B. Frost, R. L. Jacks, D. , and M. I. , Propagation of Tau Misfolding from the Outside to the Inside of a Cell, Journal of Biological Chemistry, vol.284, issue.19, pp.12845-12852, 2009.
DOI : 10.1074/jbc.M808759200

F. Clavaguera, T. Bolmont, R. A. Crowther, D. Abramowski, S. Frank et al., Transmission and spreading of tauopathy in transgenic mouse brain, Nature Cell Biology, vol.8, issue.7, pp.909-913, 2009.
DOI : 10.1038/ncb1901

C. A. Lasagna-reeves, D. L. Castillo-carranza, U. Sengupta, M. J. Guerrero-munoz, T. Kiritoshi et al., Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau, Scientific Reports, vol.421, p.700, 2012.
DOI : 10.1038/srep00700

URL : http://doi.org/10.1038/srep00700

C. Ballatore, V. M. Lee, and J. Q. Trojanowski, Tau-mediated neurodegeneration in Alzheimer's disease and related disorders, Nature Reviews Neuroscience, vol.4, issue.9, pp.663-672, 2007.
DOI : 10.1096/fj.04-3620rev

M. Hutton, C. L. Lendon, P. Rizzu, M. Baker, S. Froelich et al., Association of missense and 5-splice-site mutations in tau with the inherited dementia FTDP-17, Nature, vol.393, issue.6686, pp.702-705, 1998.
DOI : 10.1038/31508

M. G. Spillantini, R. A. Crowther, W. Kamphorst, P. Heutink, and J. C. Van-swieten, Tau Pathology in Two Dutch Families with Mutations in the Microtubule-Binding Region of Tau, The American Journal of Pathology, vol.153, issue.5, pp.1359-1363, 1998.
DOI : 10.1016/S0002-9440(10)65721-5

P. Rizzu, J. C. Van-swieten, M. Joosse, M. Hasegawa, M. Stevens et al., High Prevalence of Mutations in the Microtubule-Associated Protein Tau in a Population Study of Frontotemporal Dementia in the Netherlands, The American Journal of Human Genetics, vol.64, issue.2, pp.414-421, 1999.
DOI : 10.1086/302256

M. Goedert, J. , and R. , Mutations causing neurodegenerative tauopathies, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1739, issue.2-3, pp.240-250, 2005.
DOI : 10.1016/j.bbadis.2004.08.007

URL : http://doi.org/10.1016/j.bbadis.2004.08.007

D. Souza, I. Schellenberg, and G. D. , Regulation of tau isoform expression and dementia, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1739, issue.2-3, pp.104-115, 2005.
DOI : 10.1016/j.bbadis.2004.08.009

A. J. Myers, A. M. Pittman, A. S. Zhao, K. Rohrer, M. Kaleem et al., The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts, Neurobiology of Disease, vol.25, issue.3, pp.561-570, 2007.
DOI : 10.1016/j.nbd.2006.10.018

H. Braak and E. Braak, Neuropathological stageing of Alzheimer-related changes, Acta Neuropathologica, vol.80, issue.4, pp.239-259, 1991.
DOI : 10.1007/BF00308809

H. Braak, D. R. Thal, D. Tredici, and K. , Nerve cells immunoreactive for p62 in select hypothalamic and brainstem nuclei of controls and Parkinson???s disease cases, Journal of Neural Transmission, vol.2006, issue.Suppl 4, pp.809-819, 2011.
DOI : 10.1007/s00702-010-0508-2

L. Liu, D. V. Wu, J. W. Witter, M. P. Small, S. A. Clelland et al., Trans-Synaptic Spread of Tau Pathology In Vivo, PLoS ONE, vol.25, issue.2, 2012.
DOI : 10.1371/journal.pone.0031302.g008

A. De-calignon, M. Polydoro, M. Suárez-calvet, C. William, D. H. Adamowicz et al., Propagation of Tau Pathology in a Model of Early Alzheimer's Disease, Neuron, vol.73, issue.4, pp.685-697, 2012.
DOI : 10.1016/j.neuron.2011.11.033

K. M. Danzer, W. P. Ruf, P. Putcha, D. Joyner, T. Hashimoto et al., Heat-shock protein 70 modulates toxic extracellular ??-synuclein oligomers and rescues trans-synaptic toxicity, The FASEB Journal, vol.25, issue.1, pp.326-336, 2011.
DOI : 10.1096/fj.10-164624

K. M. Danzer, S. K. Krebs, M. Wolff, G. Birk, and B. Hengerer, Seeding induced by ??-synuclein oligomers provides evidence for spreading of ??-synuclein pathology, Journal of Neurochemistry, vol.9, issue.Suppl. 2, pp.192-203, 2009.
DOI : 10.1111/j.1471-4159.2009.06324.x

K. M. Danzer, D. Haasen, A. R. Karow, S. Moussaud, M. Habeck et al., Different Species of ??-Synuclein Oligomers Induce Calcium Influx and Seeding, Journal of Neuroscience, vol.27, issue.34, pp.9220-9232, 2007.
DOI : 10.1523/JNEUROSCI.2617-07.2007

N. Kfoury, B. B. Holmes, H. Jiang, D. M. Holtzman, D. et al., Trans-cellular Propagation of Tau Aggregation by Fibrillar Species, Journal of Biological Chemistry, vol.287, issue.23, pp.19440-19451, 2012.
DOI : 10.1074/jbc.M112.346072

S. B. Prusiner, The Priori Diseases, Brain Pathology, vol.36, issue.Suppl. 1, pp.499-513, 1998.
DOI : 10.1111/j.1750-3639.1998.tb00171.x

K. Gousset, E. Schiff, C. Langevin, Z. Marijanovic, A. Caputo et al., Prions hijack tunnelling nanotubes for intercellular spread, Nature Cell Biology, vol.177, issue.3, pp.328-336, 2009.
DOI : 10.1038/nprot.2006.356

URL : https://hal.archives-ouvertes.fr/pasteur-00368712

H. H. Gerdes, Prions tunnel between cells, Nature Cell Biology, vol.180, issue.3, pp.235-236, 2009.
DOI : 10.1038/nrm2399

B. Fevrier, D. Vilette, F. Archer, D. Loew, W. Faigle et al., Cells release prions in association with exosomes, Proceedings of the National Academy of Sciences, vol.101, issue.26, pp.9683-9688, 2004.
DOI : 10.1073/pnas.0308413101

S. Saman, W. Kim, M. Raya, Y. Visnick, S. Miro et al., Exosome-associated Tau Is Secreted in Tauopathy Models and Is Selectively Phosphorylated in Cerebrospinal Fluid in Early Alzheimer Disease, Journal of Biological Chemistry, vol.287, issue.6, pp.3842-3849, 2012.
DOI : 10.1074/jbc.M111.277061

C. Münch, J. O-'brien, and A. Bertolotti, Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells, Proceedings of the National Academy of Sciences, vol.108, issue.9, pp.3548-3553, 2011.
DOI : 10.1073/pnas.1017275108

H. J. Lee, J. E. Suk, E. J. Bae, J. H. Lee, S. R. Paik et al., Assembly-dependent endocytosis and clearance of extracellular a-synuclein, The International Journal of Biochemistry & Cell Biology, vol.40, issue.9, pp.1835-1849, 2008.
DOI : 10.1016/j.biocel.2008.01.017

H. J. Lee, J. E. Suk, E. J. Bae, L. , and S. J. , Clearance and deposition of extracellular ??-synuclein aggregates in microglia, Biochemical and Biophysical Research Communications, vol.372, issue.3, pp.423-428, 2008.
DOI : 10.1016/j.bbrc.2008.05.045

P. H. Ren, J. E. Lauckner, I. Kachirskaia, J. E. Heuser, R. Melki et al., Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates, Nature Cell Biology, vol.309, issue.2, pp.219-225, 2009.
DOI : 10.1016/S0092-8674(00)80514-0

URL : https://hal.archives-ouvertes.fr/hal-01183798

K. Yamada, J. R. Cirrito, F. R. Stewart, H. Jiang, M. B. Finn et al., In Vivo Microdialysis Reveals Age-Dependent Decrease of Brain Interstitial Fluid Tau Levels in P301S Human Tau Transgenic Mice, Journal of Neuroscience, vol.31, issue.37, pp.13110-13117, 2011.
DOI : 10.1523/JNEUROSCI.2569-11.2011

C. A. Lasagna-reeves, D. L. Castillo-carranza, M. J. Guerrero-muoz, G. R. Jackson, and R. Kayed, Preparation and Characterization of Neurotoxic Tau Oligomers, Biochemistry, vol.49, issue.47, pp.10039-10041, 2010.
DOI : 10.1021/bi1016233

C. A. Lasagna-reeves, D. L. Castillo-carranza, U. Sengupta, A. L. Clos, G. R. Jackson et al., Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice, Molecular Neurodegeneration, vol.6, issue.1, p.39, 2011.
DOI : 10.1074/jbc.M605336200

E. E. Congdon, J. W. Wu, N. Myeku, Y. H. Figueroa, M. Herman et al., Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo, Autophagy, vol.3, issue.4, pp.609-622, 2012.
DOI : 10.1073/pnas.87.15.5827

J. W. Slot and H. J. Geuze, Cryosectioning and immunolabeling, Nature Protocols, vol.82, issue.10, pp.2480-2491, 2007.
DOI : 10.1038/nprot.2007.365

G. J. Brewer, J. R. Torricelli, E. K. Evege, P. , and P. J. , Optimized survival of hippocampal neurons in B27-supplemented neurobasal?, a new serum-free medium combination, Journal of Neuroscience Research, vol.9, issue.5, pp.567-576, 1993.
DOI : 10.1002/jnr.490350513

K. Santacruz, J. Lewis, T. Spires, J. Paulson, L. Kotilinek et al., Tau Suppression in a Neurodegenerative Mouse Model Improves Memory Function, Science, vol.309, issue.5733, pp.476-481, 2005.
DOI : 10.1126/science.1113694

G. A. Jicha, R. Bowser, I. G. Kazam, and P. Davies, Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau, Journal of Neuroscience Research, vol.85, issue.2, pp.128-132, 1997.
DOI : 10.1002/(SICI)1097-4547(19970415)48:2<128::AID-JNR5>3.0.CO;2-E

M. Von-bergen, S. Barghorn, J. Biernat, E. M. Mandelkow, and E. Mandelkow, Tau aggregation is driven by a transition from random coil to beta sheet structure, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1739, issue.2-3, pp.158-166, 2005.
DOI : 10.1016/j.bbadis.2004.09.010

S. Barghorn, J. Biernat, and E. Mandelkow, Purification of Recombinant Tau Protein and Preparation of Alzheimer-Paired Helical Filaments In Vitro, Methods Mol. Biol, vol.299, pp.35-51, 2005.
DOI : 10.1385/1-59259-874-9:035

C. A. Lasagna-reeves, D. L. Castillo-carranza, U. Sengupta, J. Sarmiento, J. Troncoso et al., Identification of oligomers at early stages of tau aggregation in Alzheimer's disease, The FASEB Journal, vol.26, issue.5, pp.1946-1959, 2012.
DOI : 10.1096/fj.11-199851

C. M. Wischik, M. Novak, P. C. Edwards, A. Klug, W. Tichelaar et al., Structural characterization of the core of the paired helical filament of Alzheimer disease., Proceedings of the National Academy of Sciences, vol.85, issue.13, pp.4884-4888, 1988.
DOI : 10.1073/pnas.85.13.4884

A. Demuro, E. Mina, R. Kayed, S. C. Milton, I. Parker et al., Calcium Dysregulation and Membrane Disruption as a Ubiquitous Neurotoxic Mechanism of Soluble Amyloid Oligomers, Journal of Biological Chemistry, vol.280, issue.17, pp.17294-17300, 2005.
DOI : 10.1074/jbc.M500997200

J. L. Guo, L. , and V. M. , Seeding of Normal Tau by Pathological Tau Conformers Drives Pathogenesis of Alzheimer-like Tangles, Journal of Biological Chemistry, vol.286, issue.17, pp.15317-15331, 2011.
DOI : 10.1074/jbc.M110.209296

A. M. Taylor, M. Blurton-jones, S. W. Rhee, D. H. Cribbs, C. W. Cotman et al., A microfluidic culture platform for CNS axonal injury, regeneration and transport, Nature Methods, vol.20, issue.8, pp.599-605, 2005.
DOI : 10.1038/nmeth777

C. M. Acker, S. K. Forest, R. Zinkowski, P. Davies, and C. Abramo, Sensitive quantitative assays for tau and phospho-tau in transgenic mouse models, Neurobiology of Aging, vol.34, issue.1, pp.338-350, 2013.
DOI : 10.1016/j.neurobiolaging.2012.05.010

J. M. Oliver, R. D. Berlin, D. , and B. H. , [33] Use of horseradish peroxidase and fluorescent dextrans to study fluid pinocytosis in leukocytes, Methods Enzymol, vol.108, pp.336-347, 1984.
DOI : 10.1016/S0076-6879(84)08100-3

E. Macia, M. Ehrlich, R. Massol, E. Boucrot, C. Brunner et al., Dynasore, a Cell-Permeable Inhibitor of Dynamin, Developmental Cell, vol.10, issue.6, pp.839-850, 2006.
DOI : 10.1016/j.devcel.2006.04.002

H. M. Thompson and M. A. Mcniven, Discovery of a new 'dynasore', Nature Chemical Biology, vol.11, issue.7, pp.355-356, 2006.
DOI : 10.1038/nchembio0706-355

L. Von-kleist, W. Stahlschmidt, H. Bulut, K. Gromova, D. Puchkov et al., Role of the Clathrin Terminal Domain in Regulating Coated Pit Dynamics Revealed by Small Molecule Inhibition, Cell, vol.146, issue.3, pp.471-484, 2011.
DOI : 10.1016/j.cell.2011.06.025

E. W. Voss, . Jr, C. J. Workman, and M. E. Mummert, Detection of protease activity using a fluorescence-enhancement globular substrate, BioTechniques, vol.20, pp.286-291, 1996.

A. Siddiqua and M. Margittai, Three- and Four-repeat Tau Coassemble into Heterogeneous Filaments: AN IMPLICATION FOR ALZHEIMER DISEASE, Journal of Biological Chemistry, vol.285, issue.48, pp.37920-37926, 2010.
DOI : 10.1074/jbc.M110.185728

O. Schweers, E. M. Mandelkow, J. Biernat, and E. Mandelkow, Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein tau controls the in vitro assembly of paired helical filaments., Proceedings of the National Academy of Sciences, vol.92, issue.18, pp.8463-8467, 1995.
DOI : 10.1073/pnas.92.18.8463

R. P. Friedrich, K. Tepper, R. Rönicke, M. Soom, M. Westermann et al., Mechanism of amyloid plaque formation suggests an intracellular basis of A?? pathogenicity, Proceedings of the National Academy of Sciences, vol.107, issue.5, pp.1942-1947, 2010.
DOI : 10.1073/pnas.0904532106

M. R. Sawaya, S. Sambashivan, R. Nelson, M. I. Ivanova, S. A. Sievers et al., Atomic structures of amyloid cross-?? spines reveal varied steric zippers, Nature, vol.234, issue.7143, pp.453-457, 2007.
DOI : 10.1038/nature05695

M. Kidd, Paired Helical Filaments in Electron Microscopy of Alzheimer's Disease, Nature, vol.86, issue.4863, pp.192-193, 1963.
DOI : 10.1038/197192b0

N. J. Pollock, S. S. Mirra, L. I. Binder, L. A. Hansen, and J. G. Wood, FILAMENTOUS AGGREGATES IN PICK'S DISEASE, PROGRESSIVE SUPRANUCLEAR PALSY, AND ALZHEIMER'S DISEASE SHARE ANTIGENIC DETERMINANTS WITH MICROTUBULE-ASSOCIATED PROTEIN, TAU, The Lancet, vol.328, issue.8517, p.1211, 1986.
DOI : 10.1016/S0140-6736(86)92212-9

M. Goedert, R. Jakes, M. G. Spillantini, M. Hasegawa, M. J. Smith et al., Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans, Nature, vol.383, issue.6600, pp.550-553, 1996.
DOI : 10.1038/383550a0

M. Hasegawa, M. J. Smith, and M. Goedert, Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly, FEBS Letters, vol.8, issue.3, pp.207-210, 1998.
DOI : 10.1016/S0014-5793(98)01217-4

D. M. Wilson and L. I. Binder, Free fatty acids stimulate the polymerization of Tau and amyloid peptides In vitro evidence for a common effector of pathogenesis in Alzheimer's disease, Am. J. Pathol, vol.150, pp.2181-2195, 1997.

R. Kayed, E. Head, J. L. Thompson, T. M. Mcintire, S. C. Milton et al., Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis, Science, vol.300, issue.5618, pp.486-489, 2003.
DOI : 10.1126/science.1079469

J. W. Wu, L. Breydo, J. M. Isas, J. Lee, Y. G. Kuznetsov et al., Fibrillar Oligomers Nucleate the Oligomerization of Monomeric Amyloid ?? but Do Not Seed Fibril Formation, Journal of Biological Chemistry, vol.285, issue.9, pp.6071-6079, 2010.
DOI : 10.1074/jbc.M109.069542

R. A. Crowther, Straight and paired helical filaments in Alzheimer disease have a common structural unit., Proceedings of the National Academy of Sciences, vol.88, issue.6, pp.2288-2292, 1991.
DOI : 10.1073/pnas.88.6.2288

K. R. Patterson, C. Remmers, Y. Fu, S. Brooker, N. M. Kanaan et al., Characterization of Prefibrillar Tau Oligomers in Vitro and in Alzheimer Disease, Journal of Biological Chemistry, vol.286, issue.26, pp.23063-23076, 2011.
DOI : 10.1074/jbc.M111.237974

S. Maeda, N. Sahara, Y. Saito, S. Murayama, A. Ikai et al., Increased levels of granular tau oligomers: An early sign of brain aging and Alzheimer's disease, Neuroscience Research, vol.54, issue.3, pp.197-201, 2006.
DOI : 10.1016/j.neures.2005.11.009

L. Banci, I. Bertini, A. Durazo, S. Girotto, E. B. Gralla et al., Metal-free superoxide dismutase forms soluble oligomers under physiological conditions: A possible general mechanism for familial ALS, Proceedings of the National Academy of Sciences, vol.104, issue.27, pp.11263-11267, 2007.
DOI : 10.1073/pnas.0704307104

J. H. Come, P. E. Fraser, P. T. Lansbury, and . Jr, A kinetic model for amyloid formation in the prion diseases: importance of seeding., Proceedings of the National Academy of Sciences, vol.90, issue.13, pp.5959-5963, 1993.
DOI : 10.1073/pnas.90.13.5959

S. Narayanan, B. Bösl, S. Walter, R. , and B. , Importance of low-oligomeric-weight species for prion propagation in the yeast prion system Sup35/Hsp104, Proceedings of the National Academy of Sciences, vol.100, issue.16, pp.9286-9291, 2003.
DOI : 10.1073/pnas.1233535100

E. M. Schmid and H. T. Mcmahon, Integrating molecular and network biology to decode endocytosis, Nature, vol.17, issue.7156, pp.883-888, 2007.
DOI : 10.1038/nature06031

S. Fawell, J. Seery, Y. Daikh, C. Moore, L. L. Chen et al., Tat-mediated delivery of heterologous proteins into cells., Proceedings of the National Academy of Sciences, vol.91, issue.2, pp.664-668, 1994.
DOI : 10.1073/pnas.91.2.664

D. Derossi, S. Calvet, A. Trembleau, A. Brunissen, G. Chassaing et al., Cell Internalization of the Third Helix of the Antennapedia Homeodomain Is Receptor-independent, Journal of Biological Chemistry, vol.271, issue.30, pp.18188-18193, 1996.
DOI : 10.1074/jbc.271.30.18188

L. A. Volpicelli-daley, K. C. Luk, T. P. Patel, S. A. Tanik, D. M. Riddle et al., Exogenous ??-Synuclein Fibrils Induce Lewy Body Pathology Leading to Synaptic Dysfunction and Neuron Death, Neuron, vol.72, issue.1, pp.57-71, 2011.
DOI : 10.1016/j.neuron.2011.08.033

H. C. Tai and E. M. Schuman, Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction, Nature Reviews Neuroscience, vol.3, issue.11, pp.826-838, 2008.
DOI : 10.1038/nrn2499

H. Braak, D. Tredici, and K. , Alzheimer???s pathogenesis: is there neuron-to-neuron propagation?, Acta Neuropathologica, vol.60, issue.5, pp.589-595, 2011.
DOI : 10.1007/s00401-011-0825-z

H. Braak, D. Tredici, and K. , The pathological process underlying Alzheimer???s disease in individuals under thirty, Acta Neuropathologica, vol.24, issue.Suppl. 1, pp.171-181, 2011.
DOI : 10.1007/s00401-010-0789-4

R. R. Kopito, Aggresomes, inclusion bodies and protein aggregation, Trends in Cell Biology, vol.10, issue.12, pp.524-530, 2000.
DOI : 10.1016/S0962-8924(00)01852-3