M. Woo, D. Przepiorka, C. Ippoliti, D. Warkentin, I. Khouri et al., Toxicities of tacrolimus and cyclosporin A after allogeneic blood stem cell transplantation, Bone Marrow Transplantation, vol.20, issue.12, pp.1095-1098, 1997.
DOI : 10.1038/sj.bmt.1701027

N. Issa, A. Kukla, and H. Ibrahim, Calcineurin Inhibitor Nephrotoxicity: A Review and Perspective of the Evidence, American Journal of Nephrology, vol.37, issue.6, pp.602-612, 2013.
DOI : 10.1159/000351648

R. Gaston, Chronic Calcineurin Inhibitor Nephrotoxicity: Reflections on an Evolving Paradigm, Clinical Journal of the American Society of Nephrology, vol.4, issue.12, pp.2029-2034, 2009.
DOI : 10.2215/CJN.03820609

R. Souza and J. Olsburgh, Urinary tract infection in the renal transplant patient, Nature Clinical Practice Nephrology, vol.221, issue.5, pp.252-264, 2008.
DOI : 10.1038/ncpneph0781

P. Badiee and A. Alborzi, Invasive fungal infections in renal transplant recipients, Exp Clin Transplant, vol.9, pp.355-362, 2011.

S. Karuthu and A. Blumberg, Common Infections in Kidney Transplant Recipients, Clinical Journal of the American Society of Nephrology, vol.7, issue.12, pp.2058-2070, 2012.
DOI : 10.2215/CJN.04410512

M. Giral, G. Pascuariello, G. Karam, M. Hourmant, D. Cantarovich et al., Acute graft pyelonephritis and long-term kidney allograft outcome, Kidney International, vol.61, issue.5, pp.1880-1886, 2002.
DOI : 10.1046/j.1523-1755.2002.00323.x

URL : http://doi.org/10.1046/j.1523-1755.2002.00323.x

G. Pelle, S. Vimont, P. Levy, A. Hertig, N. Ouali et al., Acute Pyelonephritis Represents a Risk Factor Impairing Long-Term Kidney Graft Function, American Journal of Transplantation, vol.44, issue.4, pp.899-907, 2007.
DOI : 10.1093/ndt/gfi007

URL : https://hal.archives-ouvertes.fr/hal-00597622

J. Rice and N. Safdar, Urinary Tract Infections in Solid Organ Transplant Recipients, American Journal of Transplantation, vol.147, issue.Suppl 15, pp.267-272, 2009.
DOI : 10.1111/j.1600-6143.2009.02919.x

F. Cosio, J. Innes, N. Nahman, . Jr, J. Mahan et al., COMBINED NEPHROTOXIC EFFECTS OF CYCLOSPORINE AND ENDOTOXIN, Transplantation, vol.44, issue.3, pp.425-428, 1987.
DOI : 10.1097/00007890-198709000-00020

V. Audard, M. Amor, D. Desvaux, M. Pastural, C. Baron et al., Acute Graft Pyelonephritis: A Potential Cause of Acute Rejection in Renal Transplant, Transplantation, vol.80, issue.8, pp.1128-1130, 2005.
DOI : 10.1097/01.TP.0000174343.05590.9F

J. Fric, C. Lim, E. Koh, B. Hofmann, J. Chen et al., Calcineurin/NFAT signalling inhibits myeloid haematopoiesis, EMBO Molecular Medicine, vol.460, issue.4, pp.269-282, 2012.
DOI : 10.1002/emmm.201100207

URL : http://doi.org/10.1002/emmm.201100207

S. Gribar, W. Richardson, C. Sodhi, and D. Hackam, No longer an innocent bystander: epithelial toll-like receptor signaling in the development of mucosal inflammation, Mol Med, vol.14, pp.645-659, 2008.

O. Takeuchi and S. Akira, Pattern Recognition Receptors and Inflammation, Cell, vol.140, issue.6, pp.805-820, 2010.
DOI : 10.1016/j.cell.2010.01.022

URL : http://doi.org/10.1016/j.cell.2010.01.022

T. Kawai and S. Akira, The roles of TLRs, RLRs and NLRs in pathogen recognition, International Immunology, vol.21, issue.4, pp.317-337, 2009.
DOI : 10.1093/intimm/dxp017

K. Schroder and J. Tschopp, The Inflammasomes, Cell, vol.140, issue.6, pp.821-832, 2010.
DOI : 10.1016/j.cell.2010.01.040

V. Bonardi, K. Cherkis, M. Nishimur, and J. Dangl, A new eye on NLR proteins: focused on clarity or diffused by complexity?, Current Opinion in Immunology, vol.24, issue.1, pp.41-50, 2012.
DOI : 10.1016/j.coi.2011.12.006

S. Akira and K. Takeda, Toll-like receptor signalling, Nature Reviews Immunology, vol.303, issue.7, pp.499-511, 2004.
DOI : 10.1038/nri1391

J. Song and S. Abraham, Innate and adaptive immune responses in the urinary tract, European Journal of Clinical Investigation, vol.51, issue.Suppl. 3, pp.21-28, 2008.
DOI : 10.1111/j.1365-2362.2008.02005.x

D. Zhang, G. Zhang, M. Hayden, M. Greenblatt, C. Bussey et al., A Toll-like Receptor That Prevents Infection by Uropathogenic Bacteria, Science, vol.303, issue.5663, pp.1522-1526, 2004.
DOI : 10.1126/science.1094351

D. Philpott and S. Girardin, Nod-like receptors: sentinels at host membranes, Current Opinion in Immunology, vol.22, issue.4, pp.428-434, 2010.
DOI : 10.1016/j.coi.2010.04.010

F. Macian, NFAT proteins: key regulators of T-cell development and function, Nature Reviews Immunology, vol.7, issue.6, pp.472-484, 2005.
DOI : 10.1073/pnas.0402803101

J. Aramburu, K. Drews-elger, A. Estrada-gelonch, J. Minguillon, B. Morancho et al., Regulation of the hypertonic stress response and other cellular functions by the Rel-like transcription factor NFAT5, Biochemical Pharmacology, vol.72, issue.11, pp.1597-1604, 2006.
DOI : 10.1016/j.bcp.2006.07.002

F. Rusnak and P. Mertz, Calcineurin: form and function, Physiol Rev, vol.80, pp.1483-1521, 2000.

P. Hogan, L. Chen, J. Nardone, and A. Rao, Transcriptional regulation by calcium, calcineurin, and NFAT, Genes & Development, vol.17, issue.18, pp.2205-2232, 2003.
DOI : 10.1101/gad.1102703

URL : http://genesdev.cshlp.org/cgi/content/short/17/18/2205

S. Im and A. Rao, Activation and deactivation of gene expression by Ca 2+ /calcineurin-NFAT-mediated signaling, Mol Cells, vol.18, pp.1-9, 2004.

G. Brown, J. Herre, D. Williams, J. Willment, A. Marshall et al., Dectin-1 Mediates the Biological Effects of ??-Glucans, The Journal of Experimental Medicine, vol.160, issue.9, pp.1119-1124, 2003.
DOI : 10.1016/0022-1759(94)90018-3

N. Rogers, E. Slack, A. Edwards, M. Nolte, O. Schulz et al., Syk-Dependent Cytokine Induction by Dectin-1 Reveals a Novel Pattern Recognition Pathway for C Type Lectins, Immunity, vol.22, issue.4, pp.507-517, 2005.
DOI : 10.1016/j.immuni.2005.03.004

B. Gantner, R. Simmons, and D. Underhill, Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments, The EMBO Journal, vol.285, issue.6, pp.1277-1286, 2005.
DOI : 10.1038/sj.emboj.7600594

B. Gantner, R. Simmons, S. Canavera, S. Akira, and D. Underhill, Collaborative Induction of Inflammatory Responses by Dectin-1 and Toll-like Receptor 2, The Journal of Experimental Medicine, vol.63, issue.9, pp.1107-1117, 2003.
DOI : 10.1093/infdis/163.5.1154

H. Goodridge, R. Simmons, and D. Underhill, Dectin-1 Stimulation by Candida albicans Yeast or Zymosan Triggers NFAT Activation in Macrophages and Dendritic Cells, The Journal of Immunology, vol.178, issue.5, pp.3107-3115, 2007.
DOI : 10.4049/jimmunol.178.5.3107

I. Zanoni, R. Ostuni, G. Capuano, M. Collini, M. Caccia et al., CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation, Nature, vol.5, issue.7252, pp.14264-268, 2009.
DOI : 10.1038/nature08118

H. Takayanagi, S. Kim, T. Koga, H. Nishina, M. Isshiki et al., Induction and Activation of the Transcription Factor NFATc1 (NFAT2) Integrate RANKL Signaling in Terminal Differentiation of Osteoclasts, Developmental Cell, vol.3, issue.6, pp.889-901, 2002.
DOI : 10.1016/S1534-5807(02)00369-6

J. Fric, T. Zelante, A. Wong, A. Mertes, and H. Yu, NFAT control of innate immunity, Blood, vol.120, issue.7, pp.1380-1389, 2012.
DOI : 10.1182/blood-2012-02-404475

Y. Kang, B. Kusler, M. Otsuka, M. Hughes, N. Suzuki et al., Calcineurin Negatively Regulates TLR-Mediated Activation Pathways, The Journal of Immunology, vol.179, issue.7, pp.4598-4607, 2007.
DOI : 10.4049/jimmunol.179.7.4598

J. Aramburu, M. Yaffe, C. Lopez-rodriguez, L. Cantley, P. Hogan et al., Affinity-Driven Peptide Selection of an NFAT Inhibitor More Selective Than Cyclosporin A, Science, vol.285, issue.5436, pp.2129-2133, 1999.
DOI : 10.1126/science.285.5436.2129

H. Noguchi, M. Matsushita, T. Okitsu, A. Moriwaki, K. Tomizawa et al., A new cell-permeable peptide allows successful allogeneic islet transplantation in mice, Nature Medicine, vol.10, issue.3, pp.305-309, 2004.
DOI : 10.1038/nm994

H. Elloumi, N. Maharshak, K. Rao, T. Kobayashi, H. Ryu et al., A Cell Permeable Peptide Inhibitor of NFAT Inhibits Macrophage Cytokine Expression and Ameliorates Experimental Colitis, PLoS ONE, vol.7, issue.3, p.34172, 2012.
DOI : 10.1371/journal.pone.0034172.s003

J. Barrett, S. Hansoul, D. Nicolae, J. Cho, R. Duerr et al., Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease, Nature Genetics, vol.179, issue.8, pp.955-962, 2008.
DOI : 10.1021/bi060570x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574810

A. Franke, D. Mcgovern, J. Barrett, K. Wang, G. Radford-smith et al., Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci, Nature Genetics, vol.114, issue.12, pp.1118-1125, 2010.
DOI : 10.1046/j.1365-2036.2001.00981.x

A. Willingham, A. Orth, S. Batalov, E. Peters, B. Wen et al., A Strategy for Probing the Function of Noncoding RNAs Finds a Repressor of NFAT, Science, vol.309, issue.5740, pp.1570-1573, 2005.
DOI : 10.1126/science.1115901

Z. Liu, J. Lee, S. Krummey, W. Lu, H. Cai et al., The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease, Nature Immunology, vol.5, issue.11, pp.1063-1070, 2011.
DOI : 10.1016/j.cell.2007.10.009

H. Minematsu, M. Shin, C. Aydemir, A. Kim, K. Nizami et al., Nuclear presence of nuclear factor of activated T cells (NFAT) c3 and c4 is required for Toll-like receptor-activated innate inflammatory response of monocytes/macrophages, Cellular Signalling, vol.23, issue.11, pp.1785-1793, 2011.
DOI : 10.1016/j.cellsig.2011.06.013

A. Vega, P. Chacon, J. Monteseirin, E. Bekay, R. Alba et al., Expression of the transcription factor NFAT2 in human neutrophils: IgE-dependent, Ca2+- and calcineurin-mediated NFAT2 activation, Journal of Cell Science, vol.120, issue.14, pp.2328-2337, 2007.
DOI : 10.1242/jcs.000331

M. Greenblatt, A. Aliprantis, B. Hu, and L. Glimcher, Calcineurin regulates innate antifungal immunity in neutrophils, The Journal of Experimental Medicine, vol.163, issue.5, pp.923-931, 2010.
DOI : 10.1038/nature08118

E. Tourneur, B. Mkaddem, S. Chassin, C. Bens, M. Goujon et al., Cyclosporine A Impairs Nucleotide Binding Oligomerization Domain (Nod1)-Mediated Innate Antibacterial Renal Defenses in Mice and Human Transplant Recipients, PLoS Pathogens, vol.174, issue.2, p.1003152, 2013.
DOI : 10.1371/journal.ppat.1003152.s008

M. Inohara, M. Chamaillard, C. Mcdonald, and G. Nunez, NOD-LRR PROTEINS: Role in Host-Microbial Interactions and Inflammatory Disease, Annual Review of Biochemistry, vol.74, issue.1, pp.355-383, 2005.
DOI : 10.1146/annurev.biochem.74.082803.133347

K. Kobayashi, N. Inohara, L. Hernandez, J. Galan, G. Nunez et al., RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems, Nature, vol.96, issue.6877, pp.194-199, 2002.
DOI : 10.1038/416194a

J. Park, Y. Kim, M. Shaw, T. Kanneganti, Y. Fujimoto et al., Nod1/RICK and TLR Signaling Regulate Chemokine and Antimicrobial Innate Immune Responses in Mesothelial Cells, The Journal of Immunology, vol.179, issue.1, pp.514-521, 2007.
DOI : 10.4049/jimmunol.179.1.514

N. Inohara, Y. Ogura, F. Chen, A. Muto, and G. Nunez, Human Nod1 Confers Responsiveness to Bacterial Lipopolysaccharides, Journal of Biological Chemistry, vol.276, issue.4, pp.2551-2554, 2001.
DOI : 10.1074/jbc.M009728200

M. Chamaillard, M. Hashimoto, Y. Horie, J. Masumoto, S. Qiu et al., An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid, Nature Immunology, vol.4, issue.7, pp.702-707, 2003.
DOI : 10.1038/ni945

S. Girardin, I. Boneca, L. Carneiro, A. Antignac, M. Jehanno et al., Nod1 Detects a Unique Muropeptide from Gram-Negative Bacterial Peptidoglycan, Science, vol.300, issue.5625, pp.1584-1587, 2003.
DOI : 10.1126/science.1084677

J. Kim, S. Lee, and M. Kagnoff, Nod1 Is an Essential Signal Transducer in Intestinal Epithelial Cells Infected with Bacteria That Avoid Recognition by Toll-Like Receptors, Infection and Immunity, vol.72, issue.3, pp.1487-1495, 2004.
DOI : 10.1128/IAI.72.3.1487-1495.2004

L. Welter-stahl, D. Ojcius, J. Viala, S. Girardin, W. Liu et al., Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum, Cellular Microbiology, vol.66, issue.6, pp.1047-1057, 2006.
DOI : 10.1046/j.1462-5822.2000.00059.x

URL : https://hal.archives-ouvertes.fr/hal-00089417

J. Viala, C. Chaput, I. Boneca, A. Cardona, S. Girardin et al., Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island, Nature Immunology, vol.92, issue.11, pp.1166-1174, 2004.
DOI : 10.1073/pnas.97.26.14668

M. Hasegawa, K. Yang, M. Hashimoto, J. Park, Y. Kim et al., Differential Release and Distribution of Nod1 and Nod2 Immunostimulatory Molecules among Bacterial Species and Environments, Journal of Biological Chemistry, vol.281, issue.39, pp.29054-29063, 2006.
DOI : 10.1074/jbc.M602638200

M. Hasegawa, T. Yamazaki, N. Kamada, K. Tawaratsumida, Y. Kim et al., Nucleotide-Binding Oligomerization Domain 1 Mediates Recognition of Clostridium difficile and Induces Neutrophil Recruitment and Protection against the Pathogen, The Journal of Immunology, vol.186, issue.8, pp.4872-4880, 2011.
DOI : 10.4049/jimmunol.1003761

S. Girardin, L. Travassos, M. Herve, D. Blanot, I. Boneca et al., Peptidoglycan Molecular Requirements Allowing Detection by Nod1 and Nod2, Journal of Biological Chemistry, vol.278, issue.43, pp.41702-41708, 2003.
DOI : 10.1074/jbc.M307198200

J. Hugot, M. Chamaillard, H. Zouali, S. Lesage, J. Cezard et al., Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease, Nature, vol.411, issue.6837, pp.599-603, 2001.
DOI : 10.1038/35079107

Y. Ogura, D. Bonen, N. Inohara, D. Nicolae, F. Chen et al., A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease, Nature, vol.411, issue.6837, pp.603-606, 2001.
DOI : 10.1038/35079114

N. Inohara, T. Koseki, J. Lin, L. Del-peso, P. Lucas et al., An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways, J Biol Chem, vol.275, pp.27823-27831, 2000.

N. Inohara, T. Koseki, L. Del-peso, Y. Hu, C. Yee et al., Nod1, an Apaf-1-like Activator of Caspase-9 and Nuclear Factor-??B, Journal of Biological Chemistry, vol.274, issue.21, pp.14560-14567, 1999.
DOI : 10.1074/jbc.274.21.14560

C. Da-silva, Y. Miranda, N. Leonard, J. Hsu, and R. Ulevitch, Regulation of Nod1-mediated signaling pathways, Cell Death and Differentiation, vol.68, issue.4, pp.830-839, 2007.
DOI : 10.1093/emboj/17.6.1675

J. Lee, I. Tattoli, K. Wojtal, S. Vavricka, and D. Philpott, pH-dependent Internalization of Muramyl Peptides from Early Endosomes Enables Nod1 and Nod2 Signaling, Journal of Biological Chemistry, vol.284, issue.35, pp.23818-23829, 2009.
DOI : 10.1074/jbc.M109.033670

T. Kufer, E. Kremmer, A. Adam, D. Philpott, and P. Sansonetti, The patternrecognition molecule Nod1 is localized at the plasma membrane at sites of bacterial interaction, Cell Microbiol, vol.10, pp.477-486, 2008.

A. Segal, HOW NEUTROPHILS KILL MICROBES, Annual Review of Immunology, vol.23, issue.1, pp.197-223, 2005.
DOI : 10.1146/annurev.immunol.23.021704.115653

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2092448

J. Masumoto, K. Yang, S. Varambally, M. Hasegawa, S. Tomlins et al., Nod1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivo, The Journal of Experimental Medicine, vol.3, issue.1, pp.203-213, 2006.
DOI : 10.1038/sj.onc.1203239

S. Dharancy, M. Body-malapel, A. Louvet, D. Berrebi, E. Gantier et al., Neutrophil Migration During Liver Injury Is Under Nucleotide-Binding Oligomerization Domain 1 Control, Gastroenterology, vol.138, issue.4, pp.1546-1456, 2010.
DOI : 10.1053/j.gastro.2009.12.008

H. Tada, S. Aiba, K. Shibata, T. Ohteki, and H. Takada, Synergistic Effect of Nod1 and Nod2 Agonists with Toll-Like Receptor Agonists on Human Dendritic Cells To Generate Interleukin-12 and T Helper Type 1 Cells, Infection and Immunity, vol.73, issue.12, pp.7967-7976, 2005.
DOI : 10.1128/IAI.73.12.7967-7976.2005

N. Dixit and S. Simon, Chemokines, selectins and intracellular calcium flux: temporal and spatial cues for leukocyte arrest, Frontiers in Immunology, vol.3, p.188, 2012.
DOI : 10.3389/fimmu.2012.00188

URL : http://doi.org/10.3389/fimmu.2012.00188

R. Alon and K. Ley, Cells on the run: shear-regulated integrin activation in leukocyte rolling and arrest on endothelial cells, Current Opinion in Cell Biology, vol.20, issue.5, pp.525-532, 2008.
DOI : 10.1016/j.ceb.2008.04.003

E. Arias-salgado, S. Lizano, S. Shattil, and M. Ginsberg, Specification of the Direction of Adhesive Signaling by the Integrin ?? Cytoplasmic Domain, Journal of Biological Chemistry, vol.280, issue.33, pp.29699-29707, 2005.
DOI : 10.1074/jbc.M503508200

E. Lysenko, T. Clarke, M. Shchepetov, A. Ratner, D. Roper et al., Nod1 Signaling Overcomes Resistance of S. pneumoniae to Opsonophagocytic Killing, PLoS Pathogens, vol.75, issue.8, p.118, 2007.
DOI : 0019-9567(2007)075[0083:CEPCBL]2.0.CO;2

T. Zola, E. Lysenko, and J. Weiser, Mucosal Clearance of Capsule-Expressing Bacteria Requires Both TLR and Nucleotide-Binding Oligomerization Domain 1 Signaling, The Journal of Immunology, vol.181, issue.11, pp.7909-7916, 2008.
DOI : 10.4049/jimmunol.181.11.7909

T. Clarke, K. Davis, E. Lysenko, A. Zhou, Y. Yu et al., Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity, Nature Medicine, vol.48, issue.2, pp.228-231, 2010.
DOI : 10.1038/nm.2087

L. Stuart and L. Boyer, RhoGTPases ??? NODes for effector-triggered immunity in animals, Cell Research, vol.23, issue.8, pp.980-981, 2013.
DOI : 10.1016/j.chom.2010.04.010

E. Caron and A. Hall, Identification of Two Distinct Mechanisms of Phagocytosis Controlled by Different Rho GTPases, Science, vol.282, issue.5394, pp.1717-1721, 1998.
DOI : 10.1126/science.282.5394.1717

D. Cox, P. Chang, Q. Zhang, P. Reddy, G. Bokoch et al., Requirements for Both Rac1 and Cdc42 in Membrane Ruffling and Phagocytosis in Leukocytes, Journal of Experimental Medicine, vol.87, issue.3, pp.1487-1494, 1997.
DOI : 10.1016/S0092-8674(00)81371-9

F. Niedergang and P. Chavrier, Regulation of Phagocytosis by Rho GTPases, Curr Top Microbiol Immunol, vol.291, pp.43-60, 2005.
DOI : 10.1007/3-540-27511-8_4

B. Chen, J. Kang, Y. Lu, M. Hsu, C. Liao et al., Rac1 regulates peptidoglycan-induced nuclear factor-??B activation and cyclooxygenase-2 expression in RAW 264.7 macrophages by activating the phosphatidylinositol 3-kinase/Akt pathway, Molecular Immunology, vol.46, issue.6, pp.1179-1188, 2009.
DOI : 10.1016/j.molimm.2008.11.006

P. Boquet and E. Lemichez, Bacterial virulence factors targeting Rho GTPases: parasitism or symbiosis?, Trends in Cell Biology, vol.13, issue.5, pp.238-246, 2003.
DOI : 10.1016/S0962-8924(03)00037-0

M. Lemonnier, L. Landraud, and E. Lemichez, Rho GTPase-activating bacterial toxins: from bacterial virulence regulation to eukaryotic cell biology, FEMS Microbiology Reviews, vol.31, issue.5, pp.515-534, 2007.
DOI : 10.1111/j.1574-6976.2007.00078.x

V. Bruno, S. Hannemann, M. Lara-tejero, R. Flavell, S. Kleinstein et al., Salmonella Typhimurium Type III Secretion Effectors Stimulate Innate Immune Responses in Cultured Epithelial Cells, PLoS Pathogens, vol.439, issue.8, p.1000538, 2009.
DOI : 10.1371/journal.ppat.1000538.s008

A. Fukazawa, C. Alonso, K. Kurachi, S. Gupta, C. Lesser et al., GEF-H1 Mediated Control of NOD1 Dependent NF-??B Activation by Shigella Effectors, PLoS Pathogens, vol.74, issue.11, p.1000228, 2008.
DOI : 10.1371/journal.ppat.1000228.g007

L. Boyer, L. Magoc, S. Dejardin, M. Cappillino, N. Paquette et al., Pathogen-Derived Effectors Trigger Protective Immunity via Activation of the Rac2 Enzyme and the IMD or Rip Kinase Signaling Pathway, Immunity, vol.35, issue.4, pp.536-549, 2011.
DOI : 10.1016/j.immuni.2011.08.015

A. Keestra, M. Winter, J. Auburger, S. Frassle, M. Xavier et al., Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1, Nature, vol.74, issue.7444, pp.233-237, 2013.
DOI : 10.1038/nature12025

G. Egger, A. Burda, P. Hengster, M. Kunc, and R. Margreiter, Polymorphonuclear leukocyte functions as predictive markers for infections after organ transplantation, Transplant International, vol.52, issue.2, pp.114-121, 2000.
DOI : 10.1007/BF00187619

A. Cuffini, V. Tullio, F. Giacchino, A. Bonino, N. Mandras et al., Improved phagocyte response by coamoxiclav in renal transplant recipients, Transplantation, vol.71, pp.75-77, 2001.

Q. Xu, M. Leiva, S. Fischkoff, R. Handschumacher, and C. Lyttle, Leukocyte chemotactic activity of cyclophilin, J Biol Chem, vol.267, pp.11968-11971, 1992.

S. Thorat, U. Thatte, N. Pai, and S. Dahanukar, Inhibition of phagocytes by cyclosporin in vitro, Q J Med, vol.87, pp.311-314, 1994.

C. Jennings, B. Kusler, and P. Jones, Calcineurin inactivation leads to decreased responsiveness to LPS in macrophages and dendritic cells and protects against LPS-induced toxicity in vivo, Innate Immunity, vol.15, issue.2, pp.109-120, 2009.
DOI : 10.1177/1753425908100928

J. Fritz, S. Girardin, C. Fitting, C. Werts, D. Mengin-lecreulx et al., Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists, European Journal of Immunology, vol.10, issue.8, pp.2459-2470, 2005.
DOI : 10.1002/eji.200526286

M. Sieber and R. Baumgrass, Novel inhibitors of the calcineurin/NFATc hub - alternatives to CsA and FK506?, Cell Communication and Signaling, vol.7, issue.1, p.25, 2009.
DOI : 10.1186/1478-811X-7-25

I. Zanoni and F. Granucci, Regulation and dysregulation of innate immunity by NFAT signaling downstream of pattern recognition receptors (PRRs), European Journal of Immunology, vol.11, issue.8
DOI : 10.1002/eji.201242580

R. Hancock, A. Nijnik, and D. Philpott, Modulating immunity as a therapy for bacterial infections, Nature Reviews Microbiology, vol.22, issue.4, pp.243-254, 2012.
DOI : 10.1038/nrmicro2745