S. Abounit and C. Zurzolo, Wiring through tunneling nanotubes - from electrical signals to organelle transfer, Journal of Cell Science, vol.125, issue.5, pp.1089-1098, 2012.
DOI : 10.1242/jcs.083279

URL : https://hal.archives-ouvertes.fr/pasteur-00716392

J. C. Adams and M. A. Schwartz, Stimulation of Fascin Spikes by Thrombospondin-1 Is Mediated by the Gtpases Rac and Cdc42, The Journal of Cell Biology, vol.18, issue.4, pp.807-822, 2000.
DOI : 10.1083/jcb.142.4.1001

S. Almagro, C. Durmort, A. Chervin-pétinot, S. Heyraud, M. Dubois et al., The Motor Protein Myosin-X Transports VE-Cadherin along Filopodia To Allow the Formation of Early Endothelial Cell-Cell Contacts, Molecular and Cellular Biology, vol.30, issue.7, pp.1703-1717, 2010.
DOI : 10.1128/MCB.01226-09

URL : https://hal.archives-ouvertes.fr/inserm-00462307

J. S. Berg and R. E. Cheney, Myosin-X is an unconventional myosin that undergoes intrafilopodial motility, Nature Cell Biology, vol.4, issue.3, pp.246-250, 2002.
DOI : 10.1038/ncb762

A. B. Bohil, B. W. Robertson, and R. E. Cheney, Myosin-X is a molecular motor that functions in filopodia formation, Proc. Natl. Acad. Sci. USA 103, pp.12411-12416, 2006.
DOI : 10.1073/pnas.0602443103

N. V. Bukoreshtliev, X. Wang, E. Hodneland, S. Gurke, J. F. Barroso et al., Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells, FEBS Letters, vol.42, issue.9, pp.1481-1488, 2009.
DOI : 10.1016/j.febslet.2009.03.065

M. Costanzo and C. Zurzolo, The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration, Biochemical Journal, vol.452, issue.1, pp.1-17, 2013.
DOI : 10.1042/BJ20121898

URL : https://hal.archives-ouvertes.fr/pasteur-00874678

M. Costanzo, S. Abounit, L. Marzo, A. Danckaert, Z. Chamoun et al., Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes, Journal of Cell Science, vol.126, issue.16, pp.3678-3685, 2013.
DOI : 10.1242/jcs.126086

URL : https://hal.archives-ouvertes.fr/pasteur-00874692

D. M. Davis and S. Sowinski, Membrane nanotubes: dynamic long-distance connections between animal cells, Nature Reviews Molecular Cell Biology, vol.23, issue.6, pp.431-436, 2008.
DOI : 10.1038/nrm2399

E. A. Eugenin, P. J. Gaskill, and J. W. Berman, Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: A potential mechanism for intercellular HIV trafficking, Cellular Immunology, vol.254, issue.2, pp.142-148, 2009.
DOI : 10.1016/j.cellimm.2008.08.005

K. Gousset, E. Schiff, C. Langevin, Z. Marijanovic, A. Caputo et al., Prions hijack tunnelling nanotubes for intercellular spread, Nature Cell Biology, vol.177, issue.3, pp.328-336, 2009.
DOI : 10.1038/nprot.2006.356

URL : https://hal.archives-ouvertes.fr/pasteur-00368712

S. Gurke, J. F. Barroso, E. Hodneland, N. V. Bukoreshtliev, O. Schlicker et al., Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells???, Experimental Cell Research, vol.314, issue.20, pp.3669-3683, 2008.
DOI : 10.1016/j.yexcr.2008.08.022

K. Hase, S. Kimura, H. Takatsu, M. Ohmae, S. Kawano et al., M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex, Nature Cell Biology, vol.281, issue.12, pp.1427-1432, 2009.
DOI : 10.1016/j.cell.2006.08.034

Y. Hirano, T. Hatano, A. Takahashi, M. Toriyama, N. Inagaki et al., Structural basis of cargo recognition by the myosin-X MyTH4-FERM domain, Acta Crystallographica Section A Foundations of Crystallography, vol.67, issue.a1, pp.2734-2747, 2011.
DOI : 10.1107/S0108767311098485

M. L. Kerber and R. E. Cheney, Myosin-X: a MyTH-FERM myosin at the tips of filopodia, Journal of Cell Science, vol.124, issue.22, pp.3733-3741, 2011.
DOI : 10.1242/jcs.023549

C. Langevin, K. Gousset, M. Costanzo, R. Goff, and O. Zurzolo, Characterization of the role of dendritic cells in prion transfer to primary neurons, Biochemical Journal, vol.71, issue.2, pp.189-198, 2010.
DOI : 10.1016/j.febslet.2009.03.065

URL : https://hal.archives-ouvertes.fr/hal-00521557

M. Lokar, A. Iglic, and P. Veranic, Protruding membrane nanotubes: attachment of tubular protrusions to adjacent cells by several anchoring junctions, Protoplasma, vol.328, issue.1-4, pp.81-87, 2010.
DOI : 10.1007/s00709-010-0143-7

L. Marzo, K. Gousset, and C. Zurzolo, Multifaceted Roles of Tunneling Nanotubes in Intercellular Communication, Frontiers in Physiology, vol.3, p.72, 2012.
DOI : 10.3389/fphys.2012.00072

URL : https://hal.archives-ouvertes.fr/pasteur-00716379

B. Onfelt, S. Nedvetzki, K. Yanagi, and D. M. Davis, Cutting Edge: Membrane Nanotubes Connect Immune Cells, The Journal of Immunology, vol.173, issue.3, pp.1511-1513, 2004.
DOI : 10.4049/jimmunol.173.3.1511

B. Onfelt, S. Nedvetzki, R. K. Benninger, M. A. Purbhoo, S. Sowinski et al., Structurally Distinct Membrane Nanotubes between Human Macrophages Support Long-Distance Vesicular Traffic or Surfing of Bacteria, The Journal of Immunology, vol.177, issue.12, pp.8476-8483, 2006.
DOI : 10.4049/jimmunol.177.12.8476

J. Pasquier, B. S. Guerrouahen, A. Thawadi, H. Ghiabi, P. Maleki et al., Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance, Journal of Translational Medicine, vol.11, issue.1, p.94, 2013.
DOI : 10.1038/nrd3137

URL : https://hal.archives-ouvertes.fr/inserm-00828594

L. Plantard, A. Arjonen, J. G. Lock, G. Nurani, J. Ivaska et al., PtdIns(3,4,5)P3 is a regulator of myosin-X localization and filopodia formation, Journal of Cell Science, vol.123, issue.20, pp.3525-3534, 2010.
DOI : 10.1242/jcs.069609

Y. Qi, J. K. Wang, M. Mcmillian, and D. M. Chikaraishi, Characterization of a CNS cell line, CAD, in which morphological differentiation is initiated by serum deprivation, J. Neurosci, vol.17, pp.1217-1225, 1997.

A. N. Raines, S. Nagdas, M. L. Kerber, and R. E. Cheney, Headless Myo10 Is a Negative Regulator of Full-length Myo10 and Inhibits Axon Outgrowth in Cortical Neurons, Journal of Biological Chemistry, vol.287, issue.30, pp.24873-24883, 2012.
DOI : 10.1074/jbc.M112.369173

A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H. H. Gerdes, Nanotubular Highways for Intercellular Organelle Transport, Science, vol.303, issue.5660, pp.1007-1010, 2004.
DOI : 10.1126/science.1093133

C. Schiller, K. N. Diakopoulos, I. Rohwedder, E. Kremmer, C. Von-toerne et al., LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation, Journal of Cell Science, vol.126, issue.3, pp.767-777, 2013.
DOI : 10.1242/jcs.114033

A. D. Sousa, J. S. Berg, B. W. Robertson, R. B. Meeker, and R. E. Cheney, Myo10 in brain: developmental regulation, identification of a headless isoform and dynamics in neurons, Journal of Cell Science, vol.119, issue.1, pp.184-194, 2006.
DOI : 10.1242/jcs.02726

S. Sowinski, C. Jolly, O. Berninghausen, M. A. Purbhoo, A. Chauveau et al., Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission, Nature Cell Biology, vol.8, issue.2, pp.211-219, 2008.
DOI : 10.1074/jbc.C400046200

K. Tanabe, I. Bonilla, J. A. Winkles, and S. M. Strittmatter, Fibroblast growth factor-inducible-14 is induced in axotomized neurons and promotes neurite outgrowth, J. Neurosci, vol.23, pp.9675-9686, 2003.

H. Tokuo, K. Mabuchi, and M. Ikebe, The motor activity of myosin-X promotes actin fiber convergence at the cell periphery to initiate filopodia formation, The Journal of Cell Biology, vol.113, issue.2, pp.229-238, 2007.
DOI : 10.1038/ncb1535

N. Van-prooyen, H. Gold, V. Andresen, O. Schwartz, K. Jones et al., Human T-cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission, Proc. Natl. Acad. Sci. USA, pp.20738-20743, 2010.
DOI : 10.1073/pnas.1009635107

V. Vasioukhin, C. Bauer, M. Yin, and E. Fuchs, Directed Actin Polymerization Is the Driving Force for Epithelial Cell???Cell Adhesion, Cell, vol.100, issue.2, pp.209-219, 2000.
DOI : 10.1016/S0092-8674(00)81559-7

J. J. Wang, X. Q. Fu, Y. G. Guo, L. Yuan, Q. Q. Gao et al., Involvement of headless myosin X in the motility of immortalized gonadotropin-releasing hormone neuronal cells, Cell Biology International, vol.33, issue.5, pp.8-585, 2009.
DOI : 10.1016/j.cellbi.2009.02.006

X. Wang, M. L. Veruki, N. V. Bukoreshtliev, E. Hartveit, and H. H. Gerdes, Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels, Proc. Natl. Acad. Sci. USA, pp.17194-17199, 2010.
DOI : 10.1073/pnas.1006785107

Y. Wang, J. Cui, X. Sun, and Y. Zhang, Tunneling-nanotube development in astrocytes depends on p53 activation, Cell Death and Differentiation, vol.23, issue.4, pp.732-742, 2011.
DOI : 10.1038/cdd.2010.147

T. M. Watanabe, H. Tokuo, K. Gonda, H. Higuchi, and M. Ikebe, Myosin-X Induces Filopodia by Multiple Elongation Mechanism, Journal of Biological Chemistry, vol.285, issue.25, pp.19605-19614, 2010.
DOI : 10.1074/jbc.M109.093864

S. C. Watkins and R. D. Salter, Functional Connectivity between Immune Cells Mediated by Tunneling Nanotubules, Immunity, vol.23, issue.3, pp.309-318, 2005.
DOI : 10.1016/j.immuni.2005.08.009

K. L. Weber, A. M. Sokac, J. S. Berg, R. E. Cheney, and W. M. Bement, A microtubule-binding myosin required for nuclear anchoring and spindle assembly, Nature, vol.91, issue.7006, pp.325-329, 2004.
DOI : 10.1016/S0960-9822(03)00420-2

Z. Wei, J. Yan, Q. Lu, L. Pan, and M. Zhang, Cargo recognition mechanism of myosin X revealed by the structure of its tail MyTH4-FERM tandem in complex with the DCC P3 domain, Proc. Natl. Acad. Sci. USA, pp.3572-3577, 2011.
DOI : 10.1073/pnas.1016567108

S. Yonezawa, A. Kimura, S. Koshiba, S. Masaki, T. Ono et al., Mouse Myosin X: Molecular Architecture and Tissue Expression as Revealed by Northern Blot and in Situ Hybridization Analyses, Biochemical and Biophysical Research Communications, vol.271, issue.2, pp.526-533, 2000.
DOI : 10.1006/bbrc.2000.2669

T. Yoshizaki, T. Imamura, J. L. Babendure, J. C. Lu, N. Sonoda et al., Myosin 5a Is an Insulin-Stimulated Akt2 (Protein Kinase B??) Substrate Modulating GLUT4 Vesicle Translocation, Molecular and Cellular Biology, vol.27, issue.14, pp.5172-5183, 2011.
DOI : 10.1128/MCB.02298-06

H. Zhang, J. S. Berg, Z. Li, Y. Wang, P. Lång et al., Myosin-X provides a motor-based link between integrins and the cytoskeleton, Nature Cell Biology, vol.16, issue.6, pp.523-531, 2004.
DOI : 10.1074/jbc.273.22.13878

X. J. Zhu, C. Z. Wang, P. G. Dai, Y. Xie, N. N. Song et al., Myosin X regulates netrin receptors and functions in axonal path-finding, Nature Cell Biology, vol.22, issue.2, pp.184-192, 2007.
DOI : 10.1006/dbio.2001.0439