of the T Cell Antigen Receptor-stimulated Protein Tyrosine Kinases, Journal of Biological Chemistry, vol.272, issue.18, pp.11674-11677, 1997.
DOI : 10.1074/jbc.272.18.11674

H. Wang and C. Rudd, SKAP-55, SKAP-55-related and ADAP adaptors modulate integrin-mediated immune-cell adhesion, Trends in Cell Biology, vol.18, issue.10, pp.486-493, 2008.
DOI : 10.1016/j.tcb.2008.07.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3512129

R. Medeiros, B. Burbach, K. Mueller, R. Srivastava, and J. Moon, Regulation of NF-??B Activation in T Cells via Association of the Adapter Proteins ADAP and CARMA1, Science, vol.316, issue.5825, pp.754-758, 2007.
DOI : 10.1126/science.1137895

R. Srivastava, B. Burbach, J. Mitchell, A. Pagan, and Y. Shimizu, ADAP Regulates Cell Cycle Progression of T Cells via Control of Cyclin E and Cdk2 Expression through Two Distinct CARMA1-Dependent Signaling Pathways, Molecular and Cellular Biology, vol.32, issue.10, pp.1908-1917, 2010.
DOI : 10.1128/MCB.06541-11

B. Burbach, R. Srivastava, R. Medeiros, O. Gorman, W. Peterson et al., Distinct Regulation of Integrin-Dependent T Cell Conjugate Formation and NF-??B Activation by the Adapter Protein ADAP, The Journal of Immunology, vol.181, issue.7, pp.4840-4851, 2008.
DOI : 10.4049/jimmunol.181.7.4840

J. Maelfait and R. Beyaert, Non-apoptotic functions of caspase-8, Biochemical Pharmacology, vol.76, issue.11, pp.1365-1373, 2008.
DOI : 10.1016/j.bcp.2008.07.034

H. Su, N. Bidere, L. Zheng, A. Cubre, and K. Sakai, Requirement for Caspase-8 in NF-??B Activation by Antigen Receptor, Science, vol.307, issue.5714, pp.1465-1468, 2005.
DOI : 10.1126/science.1104765

H. Chun, L. Zheng, M. Ahmad, J. Wang, and C. Speirs, Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency, Nature, vol.83, issue.6905, pp.395-399, 2002.
DOI : 10.1073/pnas.96.8.4552

L. He, X. Wu, R. Siegel, and P. Lipsky, TRAF6 Regulates Cell Fate Decisions by Inducing Caspase 8-dependent Apoptosis and the Activation of NF-??B, Journal of Biological Chemistry, vol.281, issue.16, pp.11235-11249, 2006.
DOI : 10.1074/jbc.M508779200

R. Mccully and J. Pomerantz, The Protein Kinase C-Responsive Inhibitory Domain of CARD11 Functions in NF-??B Activation To Regulate the Association of Multiple Signaling Cofactors That Differentially Depend on Bcl10 and MALT1 for Association, Molecular and Cellular Biology, vol.28, issue.18, pp.5668-5686, 2008.
DOI : 10.1128/MCB.00418-08

S. Lens, T. Kataoka, K. Fortner, A. Tinel, and I. Ferrero, The Caspase 8 Inhibitor c-FLIPL Modulates T-Cell Receptor-Induced Proliferation but Not Activation-Induced Cell Death of Lymphocytes, Molecular and Cellular Biology, vol.22, issue.15, pp.5419-5433, 2002.
DOI : 10.1128/MCB.22.15.5419-5433.2002

A. Safa and K. Pollok, Targeting the Anti-Apoptotic Protein c-FLIP for Cancer Therapy, Cancers, vol.3, issue.4, pp.1639-1671, 2011.
DOI : 10.3390/cancers3021639

S. Oruganti, S. Edin, C. Grundstrom, and T. Grundstrom, CaMKII targets Bcl10 in T-cell receptor induced activation of NF-??B, Molecular Immunology, vol.48, issue.12-13, pp.1448-1460, 2011.
DOI : 10.1016/j.molimm.2011.03.020

N. Bidere, V. Ngo, J. Lee, C. Collins, and L. Zheng, Casein kinase 1?? governs antigen-receptor-induced NF-??B activation and human lymphoma cell survival, Nature, vol.131, issue.7234, pp.92-96, 2009.
DOI : 10.1038/nature07613

A. Kupfer and H. Kupfer, Imaging immune cell interactions and functions: SMACs and the Immunological Synapse, Seminars in Immunology, vol.15, issue.6, pp.295-300, 2003.
DOI : 10.1016/j.smim.2003.09.001

O. Gaide, B. Favier, D. Legler, D. Bonnet, and B. Brissoni, CARMA1 is a critical lipid raft???associated regulator of TCR-induced NF-??B activation, Nature Immunology, vol.3, issue.9, pp.836-843, 2002.
DOI : 10.1038/ni830

D. Wang, R. Matsumoto, Y. You, C. T. Lin, and X. , CD3/CD28 Costimulation-Induced NF-??B Activation Is Mediated by Recruitment of Protein Kinase C-??, Bcl10, and I??B Kinase ?? to the Immunological Synapse through CARMA1, Molecular and Cellular Biology, vol.24, issue.1, pp.164-171, 2004.
DOI : 10.1128/MCB.24.1.164-171.2003

E. Teixeiro, M. Daniels, B. Hausmann, A. Schrum, and D. Naeher, T Cell Division and Death Are Segregated by Mutation of TCR?? Chain Constant Domains, Immunity, vol.21, issue.4, pp.515-526, 2004.
DOI : 10.1016/j.immuni.2004.08.014

K. Hayashi and A. Altman, Protein kinase C theta (PKC??): A key player in T cell life and death, Pharmacological Research, vol.55, issue.6, pp.537-544, 2007.
DOI : 10.1016/j.phrs.2007.04.009

R. Weil and A. Israel, Deciphering the pathway from the TCR to NF-??B, Cell Death and Differentiation, vol.3, issue.5, pp.826-833, 2006.
DOI : 10.1038/sj.onc.1208302

H. Hara, C. Bakal, T. Wada, D. Bouchard, and R. Rottapel, The Molecular Adapter Carma1 Controls Entry of I??B Kinase into the Central Immune Synapse, The Journal of Experimental Medicine, vol.46, issue.9, pp.1167-1177, 2004.
DOI : 10.1074/jbc.M402244200

J. Cannons, L. Yu, B. Hill, L. Mijares, and D. Dombroski, SAP Regulates TH2 Differentiation and PKC-??-Mediated Activation of NF-??B1, Immunity, vol.21, issue.5, pp.693-706, 2004.
DOI : 10.1016/j.immuni.2004.09.012

R. Weil, K. Schwamborn, A. Alcover, C. Bessia, D. Bartolo et al., Induction of the NF-??B Cascade by Recruitment of the Scaffold Molecule NEMO to the T Cell Receptor, Immunity, vol.18, issue.1, pp.13-26, 2003.
DOI : 10.1016/S1074-7613(02)00506-X

K. Lee, A. Dinner, C. Tu, G. Campi, and S. Raychaudhuri, The Immunological Synapse Balances T Cell Receptor Signaling and Degradation, Science, vol.302, issue.5648, pp.1218-1222, 2003.
DOI : 10.1126/science.1086507

A. Wiedemann, S. Muller, B. Favier, D. Penna, and M. Guiraud, T-cell activation is accompanied by an ubiquitination process occurring at the immunological synapse, Immunology Letters, vol.98, issue.1, pp.57-61, 2005.
DOI : 10.1016/j.imlet.2004.10.014

R. Lamason, A. Kupfer, and J. Pomerantz, The Dynamic Distribution of CARD11 at the Immunological Synapse Is Regulated by the Inhibitory Kinesin GAKIN, Molecular Cell, vol.40, issue.5, pp.798-809, 2010.
DOI : 10.1016/j.molcel.2010.11.007

K. Bi, Y. Tanaka, N. Coudronniere, K. Sugie, and S. Hong, Antigen-induced translocation of PKC-theta to membrane rafts is required for T cell activation, Nature Immunology, vol.30, issue.6, pp.556-563, 2001.
DOI : 10.1038/88765

J. Huang, P. Lo, T. Zal, N. Gascoigne, and B. Smith, CD28 plays a critical role in the segregation of PKC?? within the immunologic synapse, Proceedings of the National Academy of Sciences, vol.99, issue.14, pp.9369-9373, 2002.
DOI : 10.1073/pnas.142298399

T. Sims, T. Soos, H. Xenias, B. Dubin-thaler, and J. Hofman, Opposing Effects of PKC?? and WASp on Symmetry Breaking and Relocation of the Immunological Synapse, Cell, vol.129, issue.4, pp.773-785, 2007.
DOI : 10.1016/j.cell.2007.03.037

P. Beemiller, J. Jacobelli, and M. Krummel, Integration of the movement of signaling microclusters with cellular motility in immunological synapses, Nature Immunology, vol.260, issue.8, pp.787-795, 2012.
DOI : 10.1088/1478-3975/4/3/008

R. Friedman, P. Beemiller, C. Sorensen, J. Jacobelli, and M. Krummel, Real-time analysis of T cell receptors in naive cells in vitro and in vivo reveals flexibility in synapse and signaling dynamics, 2010.

G. Campi, R. Varma, and M. Dustin, Actin and agonist MHC???peptide complex???dependent T cell receptor microclusters as scaffolds for signaling, The Journal of Experimental Medicine, vol.114, issue.8, pp.1031-1036, 2005.
DOI : 10.1038/nature03391

A. Hashimoto-tane, T. Yokosuka, K. Sakata-sogawa, M. Sakuma, and C. Ishihara, Dynein-Driven Transport of T Cell Receptor Microclusters Regulates Immune Synapse Formation and T Cell Activation, Immunity, vol.34, issue.6, pp.919-931, 2011.
DOI : 10.1016/j.immuni.2011.05.012

T. Yokosuka, K. Sakata-sogawa, W. Kobayashi, M. Hiroshima, and A. Hashimoto-tane, Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76, Nature Immunology, vol.235, issue.12, pp.1253-1262, 2005.
DOI : 10.1038/ni1272

R. Varma, G. Campi, T. Yokosuka, T. Saito, and M. Dustin, T Cell Receptor-Proximal Signals Are Sustained in Peripheral Microclusters and Terminated in the Central Supramolecular Activation Cluster, Immunity, vol.25, issue.1, pp.117-127, 2006.
DOI : 10.1016/j.immuni.2006.04.010

A. Gerard, P. Beemiller, R. Friedman, J. Jacobelli, and M. Krummel, Evolving immune circuits are generated by flexible, motile, and sequential immunological synapses, Immunological Reviews, vol.42, issue.1, pp.80-96, 2013.
DOI : 10.1111/imr.12021

M. Dustin and T. Springer, T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1, Nature, vol.341, issue.6243, pp.619-624, 1989.
DOI : 10.1038/341619a0

A. Kupfer and G. Dennert, Reorientation of the microtubule-organizing center and the Golgi apparatus in cloned cytotoxic lymphocytes triggered by binding to lysable target cells, J Immunol, vol.133, pp.2762-2766, 1984.

S. Bunnell, V. Kapoor, R. Trible, W. Zhang, and L. Samelson, Dynamic Actin Polymerization Drives T Cell Receptor???Induced Spreading, Immunity, vol.14, issue.3, pp.315-329, 2001.
DOI : 10.1016/S1074-7613(01)00112-1

URL : http://doi.org/10.1016/s1074-7613(01)00112-1

J. Stinchcombe, E. Majorovits, G. Bossi, S. Fuller, and G. Griffiths, Centrosome polarization delivers secretory granules to the immunological synapse, Nature, vol.17, issue.7110, pp.462-465, 2006.
DOI : 10.1038/nature05071

Y. Kaizuka, A. Douglass, R. Varma, M. Dustin, and R. Vale, Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells, Proceedings of the National Academy of Sciences, vol.104, issue.51, pp.20296-20301, 2007.
DOI : 10.1073/pnas.0710258105

C. Calabia-linares, J. Robles-valero, H. De-la-fuente, M. Perez-martinez, and N. Martin-cofreces, Endosomal clathrin drives actin accumulation at the immunological synapse, Journal of Cell Science, vol.124, issue.5, pp.820-830, 2011.
DOI : 10.1242/jcs.078832

J. Combs, S. Kim, S. Tan, L. Ligon, and E. Holzbaur, Recruitment of dynein to the Jurkat immunological synapse, Proceedings of the National Academy of Sciences, vol.103, issue.40, pp.14883-14888, 2006.
DOI : 10.1073/pnas.0600914103

S. Rosebeck, A. Rehman, P. Lucas, and L. Mcallister-lucas, From MALT lymphoma to the CBM signalosome, Cell Cycle, vol.19, issue.15, pp.2485-2496, 2011.
DOI : 10.1038/ni.1651

M. Du, MALT lymphoma: many roads lead to nuclear factor-??b activation, Histopathology, vol.221, issue.1, pp.26-38, 2011.
DOI : 10.1111/j.1365-2559.2010.03699.x

T. Willis, D. Jadayel, M. Du, H. Peng, and A. Perry, Bcl10 Is Involved in t(1;14)(p22;q32) of MALT B Cell Lymphoma and Mutated in Multiple Tumor Types, Cell, vol.96, issue.1, pp.35-45, 1999.
DOI : 10.1016/S0092-8674(00)80957-5

Q. Zhang, R. Siebert, M. Yan, B. Hinzmann, and X. Cui, Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32), Nat Genet, vol.22, pp.63-68, 1999.

B. Streubel, A. Lamprecht, J. Dierlamm, L. Cerroni, and M. Stolte, T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma, Blood, vol.101, issue.6, pp.2335-2339, 2003.
DOI : 10.1182/blood-2002-09-2963

B. Streubel, I. Simonitsch-klupp, L. Mullauer, A. Lamprecht, and D. Huber, Variable frequencies of MALT lymphoma-associated genetic aberrations in MALT lymphomas of different sites, Leukemia, vol.18, issue.10, pp.1722-1726, 2004.
DOI : 10.1038/sj.leu.2403501

B. Streubel, U. Vinatzer, A. Lamprecht, M. Raderer, and A. Chott, T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma, Leukemia, vol.14, pp.652-658, 2005.
DOI : 10.1073/PNAS.050007597

H. Hu, B. Wang, M. Borde, J. Nardone, and S. Maika, Foxp1 is an essential transcriptional regulator of B cell development, Nature Immunology, vol.11, issue.8, pp.819-826, 2006.
DOI : 10.1016/S0092-8674(00)00188-4

Y. Bi, N. Zeng, E. Chanudet, Y. Huang, and R. Hamoudi, A20 inactivation in ocular adnexal MALT lymphoma, Haematologica, vol.97, issue.6, pp.926-930, 2011.
DOI : 10.3324/haematol.2010.036798

H. Liu, H. Ye, A. Dogan, R. Ranaldi, and R. Hamoudi, T(11;18)(q21;q21) is associated with advanced mucosa-associated lymphoid tissue lymphoma that expresses nuclear BCL10, Blood, vol.98, issue.4, pp.1182-1187, 2001.
DOI : 10.1182/blood.V98.4.1182

B. Maes, A. Demunter, B. Peeters, D. Wolf-peeters, and C. , BCL10 mutation does not represent an important pathogenic mechanism in gastric MALT-type lymphoma, and the presence of the API2-MLT fusion is associated with aberrant nuclear BCL10 expression, Blood, vol.99, issue.4, pp.1398-1404, 2002.
DOI : 10.1182/blood.V99.4.1398

H. Ye, A. Dogan, L. Karran, T. Willis, and L. Chen, BCL10 Expression in Normal and Neoplastic Lymphoid Tissue, The American Journal of Pathology, vol.157, issue.4, pp.1147-1154, 2000.
DOI : 10.1016/S0002-9440(10)64630-5

H. Ye, H. Liu, A. Attygalle, A. Wotherspoon, and A. Nicholson, Variable frequencies of t(11;18)(q21;q21) in MALT lymphomas of different sites: significant association with CagA strains of H pylori in gastric MALT lymphoma, Blood, vol.102, issue.3, pp.1012-1018, 2003.
DOI : 10.1182/blood-2002-11-3502

M. Nakagawa, Y. Hosokawa, M. Yonezumi, K. Izumiyama, and R. Suzuki, MALT1 contains nuclear export signals and regulates cytoplasmic localization of BCL10, Blood, vol.106, issue.13, pp.4210-4216, 2005.
DOI : 10.1182/blood-2004-12-4785

M. Baens, S. Fevery, X. Sagaert, H. Noels, and S. Hagens, Selective Expansion of Marginal Zone B Cells in E??-API2-MALT1 Mice Is Linked to Enhanced I??B Kinase ?? Polyubiquitination, Cancer Research, vol.66, issue.10, pp.5270-5277, 2006.
DOI : 10.1158/0008-5472.CAN-05-4590

Z. Li, H. Wang, L. Xue, D. Shin, and D. Roopenian, E??-BCL10 mice exhibit constitutive activation of both canonical and noncanonical NF-??B pathways generating marginal zone (MZ) B-cell expansion as a precursor to splenic MZ lymphoma, Blood, vol.114, issue.19, pp.4158-4168, 2009.
DOI : 10.1182/blood-2008-12-192583

C. Vicente-duenas, L. Fontan, I. Gonzalez-herrero, I. Romero-camarero, and V. Segura, Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice, Proceedings of the National Academy of Sciences, vol.109, issue.26, pp.10534-10539, 2012.
DOI : 10.1073/pnas.1204127109

G. Lenz and L. Staudt, Aggressive lymphomas, N Engl J Med, vol.362, pp.1417-1429, 2010.

A. Alizadeh, M. Eisen, R. Davis, C. Ma, and I. Lossos, Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, Nature, vol.303, issue.6769, pp.503-511, 2000.
DOI : 10.1038/35000501

A. Rosenwald, G. Wright, W. Chan, J. Connors, and E. Campo, The Use of Molecular Profiling to Predict Survival after Chemotherapy for Diffuse Large-B-Cell Lymphoma, New England Journal of Medicine, vol.346, issue.25, pp.1937-1947, 2002.
DOI : 10.1056/NEJMoa012914

K. Savage, S. Monti, J. Kutok, G. Cattoretti, and D. Neuberg, The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma, Blood, vol.102, issue.12, pp.3871-3879, 2003.
DOI : 10.1182/blood-2003-06-1841

G. Wright, B. Tan, A. Rosenwald, E. Hurt, and A. Wiestner, A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma, Proceedings of the National Academy of Sciences, vol.100, issue.17, pp.9991-9996, 2003.
DOI : 10.1073/pnas.1732008100

I. Lossos, D. Czerwinski, A. Alizadeh, M. Wechser, and R. Tibshirani, Prediction of Survival in Diffuse Large-B-Cell Lymphoma Based on the Expression of Six Genes, New England Journal of Medicine, vol.350, issue.18, pp.1828-1837, 2004.
DOI : 10.1056/NEJMoa032520

U. Novak, A. Rinaldi, I. Kwee, S. Nandula, and P. Rancoita, The NF-??B negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas, Blood, vol.113, issue.20, pp.4918-4921, 2009.
DOI : 10.1182/blood-2008-08-174110

L. Pasqualucci, D. Dominguez-sola, A. Chiarenza, G. Fabbri, and A. Grunn, Inactivating mutations of acetyltransferase genes in B-cell lymphoma, Nature, vol.5, issue.7337, pp.189-195, 2011.
DOI : 10.1038/nature09730

B. Kloo, D. Nagel, M. Pfeifer, M. Grau, and M. Duwel, Critical role of PI3K signaling for NF-??B-dependent survival in a subset of activated B-cell-like diffuse large B-cell lymphoma cells, Proceedings of the National Academy of Sciences, vol.108, issue.1, pp.272-277, 2011.
DOI : 10.1073/pnas.1008969108

V. Ngo, R. Davis, L. Lamy, X. Yu, and H. Zhao, A loss-of-function RNA interference screen for molecular targets in cancer, Nature, vol.22, issue.7089, pp.106-110, 2006.
DOI : 10.1038/nature04687

M. Compagno, W. Lim, A. Grunn, S. Nandula, and M. Brahmachary, Mutations of multiple genes cause deregulation of NF-??B in diffuse large B-cell lymphoma, Nature, vol.272, issue.7247, pp.717-721, 2009.
DOI : 10.1038/nature07968

G. Lenz, R. Davis, V. Ngo, L. Lam, and T. George, Oncogenic CARD11 Mutations in Human Diffuse Large B Cell Lymphoma, Science, vol.319, issue.5870, pp.1676-1679, 2008.
DOI : 10.1126/science.1153629

L. Pasqualucci, V. Trifonov, G. Fabbri, J. Ma, and D. Rossi, Analysis of the coding genome of diffuse large B-cell lymphoma, Nature Genetics, vol.96, issue.9, pp.830-837, 2012.
DOI : 10.1093/bioinformatics/btl646

U. Ferch, B. Kloo, A. Gewies, V. Pfander, and M. Duwel, Inhibition of MALT1 protease activity is selectively toxic for activated B cell???like diffuse large B cell lymphoma cells, The Journal of Experimental Medicine, vol.6, issue.11, pp.2313-2320, 2009.
DOI : 10.1073/pnas.1732008100

S. Hailfinger, G. Lenz, V. Ngo, A. Posvitz-fejfar, and F. Rebeaud, Essential role of MALT1 protease activity in activated B cell-like diffuse large B-cell lymphoma, Proceedings of the National Academy of Sciences, vol.106, issue.47, pp.19946-19951, 2009.
DOI : 10.1073/pnas.0907511106

L. Fontan, C. Yang, V. Kabaleeswaran, L. Volpon, and M. Osborne, MALT1 Small Molecule Inhibitors Specifically Suppress ABC-DLBCL In??Vitro and In??Vivo, Cancer Cell, vol.22, issue.6, pp.812-824, 2012.
DOI : 10.1016/j.ccr.2012.11.003

T. Kawai and S. Akira, The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors, Nature Immunology, vol.1799, issue.5, pp.373-384, 2010.
DOI : 10.1126/science.1179050

J. Lohr, P. Stojanov, M. Lawrence, D. Auclair, and B. Chapuy, Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing, Proceedings of the National Academy of Sciences, vol.109, issue.10, pp.3879-3884, 2012.
DOI : 10.1073/pnas.1121343109

R. Morin, M. Mendez-lago, A. Mungall, R. Goya, and K. Mungall, Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma, Nature, vol.100, issue.7360, pp.298-303, 2011.
DOI : 10.1038/nature10351

J. Choi, Y. Kim, J. Lee, and Y. Kim, MYD88 expression and L265P mutation in diffuse large B-cell lymphoma, Human Pathology, vol.44, issue.7, 2013.
DOI : 10.1016/j.humpath.2012.10.026

I. Wlodarska, E. Veyt, D. Paepe, P. Vandenberghe, P. Nooijen et al., FOXP1, a gene highly expressed in a subset of diffuse large B-cell lymphoma, is recurrently targeted by genomic aberrations, Leukemia, vol.19, issue.8, pp.1299-1305, 2005.
DOI : 10.1038/sj.leu.2403813

Z. Sun, C. Arendt, W. Ellmeier, E. Schaeffer, and M. Sunshine, PKC-\[thetas] is required for TCR-induced NF-??B activation in mature but not immature T lymphocytes, Nature, vol.404, issue.6776, pp.402-407, 2000.
DOI : 10.1038/35006090

N. Berg-brown, M. Gronski, R. Jones, A. Elford, and E. Deenick, PKC?? Signals Activation versus Tolerance In Vivo, The Journal of Experimental Medicine, vol.3, issue.6, pp.743-752, 2004.
DOI : 10.1038/ni761

F. Giannoni, A. Lyon, M. Wareing, P. Dias, and S. Sarawar, Protein Kinase C ?? Is Not Essential for T-Cell-Mediated Clearance of Murine Gammaherpesvirus 68, Journal of Virology, vol.79, issue.11, pp.6808-6813, 2005.
DOI : 10.1128/JVI.79.11.6808-6813.2005

B. Marsland, C. Nembrini, N. Schmitz, B. Abel, and S. Krautwald, Innate signals compensate for the absence of PKC-?? during in vivo CD8+ T cell effector and memory responses, Proceedings of the National Academy of Sciences, vol.102, issue.40, pp.14374-14379, 2005.
DOI : 10.1073/pnas.0506250102

J. Valenzuela, C. Iclozan, M. Hossain, M. Prlic, and E. Hopewell, PKC?? is required for alloreactivity and GVHD but not for immune responses toward leukemia and infection in mice, Journal of Clinical Investigation, vol.119, issue.12, pp.3774-3786, 2009.
DOI : 10.1172/JCI39692DS1

L. Kingeter and B. Schaefer, Loss of Protein Kinase C??, Bcl10, or Malt1 Selectively Impairs Proliferation and NF-??B Activation in the CD4+ T Cell Subset, The Journal of Immunology, vol.181, issue.9, pp.6244-6254, 2008.
DOI : 10.4049/jimmunol.181.9.6244

T. Su, B. Guo, Y. Kawakami, K. Sommer, and K. Chae, PKC-beta controls I kappa B kinase lipid raft recruitment and activation in response to BCR signaling, Nat Immunol, vol.3, pp.780-786, 2002.

T. Kang, T. Ben-moshe, E. Varfolomeev, Y. Pewzner-jung, and N. Yogev, Caspase-8 Serves Both Apoptotic and Nonapoptotic Roles, The Journal of Immunology, vol.173, issue.5, pp.2976-2984, 2004.
DOI : 10.4049/jimmunol.173.5.2976

L. Salmena and R. Hakem, Caspase-8 deficiency in T cells leads to a lethal lymphoinfiltrative immune disorder, The Journal of Experimental Medicine, vol.109, issue.6, pp.727-732, 2005.
DOI : 10.1146/annurev.genet.33.1.29

L. Salmena, B. Lemmers, A. Hakem, E. Matysiak-zablocki, and K. Murakami, Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity, Genes & Development, vol.17, issue.7, pp.883-895, 2003.
DOI : 10.1101/gad.1063703

H. Hinton, D. Alessi, and D. Cantrell, The serine kinase phosphoinositide-dependent kinase 1 (PDK1) regulates T cell development, Nature Immunology, vol.55, issue.5, pp.539-545, 2004.
DOI : 10.1016/S0960-9822(00)00441-3