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Comparing human papillomavirus prevalences in
women with normal cytology or invasive cervical
cancer to rank genotypes according to their
oncogenic potential: a meta-analysis of
observational studies
Erik Bernard1,2,3, Margarita Pons-Salort1,2,4, Michel Favre5,6, Isabelle Heard5,7,8, Elisabeth Delarocque-Astagneau1,2,3,
Didier Guillemot1,2,3,9 and Anne CM Thiébaut1,2,3*

Abstract

Background: Mucosal human papillomavirus (HPV) infection is a necessary cause of cervical cancer. Vaccine and
non-vaccine genotype prevalences may change after vaccine introduction. Therefore, it appears essential to rank
HPV genotypes according to their oncogenic potential for invasive cervical cancer, independently of their respective
prevalences.

Methods: We performed meta-analyses of published observational studies and estimated pooled odds ratios with
random-effects models for 32 HPV genotypes, using HPV-16 as the reference.

Results: Twenty-seven studies yielded 9,252 HPV-infected women: 2,902 diagnosed with invasive cervical cancer
and 6,350 with normal cytology. Expressed as (odds ratio [95% confidence interval]), HPV-18 (0.63 [0.51, 0.78])
ranked closest to HPV-16, while other genotypes showed continuously decreasing relative oncogenic potentials:
HPV-45 (0.35 [0.22, 0.55]), HPV-69 (0.28 [0.09, 0.92]), HPV-58 (0.24 [0.15, 0.38]), HPV-31 (0.22 [0.14, 0.35]), HPV-33 (0.22
[0.12, 0.38]), HPV-34 (0.21 [0.06, 0.80]), HPV-67 (0.21 [0.06, 0.67]), HPV-39 (0.17 [0.09, 0.30]), HPV-59 (0.17 [0.09, 0.31]),
HPV-73 (0.16 [0.06, 0.41]), and HPV-52 (0.16 [0.11, 0.23]).

Conclusions: Our results support the markedly higher oncogenic potentials of HPV-16 and -18, followed by
HPV-31, -33, -39, -45, -52, -58 and -59, and highlight the need for further investigation of HPV-34, -67, -69 and -73.
Overall, these findings could have important implications for the prevention of cervical cancer.

Keywords: Human papillomavirus, Genotype, Cervical cancer, Oncogenic potential, Meta-analysis

Background
Invasive cervical cancer (ICC) is the third most common

cancer among women worldwide, with an estimated in-

cidence of 553,119 new cases and 288,109 deaths in

2010 [1]. Persistent infection with one of the oncogenic

human papillomavirus (HPV) genotypes is required to

cause ICC [2-5]. More than 150 HPV genotypes have

been identified and about 40 are known to infect the

genital tract [6,7].

To date, HPV genotypes identified as causing ICC have

belonged to a few genetically related “high-risk” species of

the mucosotropic α-genus (α-5, -6, -7, -9 and -11) [8] but

other HPV genotypes could be involved [9]. Dichotomous

classification into low- and high-risk HPV genotypes has

often been used previously [4,10]. Alternatively, the Inter-

national Agency for Research on Cancer (IARC) classified

individual HPV genotypes into more categories based on

available epidemiologic and mechanistic evidence of their

carcinogenicity for cancer at any site. Thus, 12 HPV
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genotypes (HPV-16, -18, -31, -33, -35, -39, -45, -51, -52, -56,

-58 and -59) are classified as “carcinogenic to humans”

(Group 1), HPV-68 as “probably carcinogenic” (Group

2A) and 12 other HPV genotypes as “possibly carcino-

genic” (Group 2B) [8,11].

Two vaccines targeting HPV-16 and -18, which account

for 70% of cervical cancers worldwide [12,13], are cur-

rently available. Vaccination impact on the cervical cancer

incidence remains uncertain, especially because genotype-

specific prevalences of vaccine and non-vaccine geno-

types might change after vaccine introduction through

vaccine-induced cross-protection or genotype replace-

ment [14-16]. The number of ICC cases associated with

a given HPV genotype depends both on its prevalence

in the general population and its oncogenic potential,

which can be defined as the inherent and differential

abilities of each genotype to trigger malignant trans-

formation and induce cervical cancer [17]. Within cat-

egories of IARC-classified carcinogenic HPV genotypes,

the risk of progression to ICC might differ by HPV

genotype. Therefore, ranking the oncogenic potentials

of HPV genotypes, independently of their respective

prevalences, is challenging but essential to guide the

formulation of second-generation polyvalent HPV vac-

cines and HPV-DNA–based screening tests.

This study was undertaken to rank HPV genotypes as

causal agents of ICC according to their relative onco-

genic potentials assessed by means of meta-analyses of

published observational data. Oncogenic potentials

herein are expressed using HPV-16 as the reference,

since it has been recognized as the most carcinogenic

HPV genotype [8,11,18].

Methods
Literature search and study selection

Original studies published in English, French, German and

Spanish from 1/1995 to 3/2011 were systematically sought

in PubMed/Medline and Embase databases, in March

2011. The following keywords were combined: “female”,

“papillomavirus infection”, “DNA probes, HPV”, “DNA,

viral”, “genotype”, “polymerase chain reaction”, “sequence

analysis, DNA”, “uterine cervical neoplasms”, “cervix

uteri”, “epidemiologic studies”, “prevalence”, “incidence”

(Additional file 1). We restricted our selection to original

articles (reviews, meta-analyses, editorials, comments and

letters were not eligible). Conference abstracts and other

unpublished articles were not considered.

First, article titles and abstracts were screened then full

texts were read to check inclusion criteria. The relevance

of references cited in the retrieved articles, reviews and

meta-analyses was also evaluated for potential inclusions.

When necessary, authors were contacted for confirmation

of inclusion criteria or results.

Unvaccinated women of any age were considered for

this meta-analysis. We defined the following three in-

clusion criteria: prevalence data for at least one HPV

genotype other than HPV-16 and -18; inclusion of ≥20

HPV-infected women with ICC and ≥20 HPV-infected

women with normal cytology, and HPV-prevalence data

for women with ICC presented separately from those

with normal cytology.

One author (EB) conducted the eligibility assessment

and problematic papers were resolved by collegial

discussion (MPS, ACMT). BibDesk 1.5.4 software was

used to manage references.

Data extraction

For each study, one author (EB) extracted the following

data, entering them into a predefined Excel spreadsheet:

study characteristics (first author, year of publication,

journal, country and continent, design and funding

source), characteristics of included subjects (number of

cases [total and by histologic type, if available] and con-

trols, age data), methods (cytologic or histologic cervical

specimen, identification and typing method, primers

used [if any] and number of HPV genotypes detectable)

and results (numbers of HPV genotypes actually identified,

and simple and multiple infections, genotype-specific

HPV-prevalence data for cases and controls). For multiple

infections with ≥2 HPV genotypes, no weighting was used

and each HPV genotype was counted equally. Infection

with an uncharacterized HPV genotype is denoted HPV-X.

Furthermore, study quality was assessed with a list of

specifically defined criteria, inspired by some of the

STROBE checklist items [19]. The following items were

coded yes, no, unclear or missing: comparability of cases

and controls for geographic origin, age, sample type and

methods used to detect and genotype HPV; blinded

assessment; numbers of individuals reported at each

study stage; and genotype prevalences reported for

multiple infections. Data extraction was double checked

by two authors (MPS, ACMT).

Statistical analyses

A meta-analysis was performed for each HPV genotype,

after excluding studies that did not seek or report the

genotype under consideration and those that sought it

but reported zero cases and controls. Therefore, the

number of studies analyzed varied from one genotype to

another. We did not consider genotypes for which all

but one study reported zero controls. For each study

and each available genotype, an odds ratio (OR) and its

95% confidence interval (CI) were computed from the

reported numbers of case and control infections, consider-

ing HPV-16 infections as the reference group. Then, each

HPV genotype was subjected to meta-analysis across the

corresponding number of studies by combining the
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studies’ ORs using DerSimonian and Laird’s random-

effects model [20]. If a count equalled zero when cross-

tabulating case–control status and infection with a

given HPV genotype or HPV-16 (usually no controls

infected with the HPV genotype under consideration),

we applied a continuity correction (CC) by adding 0.5

to each cell [21,22].

For each HPV genotype, heterogeneity of the estimated

oncogenic potentials relative to HPV-16 was assessed

graphically with forest plots, and quantitatively using

Cochran’s Q-test and the I2 statistic [23,24]. When

Cochran’s Q-test was statistically significant at the 10%

level or the I2 statistic ≥50%, we examined potential

sources of heterogeneity by performing subgroup ana-

lyses according to five prespecified factors: study design

(case–control versus cross-sectional), year of publication

(before and after the median, ≤2005 versus >2005),

comparability of case and control ages (similar versus

unbalanced distribution or unclear information), geo-

graphic area (Asia [18,25] versus all other continents),

and HPV-detection level among cases (<90% versus ≥90%

threshold). For each HPV genotype, we assessed publi-

cation bias (or other potential sources of bias) by exam-

ining the funnel plots for asymmetry and running the

Egger test [26].

Sensitivity analyses were performed using: a fixed-effect

model, with Peto’s method [27], CC = 0.25 or 0, and HPV-

negative subjects as the reference group.

All statistical analyses were computed using the package

Meta-analysis in Stata in Stata/SE v11.0 [28,29].

Results
Study identification and description

The Medline and Embase database searches provided,

respectively, 757 and 182 references, while additional

searches identified 11 studies, yielding, after deleting 55

duplicates, a total of 895 references (Figure 1). Among

them, 794 were excluded based on their titles and ab-

stracts. The full texts of the remaining 101 references were

read and 27 studies fully satisfying the inclusion criteria

were finally retained [30-56]: 17 case–control and 10

cross-sectional studies, published between 1997 and 2011,

all but one (Spanish [30]) written in English. They had

been conducted on four continents: Asia (12 studies),

Europe (six studies), South and Central America (five

studies), and Africa (four studies). A total of 3,191 women

with ICC (cases) and 29,623 with normal cytology

(controls) were included (Table 1).

When available, mean age ranges were 44–56 years for

cases and 32–52 years for controls. Case and control

ages were comparable in five studies but not in eight

others, and this information was unclear or missing in

the 14 other papers. The cervical specimens used to de-

tect HPV infection were usually cytologic for controls

(23 studies) and histologic for cases (13 studies), with

specimen type being similar for cases and controls in 14

studies. All studies used polymerase chain reaction

(PCR) to detect HPV infection and 4–48 HPV genotypes

could be identified in each study (4–20 in cases, 4–36 in

controls). HPV infection was detected in 73–100% of

cases (squamous cell carcinoma: 80–100%; adenocarcin-

oma: 50–100%) and 5–76% of controls (except in [33]

which included only 24 controls, all HPV-positive).

Estimation of the genotype-specific oncogenic potential

compared to HPV-16

In total, 9,252 HPV-infected women (2,902 cases and

6,350 controls) were included (Table 1). Among HPV-

positive subjects, multiple infections were more frequent

in women with normal cytology (16% on average and up

to 50%) than those diagnosed with ICC (10% on average

and up to 35%). A total of 3,150 HPV infections, including

Database literature searches

Limits: 1995–2011

Languages: English, German, Spanish, French

757 PubMed

182 Embase

895 Total search results

Article titles and abstracts screened

101 Eligible

Full-text reading and application of inclusion criteria

27  Studies retained

Additional literature searches

4 References cited in reviews 

and meta-analyses

3 References cited in articles 

4 Experts

794 Excluded

74 Excluded

Figure 1 Article identification and selection process for inclusion in the meta-analysis.
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multiple infections, were identified among the 2,902 cases.

The most common HPV genotypes identified in women

with ICC were, in descending order: HPV-16 (57.9%),

HPV-18 (12.8%), HPV-45 (4.8%), HPV-58 (4.7%), HPV-33

(4.7%), HPV-31 (4.4%) and HPV-52 (4.0%). Prevalences of

the other HPV genotypes were <4% (Table 2). The overall

HPV-X prevalence was 7.6% but this value represents dif-

ferent numbers of genotypes from one study to another.

Available data enabled assessment of the relative onco-

genic potentials of 32 HPV genotypes (Table 2). Each

meta-analysis included two (HPV-74) to 27 (HPV-18)

studies (forest plots in Additional file 2). All pooled ORs

were statistically significantly <1, except for HPV-74

(two-sided P = 0.20, calculated from two studies, one of

which provided only one case, Figure 2). HPV-18 had

the highest OR (0.63; 95% CI, [0.51, 0.78]); HPV-45 the

second highest (0.35 [0.22, 0.55]) followed closely by the

others, in descending order: HPV-69 (0.28 [0.09, 0.92]),

HPV-58 (0.24 [0.15, 0.38]), HPV-31 (0.22 [0.14, 0.35]),

HPV-33 (0.22 [0.12, 0.38]), HPV-34 (0.21 [0.06, 0.80]), HPV-

67 (0.21 [0.06, 0.67]), HPV-39 (0.17 [0.09, 0.30]), HPV-59

(0.17 [0.09, 0.31]), HPV-73 (0.16 [0.06, 0.41]), and HPV-52

(0.16 [0.11, 0.23]). The ORs for the remaining HPV

genotypes were <0.15.

Heterogeneity and bias assessment

Cochran’s Q-test suggested heterogeneity for six HPV

genotypes: HPV-31, -33, -45, -51, -58 and -74; and the I2

Table 1 Characteristics of studies, numbers of women with invasive cervical cancer (cases) or normal

cytology (controls)

First author, year [reference] Country Study design Cases, n Controls, n

HPV+ Total HPV+ Total

Abba, 2003 [30] Argentina Cross-sectional 21 21 70 152

Alibegashvili, 2011 [31] Georgia Case–control 91 91 143 1,247

An, 2003 [32] South Korea Cross-sectional 48 50 72 276

Andersson, 2005 [33] Sweden Cross-sectional 45 45 24 24

Asato, 2004 [34] Japan Case–control 311 356 333 3,249

Baay, 2001 [35] Belgium Case–control 101 115 31 286

Bardin, 2008 [36] Poland Case–control 87 88 115 799

Castellsagué, 2008 [37] Mozambique Case–control 230 241 148 195

Chang, 1997 [38] China Case–control 39 47 42 72

Chaouki, 1998 [39] Morocco Case–control 144 152 38 185

Cho, 2003 [40] South Korea Cross-sectional 43 49 132 414

Ferrera, 1999 [41] Honduras Case–control 83 104 170 438

Hammouda, 2011 [42] Algeria Case–control 167 171 39 732

Herrero, 2005 [43] Costa-Rica Cross-sectional 34 35 1,671 7,459

Hong, 2008 [44] China Case–control 172 181 91 217

Illades-Aguiar, 2009 [45] Mexico Case–control 133 133 91 256

Illades-Aguiar, 2010 [46] Mexico Cross-sectional 141 141 1,274 3,117

Keita, 2009 [47] Guinea Case–control 70 77 360 752

Lee, 2007 [48] South Korea Cross-sectional 133 160 388 1,650

Liu, 2010 [49] China Case–control 111 134 274 613

Maehama, 2005 [50] Japan Case–control 330 383 434 4,078

Park, 2004 [51] South Korea Cross-sectional 59 62 51 290

Sasagawa, 2001 [52] Japan Case–control 75 84 151 1,562

Sherpa, 2010 [53] Nepal Case–control 54 61 73 898

Tachezy, 1999 [54] Czech Republic Cross-sectional 36 49 38 165

Tornesello, 2006 [55] Italy Case–control 53 65 36 183

Wu, 2010 [56] China Cross-sectional 91 96 61 314

Total 2,902 3,191 6,350 29,623

HPV+, human papillomavirus-positive.
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statistic for four among them: HPV-31, -33, -58 and -74

(Table 2). This heterogeneity was not clearly explained

by any of the factors considered (study design, year of

publication, geographic area, age-distribution balance

between cases and controls, or HPV-detection rate

among cases). For example, the I2 statistic was smaller

for cross-sectional studies than case–control studies for

HPV-33, -51 and -58, but higher for HPV-31 and -45.

For HPV-74, subgroup analyses could not be completed

because too few studies were included.

Moreover, no evidence of publication bias was found. No

obvious asymmetry of the funnel plots was observed, ex-

cept for HPV-18, -31 and -35, with slightly more small

studies reporting higher ORs (Additional file 3). The Egger

test was borderline or statistically significant only for HPV-

6 (P = 0.091), HPV-35 (P = 0.040) and HPV-62 (P = 0.065).

Table 2 Human papillomavirus genotype-specific prevalences among invasive cervical cancer cases, meta-analytical

estimates of relative oncogenic potentials

HPV- Prevalence* Cases†, n Pooled OR 95% CI Studies‡, n Cochran’s
Q-test P

I2 statistic, % Between-study
variance

n (%)

6 17 (0.8) 2,208 0.08 0.04, 0.16 18 0.162 24.8 0.438

11 17 (1.1) 1,554 0.11 0.06, 0.19 15 0.407 4.1 0.049

16 1,680 (57.9) 2,902 Reference 27

18 372 (12.8) 2,902 0.63 0.51, 0.78 27 0.425 2.6 0.009

30 2 (0.5) 430 0.13 0.03, 0.60 3 0.881 0.0 0.000

31 122 (4.4) 2,745 0.22 0.14, 0.35 24 <0.001 55.9 0.696

33 128 (4.7) 2,728 0.22 0.12, 0.38 24 <0.001 65.1 1.152

34 1 (0.2) 666 0.21 0.06, 0.80 5 0.791 0.0 0.000

35 67 (2.7) 2,450 0.12 0.08, 0.17 21 0.408 4.0 0.032

39 24 (1.2) 2,017 0.17 0.09, 0.30 19 0.169 23.7 0.372

40 2 (0.2) 991 0.13 0.04, 0.45 8 0.197 28.9 0.889

42 3 (0.2) 1,573 0.05 0.02, 0.15 11 0.102 37.2 1.345

44 3 (0.4) 729 0.14 0.03, 0.66 5 0.147 41.1 1.324

45 119 (4.8) 2,464 0.35 0.22, 0.55 23 0.054 34.4 0.358

51 54 (2.7) 1,971 0.10 0.05, 0.20 19 0.014 46.3 0.901

52 96 (4.0) 2,394 0.16 0.11, 0.23 21 0.293 12.7 0.091

53 22 (1.1) 1,981 0.07 0.04, 0.12 16 0.380 6.4 0.075

54 1 (0.1) 1,263 0.06 0.02, 0.16 9 0.580 0.0 0.000

56 22 (1.0) 2,303 0.09 0.05, 0.16 20 0.278 14.2 0.230

58 127 (4.7) 2,685 0.24 0.15, 0.38 22 <0.001 56.8 0.583

59 24 (1.1) 2,218 0.17 0.09, 0.31 16 0.537 0.0 0.000

61 2 (0.2) 1,130 0.05 0.02, 0.14 8 0.739 0.0 0.000

62 1 (0.2) 558 0.07 0.02, 0.23 6 0.420 0.0 0.000

66 16 (0.7) 2,181 0.08 0.05, 0.14 18 0.799 0.0 0.000

67 4 (0.3) 1,342 0.21 0.06, 0.67 10 0.181 28.6 1.020

68 8 (0.5) 1,661 0.07 0.04, 0.14 14 0.439 0.8 0.013

69 9 (1.3) 672 0.28 0.09, 0.92 5 0.249 25.8 0.473

70 6 (0.4) 1,496 0.07 0.03, 0.14 11 0.565 0.0 0.000

71 1 (0.1) 672 0.03 0.01, 0.13 4 0.527 0.0 0.000

73 8 (0.7) 1,151 0.16 0.06, 0.41 10 0.617 0.0 0.000

74 1 (0.4) 264 0.10 0.00, 3.41 2 0.051 73.8 4.874

81 1 (0.1) 1,257 0.04 0.02, 0.10 11 0.966 0.0 0.000

82 4 (0.4) 892 0.13 0.04, 0.36 7 0.939 0.0 0.000

*HPV prevalence among cases, with no distinction between simple and multiple infections, across the studies that reported counts of the HPV genotypes under

consideration. †Number of cases tested for the given HPV genotype. ‡Number of studies included in each meta-analysis. Abbreviations: HPV human papilloma virus, OR

odds ratio, CI confidence interval.
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Sensitivity analyses

When Peto’s method for fixed-effect models was applied

rather than DerSimonian and Laird’s random-effects

models, the first six HPV genotypes ranked in the exact

same order according to their pooled ORs and yielded

similar point estimates with narrower CIs, e.g., 0.65 [0.52,

0.80] for HPV-18 and 0.36 [0.26, 0.49] for HPV-45. More

generally, the top 12 were common to both methods

except for HPV-30 versus HPV-34 (Additional file 4).

Second, using the random-effects model with a lower

CC = 0.25, the first 10 genotypes were the same but

ranked in a different order starting at the fifth. Point

estimates and CIs were virtually unchanged (e.g., 0.63

[0.50, 0.78] for HPV-18 and 0.33 [0.21, 0.53] for HPV-

45). With CC = 0, the discrepancy was much greater:

HPV-18 ranked second (0.62 [0.50, 0.77]) after HPV-40,

which had a very wide CI, and HPV-45 ranked fourth

(0.32 [0.20, 0.52]) after HPV-44. Indeed, fewer studies

were included in this analysis (those with no control or

no case for the HPV genotype considered were ex-

cluded). In particular, the OR associated with HPV-67

(ranked 8 in our main analysis) could not be calculated

but eight genotypes (HPV-18, -33, -34, -39, -45, -58, -59

and -69) among the first 10 were common to the two

methods (Additional file 4).

Finally, considering HPV-negative women as the ref-

erence group yielded very different estimates but a not-

so-different pattern in terms of ranking. First, HPV-16

(which was not assessed in our relative model) had an

OR of 136.7 [70.0, 266.9]. Except for HPV-16, seven of

the first 10 genotypes were common to both methods,

but with scrambled orders. In particular, HPV-67 (89.8

[13.6, 593.6]) and HPV-69 (81.0 [5.0, 1313.3]) ranked

between HPV-18 (99.1 [49.8, 197.2]) and HPV-45 (70.5

[34.3, 144.8]) but their CIs were particularly wide

(Additional file 4).

Figure 2 Pooled odds ratios estimating the oncogenic potential of each HPV genotype relative to HPV-16. NOTE: HPV genotypes were
classified according to the International Agency for Research on Cancer [8,11], as follows: *Carcinogenic (Group 1), †probably carcinogenic
(Group 2A), ‡possibly carcinogenic based on limited evidence in humans (Group 2B), ||possibly carcinogenic based on phylogenetic analogy to
HPV genotypes with sufficient or limited evidence in humans (Group 2B), and §unclassifiable (Group 3). HPV-6, -11, -16, -18, -31, -33, -45, -52
and -58 are putatively included in the future nonavalent anti-HPV vaccine. Precise point estimates and 95% confidence interval limits illustrated
in this figure are available in Table 2, columns 5 and 6.
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Discussion
Conducting meta-analyses of published epidemiologic

studies enabled us to rank 32 HPV genotypes according to

their oncogenic potential relative to HPV-16. All HPV ge-

notypes studied had much smaller estimated oncogenic

potentials than HPV-16, reinforcing its being considered

the “most potent HPV genotype” [8,11]. Following

HPV-16, the HPV genotypes with the highest oncogenic

potentials were, in descending order of their pooled

ORs: HPV-18, -45, -69, -58, -31, -33, -34, -67, -39, -59, -73

and -52.

Globally, it is reassuring that the HPV genotypes

accorded the highest relative oncogenic potentials in our

analyses were indeed IARC-classified as carcinogenic.

Moreover, the genotypes with the highest ORs and rela-

tively narrow CIs, namely HPV-18, -31, -33, -39,-45, -52,

-58 and -59, all belong to the α-7 and α-9 species and

are IARC-classified as carcinogenic to humans with suf-

ficient evidence [8,11]. Pertinently, all these genotypes

except HPV-18 showed largely overlapping CIs, while

HPV-18 (α-7) ranked closest to, but distinct from, HPV-

16 (α-9), supporting its being considered separately

from the other potentially oncogenic genotypes charac-

terized by a risk continuum without a clear break point

(Figure 2).

Surprisingly, HPV-35, -51 and -56, also IARC-classified

as carcinogenic and commonly detected in ICC [57],

ranked lower in our analysis (OR ≤0.15). The same was

observed for HPV-68 (α-7), currently IARC-classified as

probably carcinogenic and among “probably high-risk

genotypes” [10]. So, based on epidemiologic data alone,

our analysis would suggest milder oncogenic potentials

for HPV-35, -51, -56 and -68 than inferred from the IARC

classification, although we acknowledge that more evi-

dence (e.g., mechanistic) needs to be considered [9].

Notably, our results provide insights into the oncogenic

potentials of several genotypes currently IARC-classified

as probably oncogenic in humans. Our meta-analytic

assessment of the oncogenic potentials of HPV-69 and -82

(both α-5 species), -30 (α-6), -67 (α-9), and -34 and -73

(α-11) was based on small numbers of cases, which

yielded particularly wide CIs. However, they ranked

among carcinogenic HPV genotypes, which could sug-

gest stronger oncogenic potentials than assumed so

far. To date, evidence for HPV-30, -34 and -69 has

relied on their phylogenetic analogy to other HPV

genotypes, while HPV-67, -73 and -82 were positively

associated with cancer but lack strong mechanistic evi-

dence [8,11]. In contrast, HPV-53, -66 and -70, also

placed in the probably carcinogenic subgroup [8,11],

had lower relative ORs in our analyses. Hence, overall,

our analysis of available epidemiologic data provided

more discrepant results for the probably carcinogenic

genotype distribution.

Conversely, little to no mechanistic evidence supports

that HPV-6 and -11 (both α-10 species), which commonly

cause benign genital warts, can contribute to carcinogenesis

and they remain unclassifiable as to their carcinogenicity

in humans [8,11]. Our meta-analyses consistently ranked

both at the end of the distribution with estimated pooled

ORs ≤0.15. We should mention that our HPV-16 refer-

ence model did not allow us to disentangle less oncogenic

from non-oncogenic genotypes.

Finally, no epidemiologic evidence suggests cervical

oncogenicity for HPV-40 and -44 [11]. In phylogenetic

terms, these genotypes belong rather to non-oncogenic

species (α-8 and -10, respectively) [58] and have been

considered “low-risk” genotypes [10]. In our main analysis,

these two genotypes ranked before HPV-6 and -11. How-

ever, their estimated ORs were based on limited data and

their classification was not robust in the sensitivity ana-

lyses (Additional file 4). Taken together, our results do not

support HPV-40 and -44 oncogenic potentials.

Strengths of our study derive from methodologic

choices. To date, the assessment of the HPV-genotype–

specific oncogenic potential in cervical cancer has mainly

been based on HPV-genotype–prevalence data among

cases [13,57,59,60]. However, that knowledge alone may

be insufficient to fully appreciate each genotype’s onco-

genic potential. For a given HPV genotype, low frequency

in ICC (corresponding to a small etiologic fraction) could

reflect low prevalence in the general population or low

oncogenic potential. In our study, HPV-genotype ranking

according to their prevalences in cases visibly differed

from that according to their estimated relative oncogenic

potentials. For example, HPV-39 and -59 (both α-7), about

four times less prevalent than HPV-52 (α-9), had higher

oncogenic potentials estimated by their pooled ORs

(Table 2); yet all three genotypes are IARC-classified as

carcinogenic.

To our knowledge, the risks associated with the different

HPV genotypes have rarely been assessed and HPV-

negative, rather than HPV-16–positive, subjects served as

the reference group to calculate ORs [4,10] with at least

one exception [61]. Our similar third sensitivity analysis

found lower OR estimates of the same order of magnitude

as those previously published [10], e.g., respectively, 136.7

versus 281.9 for HPV-16 and 99.1 versus 222.5 for HPV-

18. Notably, that third analysis showed no clear break

point between HPV-18 and the other genotypes, with ORs

decreasing progressively from HPV-16 to the end, unlike

our main analysis. The choice of this reference group may

be questioned because it takes uninfected cases into

account for OR calculation, even though it is currently

accepted that persistent HPV infection is required to cause

ICC [2-4]. With few or no HPV-negative cases of cervical

cancer expected, estimation of ORs and their CIs may

become problematic. Therefore, we chose the unusual
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approach of using HPV-16–infected subjects as the refer-

ence category. HPV-16’s high oncogenic potential is well-

documented [8,11], this genotype is highly prevalent in

cases [13,57] and often identified in women with normal

cytology [62,63]. In our opinion, considering HPV-16–

infected women as the reference group seemed more con-

sistent with the natural history of cervical cancer and

could be more appropriate for estimating HPV-genotype

oncogenic potentials, regardless of their prevalence. How-

ever, the control group’s baseline risk of developing ICC

cannot be considered low, meaning that ORs cannot be

directly interpreted as an accurate estimate of the relative

risk, even though they can be used to rank genotypes.

Alternatively, estimating ORs relative to an established

low-risk genotype, e.g., HPV-6, was limited by the small, if

not inexistent, numbers of ICC cases positive for such a

genotype.

Herein, we combined study ORs using the random-

effects model, as sometimes recommended to perform

meta-analyses of published data [64]. This approach im-

plies wider CIs than in a fixed-effect model because, in

addition to random fluctuations, the random-effects

model allows for variability of the real risk. However, sen-

sitivity analyses showed our results to be consistent with

those obtained using Peto’s method (Additional file 4),

thereby indicating that the wide CIs mostly reflected the

scarcity of epidemiologic data, rather than the choice of

statistical models.

Some authors questioned the use of CC in the random-

effects model, when the underlying risk varies among stud-

ies [65]. Our sensitivity analyses with a halved CC factor

differed only slightly from our main results. In contrast,

applying no CC raised estimation difficulties preventing the

calculation of two pooled ORs (Additional file 4). Never-

theless, our choice is supported by the consistencies, both

external (with the literature) and internal (across other

sensitivity analyses), of our findings after correction.

Our meta-analysis has several limitations that warrant

being mentioned. First, we applied stringent selection

criteria, including only studies with sufficient numbers

of HPV-positive cases and controls. That choice ren-

dered the several large investigations conducted in

North America ineligible [66,67], which is consistent

with 85% of ICC cases occurring in developing coun-

tries [1], and HPV-vaccine trials being conducted more

frequently in Asia-Pacific, Europe or Latin America

than North America [68,69]. Nevertheless, although the

distributions of HPV genotypes vary across populations

[18,57,59,63], no evidence indicates that HPV-type–specific

oncogenic potential could differ according to geographic

area. Moreover, the continent did not explain heterogen-

eity in our meta-analyses.

Second, basing this study on summary data meant we

could not control for age, despite its being a critical

variable, closely associated with HPV infection, clear-

ance, persistence and progression. Age information was

frequently missing and rarely available for HPV-positive

cases and controls specifically. Controls tended to be

10 years younger than cases on average, possibly reflecting

different stages in the natural history of cervical cancer.

The peak prevalence of cervical HPV infection coincides

closely with first-time sexual intercourse, at around

20 years of age, while that of ICC occurs at 40–50 years

[70]. It was reassuring that the comparability of age dis-

tributions between cases and controls did not clearly

explain heterogeneity in our meta-analyses.

Third, the small number of cases infected with some

HPV genotypes hindered precise estimations of their

oncogenic potentials. This paucity is partly due to our

strict definition of cases as having ICC. This choice was

motivated by the natural history of cervical cancer,

according to which precancerous lesions, even high-grade

cervical intraepithelial neoplasia, may regress in a substan-

tial proportion of cases [71]. Previous studies [17,72]

might have been more permissive, assimilating high-grade

lesions and ICC cases, especially longitudinal studies,

often limited by the low numbers of ICC during the

follow-up. Moreover, clinical management guidelines also

recommend the excision of precancerous lesions, and will

continue to do so as long as whether these would regress

or progress cannot be foreseen [73].

Fourth, we did not distinguish between ICC histologic

types, even though HPV-18 could be more prevalent in

adenocarcinomas than squamous cell carcinomas [13].

However, the HPV-genotype–specific distribution according

to histologic type was seldom reported in selected studies.

When histologic type was reported, most were squamous

cell carcinomas, which is the most common histologic

cervical cancer type [74].

Fifth, our analysis was limited by the variety of sample

types and HPV assays, as in previously reported meta-

analyses of HPV-genotype–specific prevalences [57,59,60].

Although all HPV-detection methods were PCR-based,

sensitivity and specificity of PCR protocols varied across

studies and numerous HPV genotypes were not detected

by some of them. However, each study used the same

HPV-typing method for cases and controls, so it is un-

likely that the differences among studies affected our

estimates. Moreover, the heterogeneity in our meta-

analyses was not explained by the HPV-detection

threshold for cases.

Finally, because the components of multiple infections

were seldom available, the oncogenic potential of each

HPV genotype was assessed without distinguishing between

single or coinfection. Thus, the oncogenic potentials of

some HPV genotypes might have been overestimated in

our meta-analysis if they had been coinfection partners with

established high-risk genotypes, e.g., HPV-16 or -18, and
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were wrongly accorded equal weight in cancerous lesions

even though the high-risk genotype was solely responsible

for the lesions [11]. That possibility could explain HPV-

11’s unexpectedly higher oncogenic potential. Moreover,

for studies that did not report coinfection, misattribution

of the causal HPV genotype could bias the estimated

oncogenic potentials of coinfecting HPV genotypes either

way [75]. A new generation of molecular studies involving

lesion microdissection and HPV-E6/E7 expression could

provide valuable information to assess more specifically

each HPV genotype’s oncogenic potential [9,76].

Conclusions
Our results provide further evidence reinforcing the high

oncogenic potentials of genotypes HPV-18, -31, -33, -45, -52

and -58, already classified as high-risk for ICC. They also

highlight the need to include in detection kits HPV-34, -67,

-69 and -73, for which epidemiologic data are currently lack-

ing, and to further examine their possibly underestimated

oncogenic potentials. Moreover, although HPV-39 and -59

belong to the same α-7 species as HPV-18, they are not, at

present, included in a future nonavalent anti-HPV vaccine

(HPV-6, -11, -16, -18, -31, -33, -45, -52 and -58) [77].

Those genotypes may deserve further consideration,

owing to accumulating evidence (relatively precise esti-

mates) and their classification among the 10 most onco-

genic genotypes after HPV-16 in our meta-analyses.

Pooling individual data from presently available and future

studies investigating these genotypes would allow more

robust estimates, especially if controlled for age. Overall,

such findings may have important implications for the

prevention of cervical cancer and could help guide

HPV-based–screening programs [78] and the compos-

ition of the second-generation anti-HPV vaccines [79].

Additional files

Additional file 1: Search strategies.

Additional file 2: Meta-analyses assessing the relative oncogenic

potential of each human papillomavirus (HPV) genotype (forest

plots). Studies are listed in alphabetical order. Each study is represented
by a black cross, which corresponds to the odds ratio (OR) point
estimate; a grey square, whose area reflects the weight each study
contributes in the meta-analysis; and a horizontal line, which spans the
95% confidence interval (CI). The diamond at the bottom of the graph
represents the combined OR and its 95% CI. The solid vertical line is an
oncogenic potential equal to that of HPV-16 (OR 1.0) and the dotted
vertical line indicates the value of the combined ORs from the random-
effects model. The graphs were generated by Stata command metan
(adapted from [26] pp 14 and 33).

Additional file 3: Bias assessment for each meta-analysis (funnel

plots). Each dot represents one study. The solid vertical line is the
pooled odds ratio (OR). Diagonal dashed lines represent the pseudo 95%
confidence limits around the pooled OR for each standard error of the
ordinate vertical axis values, defining a funnel within which 95% of the
studies should lie in the absence of heterogeneity or selection biases.
The yellow line is the fitted linear-regression line of the OR plotted
against its standard error (both on natural logarithm scales) and

corresponds to Egger’s test for funnel-plot asymmetry. The graphs were
generated by the Stata command metafunnel (adapted from [29] pp 113
and 115).

Additional file 4: Sensitivity analyses of human papillomavirus

genotype ranking. *Analyses using a fixed-effect model [27]. †Analyses
using DerSimonian and Laird’s random-effects model [20] with a
continuity correction (CC) = 0.25. ‡Analyses using DerSimonian and
Laird’s random-effects model [20] with CC = 0. HPV-62 and -69 ORs could
not be calculated. §Analyses using DerSimonian and Laird’s random-effects
model [20] (CC = 0.5), with HPV-negative subjects as the reference group. In
this model, unlike the preceding ones, the pooled OR for HPV-16 could be
estimated. Abbreviations: HPV, human papilloma virus; OR, odds ratio; CI,
confidence interval.
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