S. Buates and G. Matlashewski, General Suppression of Macrophage Gene Expression During Leishmania donovani Infection, The Journal of Immunology, vol.166, issue.5, pp.3416-3422, 2001.
DOI : 10.4049/jimmunol.166.5.3416

D. Chaussabel, R. Semnani, M. Mcdowell, D. Sacks, A. Sher et al., Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites, Blood, vol.102, issue.2, pp.672-681, 2003.
DOI : 10.1182/blood-2002-10-3232

N. Rodriguez, H. Chang, and M. Wilson, Novel Program of Macrophage Gene Expression Induced by Phagocytosis of Leishmania chagasi, Infection and Immunity, vol.72, issue.4, pp.2111-2122, 2004.
DOI : 10.1128/IAI.72.4.2111-2122.2004

F. Guerfali, D. Laouini, L. Guizani-tabbane, F. Ottones, K. Ben-aissa et al., Simultaneous gene expression profiling in human macrophages infected with Leishmania major parasites using SAGE, BMC Genomics, vol.9, issue.1, p.238, 2008.
DOI : 10.1186/1471-2164-9-238

URL : https://hal.archives-ouvertes.fr/hal-00289936

J. Osorio-y-fortea, E. De-la-llave, B. Regnault, J. Coppee, G. Milon et al., Transcriptional signatures of BALB/c mouse macrophages housing multiplying Leishmania amazonensis amastigotes, BMC Genomics, vol.10, issue.1, p.119, 2009.
DOI : 10.1186/1471-2164-10-119

URL : https://hal.archives-ouvertes.fr/pasteur-00376739

I. Rabhi, S. Rabhi, R. Ben-othman, A. Rasche, S. Consortium et al., Transcriptomic Signature of Leishmania Infected Mice Macrophages: A Metabolic Point of View, PLoS Neglected Tropical Diseases, vol.6, issue.8, p.1763
DOI : 10.1371/journal.pntd.0001763.s003

URL : https://hal.archives-ouvertes.fr/pasteur-00726648

D. Gregory, R. Sladek, M. Olivier, and G. Matlashewski, Comparison of the Effects of Leishmania major or Leishmania donovani Infection on Macrophage Gene Expression, Infection and Immunity, vol.76, issue.3, pp.1186-1192, 2008.
DOI : 10.1128/IAI.01320-07

F. Tacchini-cottier, C. Zweifel, Y. Belkaid, C. Mukankundiye, M. Vasei et al., An Immunomodulatory Function for Neutrophils During the Induction of a CD4+ Th2 Response in BALB/c Mice Infected with Leishmania major, The Journal of Immunology, vol.165, issue.5, pp.2628-2636, 2000.
DOI : 10.4049/jimmunol.165.5.2628

Y. Belkaid, S. Mendez, R. Lira, N. Kadambi, G. Milon et al., A Natural Model of Leishmania major Infection Reveals a Prolonged "Silent" Phase of Parasite Amplification in the Skin Before the Onset of Lesion Formation and Immunity, The Journal of Immunology, vol.165, issue.2, pp.969-977, 2000.
DOI : 10.4049/jimmunol.165.2.969

D. Sacks and N. Noben-trauth, The immunology of susceptibility and resistance to leishmania major in mice, Nature Reviews Immunology, vol.2, issue.11, pp.845-858, 2002.
DOI : 10.1038/nri933

M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori, The KEGG resource for deciphering the genome, Nucleic Acids Research, vol.32, issue.90001, pp.277-280, 2004.
DOI : 10.1093/nar/gkh063

Y. Moriya, M. Itoh, S. Okuda, A. Yoshizawa, and M. Kanehisa, KAAS: an automatic genome annotation and pathway reconstruction server, Nucleic Acids Research, vol.35, issue.Web Server, pp.182-185, 2007.
DOI : 10.1093/nar/gkm321

G. Smyth, Y. Yang, and T. Speed, Statistical Issues in cDNA Microarray Data Analysis, Methods Mol Biol, vol.224, pp.111-136, 2003.
DOI : 10.1385/1-59259-364-X:111

R. Edgar and T. Barrett, NCBI GEO standards and services for microarray data, Nature Biotechnology, vol.33, issue.12, pp.1471-1472, 2006.
DOI : 10.1038/nbt1206-1471

D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic, A. Roth et al., The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored, Nucleic Acids Research, vol.39, issue.Database, pp.39-561, 2011.
DOI : 10.1093/nar/gkq973

C. Ramirez, Y. Diaz-toro, J. Tellez, T. Castilho, R. Rojas et al., Human Macrophage Response to L. (Viannia) panamensis: Microarray Evidence for an Early Inflammatory Response, PLoS Neglected Tropical Diseases, vol.19, issue.3, p.1866
DOI : 10.1371/journal.pntd.0001866.s004

M. Teixeira, C. Teixeira, B. Andrade, M. Barral-netto, and A. Barral, Chemokines in host???parasiteinteractions in leishmaniasis, Trends in Parasitology, vol.22, issue.1, pp.32-40, 2006.
DOI : 10.1016/j.pt.2005.11.010

W. Beil, G. Meinardus-hager, D. Neugebauer, and C. Sorg, Differences in the onset of the inflammatory response to cutaneous leishmaniasis in resistant and susceptible mice, J Leukoc Biol, vol.52, issue.2, pp.135-142, 1992.

D. Cangussú, S. Carvalho-de-souza, C. , F. Campos, C. et al., Histopathology of Leishmania major infection: revisiting L. major histopathology in the ear dermis infection model, Mem??rias do Instituto Oswaldo Cruz, vol.104, issue.6, pp.918-922, 2009.
DOI : 10.1590/S0074-02762009000600017

S. Bhattacharyya, S. Ghosh, B. Dasgupta, D. Mazumder, S. Roy et al., Chemokine???Induced Leishmanicidal Activity in Murine Macrophages via the Generation of Nitric Oxide, The Journal of Infectious Diseases, vol.185, issue.12, pp.1704-1708, 2002.
DOI : 10.1086/340820

E. Balogh, I. Faludi, D. Virok, V. Endresz, and K. Burian, Chlamydophila pneumoniae induces production of the defensin-like MIG/CXCL9, which has in vitro antichlamydial activity, International Journal of Medical Microbiology, vol.301, issue.3, pp.252-259, 2011.
DOI : 10.1016/j.ijmm.2010.08.020

Y. Barak, T. Juven, R. Haffner, and M. Oren, mdm2 expression is induced by wild type p53 activity, EMBO J, vol.12, issue.2, pp.461-468, 1993.

W. Hu, C. Zhang, R. Wu, Y. Sun, A. Levine et al., Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function, Proceedings of the National Academy of Sciences, vol.107, issue.16, pp.7455-7460, 2010.
DOI : 10.1073/pnas.1001006107

J. Mates, J. Segura, M. Martin-rufian, J. Campos-sandoval, F. Alonso et al., Glutaminase Isoenzymes as Key Regulators in Metabolic and Oxidative Stress Against Cancer, Current Molecular Medicine, vol.13, issue.4, pp.514-534
DOI : 10.2174/1566524011313040005

H. Goto, C. Gomes, C. Corbett, H. Monteiro, and M. Gidlund, Insulin-like growth factor I is a growth-promoting factor for Leishmania promastigotes and amastigotes, Proceedings of the National Academy of Sciences, vol.95, issue.22, pp.9513211-13216, 1998.
DOI : 10.1073/pnas.95.22.13211

C. Gomes, H. Goto, R. Da-matta, V. Laurenti, M. Gidlund et al., Insulin-like Growth Factor (IGF)-I affects parasite growth and host cell migration in experimental cutaneous leishmaniasis, International Journal of Experimental Pathology, vol.166, issue.4, pp.249-255, 2000.
DOI : 10.1046/j.1365-2613.2000.00157.x

C. Vendrame, M. Carvalho, F. Rios, E. Manuli, F. Petitto-assis et al., Effect of Insulin-like Growth Factor-I on Leishmania amazonensis Promastigote Arginase Activation and Reciprocal Inhibition of NOS2 Pathway in Macrophage In vitro, Scandinavian Journal of Immunology, vol.336, issue.1, pp.2-3287, 2007.
DOI : 10.1128/IAI.00026-07

A. Araujo, W. Arrais-silva, and G. S. , Infection by Leishmania amazonensis in mice: A potential model for chronic hypoxia, Acta Histochemica, vol.114, issue.8, pp.797-804
DOI : 10.1016/j.acthis.2012.01.007

K. Duvel, J. Yecies, S. Menon, P. Raman, A. Lipovsky et al., Activation of a Metabolic Gene Regulatory Network Downstream of mTOR Complex 1, Molecular Cell, vol.39, issue.2, pp.171-183, 2010.
DOI : 10.1016/j.molcel.2010.06.022

M. Jaramillo, M. Gomez, O. Larsson, M. Shio, I. Topisirovic et al., Leishmania Repression of Host Translation through mTOR Cleavage Is Required for Parasite Survival and Infection, Cell Host & Microbe, vol.9, issue.4, pp.331-341, 2011.
DOI : 10.1016/j.chom.2011.03.008

X. Zhang, Z. Qin, and J. Wang, The role of p53 in cell metabolism, Acta Pharmacologica Sinica, vol.3, issue.9, pp.1208-1212, 2010.
DOI : 10.1016/S1534-5807(04)00099-1

K. Bensaad, A. Tsuruta, M. Selak, M. Vidal, K. Nakano et al., TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis, Cell, vol.126, issue.1, pp.107-120, 2006.
DOI : 10.1016/j.cell.2006.05.036

F. Schwartzenberg-bar-yoseph, M. Armoni, and E. Karnieli, The Tumor Suppressor p53 Down-Regulates Glucose Transporters GLUT1 and GLUT4 Gene Expression, Cancer Research, vol.64, issue.7, pp.2627-2633, 2004.
DOI : 10.1158/0008-5472.CAN-03-0846

S. Mathupala, Y. Ko, and P. Pedersen, Hexokinase II: Cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria, Oncogene, vol.97, issue.34, pp.254777-4786, 2006.
DOI : 10.1016/j.yexcr.2005.06.014

E. Denkers and B. Butcher, Sabotage and exploitation in macrophages parasitized by intracellular protozoans, Trends in Parasitology, vol.21, issue.1, pp.35-41, 2005.
DOI : 10.1016/j.pt.2004.10.004

D. Gregory and M. Olivier, Subversion of host cell signalling by the protozoan parasite Leishmania, Parasitology, vol.25, issue.S1, pp.27-35, 2005.
DOI : 10.1073/pnas.93.20.10984

L. Soong, J. Xu, I. Grewal, P. Kima, J. Sun et al., Disruption of CD40???CD40 Ligand Interactions Results in an Enhanced Susceptibility to Leishmania amazonensis Infection, Immunity, vol.4, issue.3, pp.263-273, 1996.
DOI : 10.1016/S1074-7613(00)80434-3

R. Mathur, A. Awasthi, P. Wadhone, B. Ramanamurthy, and B. Saha, Reciprocal CD40 signals through p38MAPK and ERK-1/2 induce counteracting immune responses, Nature Medicine, vol.10, issue.5, pp.540-544, 2004.
DOI : 10.1038/nm1045

. Rabhi, Comparative analysis of resistant and susceptible macrophage gene expression response to Leishmania major parasite, BMC Genomics, vol.14, issue.1, p.723, 2013.
DOI : 10.1038/nm1045

URL : https://hal.archives-ouvertes.fr/pasteur-00903885