A. Louvi and S. Artavanis-tsakonas, Notch and disease: A growing field, Seminars in Cell & Developmental Biology, vol.23, issue.4, pp.473-480
DOI : 10.1016/j.semcdb.2012.02.005

I. Geffers, K. Serth, G. Chapman, R. Jaekel, K. Schuster-gossler et al., Divergent functions and distinct localization of the Notch ligands DLL1 and DLL3 in vivo, The Journal of Cell Biology, vol.6, issue.3, pp.465-476, 2007.
DOI : 10.1242/dev.01417

E. Ladi, J. Nichols, W. Ge, A. Miyamoto, C. Yao et al., The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands, The Journal of Cell Biology, vol.16, issue.6, pp.983-992, 2005.
DOI : 10.1002/gene.10081

K. Wharton, K. Johansen, and T. Xu, Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats, Cell, vol.43, issue.3, pp.567-581, 1985.
DOI : 10.1016/0092-8674(85)90229-6

E. Schroeter, J. Kisslinger, and R. Kopan, Notch-1 signalling requires ligandinduced proteolytic release of intracellular domain, Nature, vol.393, issue.6683, pp.382-386, 1998.

S. Jarriault, C. Brou, F. Logeat, E. Schroeter, R. Kopan et al., Signalling downstream of activated mammalian Notch, Nature, vol.377, issue.6547, pp.355-358, 1995.
DOI : 10.1038/377355a0

R. Kopan and M. Ilagan, The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism, Cell, vol.137, issue.2, pp.216-233, 2009.
DOI : 10.1016/j.cell.2009.03.045

M. Fortini and S. Artavanis-tsakonas, The suppressor of hairless protein participates in notch receptor signaling, Cell, vol.79, issue.2, pp.273-282, 1994.
DOI : 10.1016/0092-8674(94)90196-1

F. Schweisguth and J. Posakony, Suppressor of Hairless, the Drosophila homolog of the mouse recombination signal-binding protein gene, controls sensory organ cell fates, Cell, vol.69, issue.7, pp.1199-1212, 1992.
DOI : 10.1016/0092-8674(92)90641-O

D. Castel, P. Mourikis, S. Bartels, A. Brinkman, S. Tajbakhsh et al., Dynamic binding of RBPJ is determined by Notch signaling status, Genes & Development, vol.27, issue.9, pp.1059-1071
DOI : 10.1101/gad.211912.112

A. Krejci and S. Bray, Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers, Genes & Development, vol.21, issue.11, pp.1322-1327, 2007.
DOI : 10.1101/gad.424607

P. Mourikis, R. Sambasivan, D. Castel, P. Rocheteau, V. Bizzarro et al., A Critical Requirement for Notch Signaling in Maintenance of the Quiescent Skeletal Muscle Stem Cell State, STEM CELLS, vol.8, issue.2, pp.243-252
DOI : 10.1002/stem.775

P. Chapouton, P. Skupien, B. Hesl, M. Coolen, J. Moore et al., Notch Activity Levels Control the Balance between Quiescence and Recruitment of Adult Neural Stem Cells, Journal of Neuroscience, vol.30, issue.23, pp.307961-7974, 2010.
DOI : 10.1523/JNEUROSCI.6170-09.2010

URL : https://hal.archives-ouvertes.fr/hal-00506463

I. Imayoshi, M. Sakamoto, M. Yamaguchi, K. Mori, and R. Kageyama, Essential Roles of Notch Signaling in Maintenance of Neural Stem Cells in Developing and Adult Brains, Journal of Neuroscience, vol.30, issue.9, pp.3489-3498, 2010.
DOI : 10.1523/JNEUROSCI.4987-09.2010

U. Koch, R. Lehal, and F. Radtke, Stem cells living with a Notch, Development, vol.140, issue.4, pp.689-704
DOI : 10.1242/dev.080614

L. Pellegrinet, V. Rodilla, Z. Liu, S. Chen, U. Koch et al., Dll1- and Dll4-Mediated Notch Signaling Are Required for Homeostasis of Intestinal Stem Cells, Gastroenterology, vol.140, issue.4, pp.1230-1240, 2011.
DOI : 10.1053/j.gastro.2011.01.005

J. Gros, M. Manceau, V. Thome, and C. Marcelle, A common somitic origin for embryonic muscle progenitors and satellite cells, Nature, vol.202, issue.7044, pp.435954-958, 2005.
DOI : 10.1016/j.cell.2004.10.021

URL : https://hal.archives-ouvertes.fr/hal-00118545

F. Relaix, D. Rocancourt, A. Mansouri, and M. Buckingham, A Pax3/Pax7-dependent population of skeletal muscle progenitor cells, Nature, vol.72, issue.7044, pp.435948-953, 2005.
DOI : 10.1242/dev.01617

URL : https://hal.archives-ouvertes.fr/pasteur-00176824

L. Kassar-duchossoy, E. Giacone, B. Gayraud-morel, J. A. Gomes, D. Tajbakhsh et al., Pax3/Pax7 mark a novel population of primitive myogenic cells during development, Genes & Development, vol.19, issue.12, pp.1426-1431, 2005.
DOI : 10.1101/gad.345505

R. Ben-yair and C. Kalcheim, Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates, Development, vol.132, issue.4, pp.689-701, 2005.
DOI : 10.1242/dev.01617

S. Tajbakhsh, Skeletal muscle stem cells in developmental versus regenerative myogenesis, Journal of Internal Medicine, vol.116, issue.4, pp.372-389, 2009.
DOI : 10.1111/j.1365-2796.2009.02158.x

M. Rudnicki, P. Schnegelsberg, R. Stead, T. Braun, H. Arnold et al., MyoD or Myf-5 is required for the formation of skeletal muscle, Cell, vol.75, issue.7, pp.751351-1359, 1993.
DOI : 10.1016/0092-8674(93)90621-V

L. Kassar-duchossoy, B. Gayraud-morel, D. Gomes, D. Rocancourt, M. Buckingham et al., Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice, Nature, vol.127, issue.7007, pp.431466-471, 2004.
DOI : 10.1083/jcb.113.6.1255

R. White, A. Bierinx, V. Gnocchi, and P. Zammit, Dynamics of muscle fibre growth during postnatal mouse development, BMC Developmental Biology, vol.10, issue.1, p.21, 2010.
DOI : 10.1186/1471-213X-10-21

C. Lepper, S. Conway, and C. Fan, Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements, Nature, vol.22, issue.7255, pp.627-631, 2009.
DOI : 10.1038/nature08209

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767162

M. Delfini, E. Hirsinger, O. Pourquie, and D. Duprez, Delta 1-activated notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in chick limb myogenesis, pp.5213-5224, 2000.

E. Hirsinger, P. Malapert, J. Dubrulle, M. Delfini, D. Duprez et al., Notch signalling acts in postmitotic avian myogenic cells to control MyoD activation, Development, vol.128, issue.1, pp.107-116, 2001.

K. Schuster-gossler, R. Cordes, and A. Gossler, Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants, Proceedings of the National Academy of Sciences, vol.104, issue.2, pp.537-542, 2007.
DOI : 10.1073/pnas.0608281104

D. Castro, D. Skowronska-krawczyk, O. Armant, I. Donaldson, C. Parras et al., Proneural bHLH and Brn Proteins Coregulate a Neurogenic Program through Cooperative Binding to a Conserved DNA Motif, Developmental Cell, vol.11, issue.6, pp.11831-844, 2006.
DOI : 10.1016/j.devcel.2006.10.006

T. Wittenberger, O. Steinbach, A. Authaler, R. Kopan, and R. Rupp, MyoD stimulates Delta-1 transcription and triggers Notch signaling in the Xenopus gastrula, The EMBO Journal, vol.18, issue.7, pp.1915-1922, 1999.
DOI : 10.1093/emboj/18.7.1915

D. Henrique, E. Hirsinger, J. Adam, L. Roux, I. Pourquie et al., Maintenance of neuroepithelial progenitor cells by Delta???Notch signalling in the embryonic chick retina, Current Biology, vol.7, issue.9, pp.661-670, 1997.
DOI : 10.1016/S0960-9822(06)00293-4

Z. Dong, N. Yang, S. Yeo, A. Chitnis, and S. Guo, Intralineage Directional Notch Signaling Regulates Self-Renewal and Differentiation of Asymmetrically Dividing Radial Glia, Neuron, vol.74, issue.1, pp.65-78
DOI : 10.1016/j.neuron.2012.01.031

E. Vasyutina, D. Lenhard, H. Wende, B. Erdmann, J. Epstein et al., RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells, Proceedings of the National Academy of Sciences, vol.104, issue.11, pp.1044443-4448, 2007.
DOI : 10.1073/pnas.0610647104

P. Mourikis, S. Gopalakrishnan, R. Sambasivan, and S. Tajbakhsh, Cell-autonomous Notch activity maintains the temporal specification potential of skeletal muscle stem cells, Development, vol.139, issue.24, pp.4536-4548
DOI : 10.1242/dev.084756

A. Rios, O. Serralbo, D. Salgado, and C. Marcelle, Neural crest regulates myogenesis through the transient activation of NOTCH, Nature, vol.124, issue.7348, pp.473532-535, 2011.
DOI : 10.1038/nature09970

C. Bjornson, T. Cheung, L. Liu, P. Tripathi, K. Steeper et al., Notch Signaling Is Necessary to Maintain Quiescence in Adult Muscle Stem Cells, STEM CELLS, vol.193, issue.2, pp.232-242
DOI : 10.1002/stem.773

T. Kitamoto and K. Hanaoka, Notch3 Null Mutation in Mice Causes Muscle Hyperplasia by Repetitive Muscle Regeneration, STEM CELLS, vol.15, issue.12, pp.2205-2216, 2010.
DOI : 10.1002/stem.547

E. Schonherr and H. Hausser, Extracellular Matrix and Cytokines: A Functional Unit, Developmental Immunology, vol.7, issue.2-4, pp.89-101, 2000.
DOI : 10.1155/2000/31748

B. Varnum-finney, L. Wu, M. Yu, C. Brashem-stein, S. Staats et al., Immobilization of Notch ligand, Delta-1, is required for induction of notch signaling, J Cell Sci, pp.1134313-4318, 2000.

K. Mishra-gorur, M. Rand, and B. Perez-villamil, Down-regulation of Delta by proteolytic processing, The Journal of Cell Biology, vol.16, issue.2, pp.313-324, 2002.
DOI : 10.1083/jcb.146.6.1351

A. Pannerec, G. Marazzi, and D. Sassoon, Stem cells in the hood: the skeletal muscle niche, Trends in Molecular Medicine, vol.18, issue.10, pp.599-606
DOI : 10.1016/j.molmed.2012.07.004

C. Christov, F. Chretien, R. Abou-khalil, G. Bassez, G. Vallet et al., Muscle Satellite Cells and Endothelial Cells: Close Neighbors and Privileged Partners, Molecular Biology of the Cell, vol.18, issue.4, pp.1397-1409, 2007.
DOI : 10.1091/mbc.E06-08-0693

URL : https://hal.archives-ouvertes.fr/inserm-00128985

D. Joussineau, C. Soule, J. Martin, M. Anguille, C. Montcourrier et al., Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila, Nature, issue.6966, pp.426555-559, 2003.

M. Cohen, M. Georgiou, N. Stevenson, M. Miodownik, and B. Baum, Dynamic Filopodia Transmit Intermittent Delta-Notch Signaling to Drive Pattern Refinement during Lateral Inhibition, Developmental Cell, vol.19, issue.1, pp.78-89, 2010.
DOI : 10.1016/j.devcel.2010.06.006

B. Nelson, R. Hodge, F. Bedogni, and R. Hevner, Dynamic Interactions between Intermediate Neurogenic Progenitors and Radial Glia in Embryonic Mouse Neocortex: Potential Role in Dll1-Notch Signaling, Journal of Neuroscience, vol.33, issue.21
DOI : 10.1523/JNEUROSCI.0791-13.2013

A. Brack, I. Conboy, M. Conboy, J. Shen, and T. Rando, A Temporal Switch from Notch to Wnt Signaling in Muscle Stem Cells Is Necessary for Normal Adult Myogenesis, Cell Stem Cell, vol.2, issue.1, pp.50-59, 2008.
DOI : 10.1016/j.stem.2007.10.006

I. Conboy and T. Rando, The Regulation of Notch Signaling Controls Satellite Cell Activation and Cell Fate Determination in Postnatal Myogenesis, Developmental Cell, vol.3, issue.3, pp.397-409, 2002.
DOI : 10.1016/S1534-5807(02)00254-X

H. Sun, L. Li, C. Vercherat, N. Gulbagci, S. Acharjee et al., Stra13 regulates satellite cell activation by antagonizing Notch signaling, The Journal of Cell Biology, vol.269, issue.4, pp.647-657, 2007.
DOI : 10.1016/S1534-5807(02)00131-4

P. Rocheteau, B. Gayraud-morel, I. Siegl-cachedenier, M. Blasco, and S. Tajbakhsh, A Subpopulation of Adult Skeletal Muscle Stem Cells Retains All Template DNA Strands after Cell Division, Cell, vol.148, issue.1-2, pp.112-125
DOI : 10.1016/j.cell.2011.11.049

K. Kondoh, K. Sunadome, and E. Nishida, Notch Signaling Suppresses p38 MAPK Activity via Induction of MKP-1 in Myogenesis, Journal of Biological Chemistry, vol.282, issue.5, pp.3058-3065, 2007.
DOI : 10.1074/jbc.M607630200

N. Jones, K. Tyner, L. Nibarger, H. Stanley, D. Cornelison et al., The p38??/?? MAPK functions as a molecular switch to activate the quiescent satellite cell, The Journal of Cell Biology, vol.19, issue.1, pp.105-116, 2005.
DOI : 10.1074/jbc.274.8.5193

K. Zhang, J. Sha, and M. Harter, Activation of Cdc6 by MyoD is associated with the expansion of quiescent myogenic satellite cells, The Journal of Cell Biology, vol.16, issue.1, pp.39-48, 2010.
DOI : 10.1369/0022155410390327

C. Crist, D. Montarras, and M. Buckingham, Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules, Cell Stem Cell, vol.2012, issue.111, pp.118-126

B. Gayraud-morel, F. Chretien, J. A. Sambasivan, R. Negroni, E. Flamant et al., Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells, J Cell Sci, vol.2012, pp.1251738-1749
URL : https://hal.archives-ouvertes.fr/pasteur-00705770

Y. Machida, J. Hamlin, and A. Dutta, Right Place, Right Time, and Only Once: Replication Initiation in Metazoans, Cell, vol.123, issue.1, pp.13-24, 2005.
DOI : 10.1016/j.cell.2005.09.019

S. Fre, M. Huyghe, P. Mourikis, S. Robine, and D. Louvard, Artavanis-Tsakonas S: Notch signals control the fate of immature progenitor cells in the intestine, Nature, issue.7044, pp.435964-968, 2005.

F. Radtke and R. K. , The role of Notch in tumorigenesis: oncogene or tumour suppressor?, Nature Reviews Cancer, vol.3, issue.10, pp.756-767, 2003.
DOI : 10.1038/nrc1186

X. Gao, T. Chandra, M. Gratton, I. Quelo, J. Prud-'homme et al., HES6 acts as a transcriptional repressor in myoblasts and can induce the myogenic differentiation program, The Journal of Cell Biology, vol.8, issue.6, pp.1161-1171, 2001.
DOI : 10.1083/jcb.200104058

L. Liu, T. Cheung, G. Charville, B. Hurgo, T. Leavitt et al., Chromatin Modifications as Determinants of Muscle Stem Cell Quiescence and Chronological Aging, Cell Reports, vol.4, issue.1, pp.189-204
DOI : 10.1016/j.celrep.2013.05.043

L. Arnold, A. Henry, F. Poron, Y. Baba-amer, N. Van-rooijen et al., Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, The Journal of Experimental Medicine, vol.148, issue.5, pp.1057-1069, 2007.
DOI : 10.1016/0022-1759(94)90012-4

URL : https://hal.archives-ouvertes.fr/inserm-00136917

C. Sonnet, P. Lafuste, L. Arnold, M. Brigitte, F. Poron et al., Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems, Journal of Cell Science, vol.119, issue.12, pp.2497-2507, 2006.
DOI : 10.1242/jcs.02988

A. Joe, L. Yi, A. Natarajan, L. Grand, F. So et al., Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis, Nature Cell Biology, vol.439, issue.2, pp.153-163, 2010.
DOI : 10.1038/ncb2015

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580288

Y. Wen, P. Bi, W. Liu, A. Asakura, C. Keller et al., Constitutive Notch Activation Upregulates Pax7 and Promotes the Self-Renewal of Skeletal Muscle Satellite Cells, Molecular and Cellular Biology, vol.32, issue.12, pp.322300-2311
DOI : 10.1128/MCB.06753-11

M. Parker, C. Loretz, A. Tyler, W. Duddy, J. Hall et al., Activation of Notch signaling during ex vivo expansion maintains donor muscle cell engraftment, Stem Cells, vol.2012, issue.10, pp.302212-2220

A. Baonza and M. Freeman, Control of Cell Proliferation in the Drosophila Eye by Notch Signaling, Developmental Cell, vol.8, issue.4, pp.529-539, 2005.
DOI : 10.1016/j.devcel.2005.01.019

D. Brohl, E. Vasyutina, M. Czajkowski, J. Griger, C. Rassek et al., Colonization of the Satellite Cell Niche by Skeletal Muscle Progenitor Cells Depends on Notch Signals, Developmental Cell, vol.23, issue.3, pp.469-481
DOI : 10.1016/j.devcel.2012.07.014

K. Hori and A. Sen, Artavanis-Tsakonas S: Notch signaling at a glance, J Cell Sci, vol.2013, issue.126, pp.2135-2140

A. Louvi and S. Artavanis-tsakonas, Notch and disease: A growing field, Seminars in Cell & Developmental Biology, vol.23, issue.4, 2012.
DOI : 10.1016/j.semcdb.2012.02.005

U. Koch and F. Radtke, Notch and cancer: a double-edged sword, Cellular and Molecular Life Sciences, vol.64, issue.21, pp.2746-2762, 2007.
DOI : 10.1007/s00018-007-7164-1

A. Rangarajan, C. Talora, R. Okuyama, M. Nicolas, C. Mammucari et al., Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation, The EMBO Journal, vol.20, issue.13, pp.203427-3436, 2001.
DOI : 10.1093/emboj/20.13.3427