S. Hurst, New IL-17 Family Members Promote Th1 or Th2 Responses in the Lung: In Vivo Function of the Novel Cytokine IL-25, The Journal of Immunology, vol.169, issue.1, pp.443-453, 2002.
DOI : 10.4049/jimmunol.169.1.443

A. Price, Systemically dispersed innate IL-13-expressing cells in type 2 immunity, Proceedings of the National Academy of Sciences, vol.107, issue.25, pp.11489-11494, 2010.
DOI : 10.1073/pnas.1003988107

K. Moro, Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells, Nature, vol.117, issue.7280, pp.540-544, 2010.
DOI : 10.1038/nature08636

D. Neill, Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity, Nature, vol.33, issue.7293, pp.1367-1370, 2010.
DOI : 10.1038/nature08900

L. Monticelli, Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus, Nature Immunology, vol.175, issue.11, pp.1045-1054, 2011.
DOI : 10.1073/pnas.0506580102

Y. Chang, Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity, Nature Immunology, vol.68, issue.7, pp.631-638, 2011.
DOI : 10.1038/cmi.2010.3

H. Kim, Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity, Journal of Allergy and Clinical Immunology, vol.129, issue.1, pp.216-227, 2012.
DOI : 10.1016/j.jaci.2011.10.036

J. Barlow, Innate IL-13???producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity, Journal of Allergy and Clinical Immunology, vol.129, issue.1, pp.191-198, 2012.
DOI : 10.1016/j.jaci.2011.09.041

K. Wolterink and R. , Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma, European Journal of Immunology, vol.182, issue.5, pp.1106-1116, 2012.
DOI : 10.1002/eji.201142018

T. Halim, R. Krauss, A. Sun, and F. Takei, Lung Natural Helper Cells Are a Critical Source of Th2 Cell-Type Cytokines in Protease Allergen-Induced Airway Inflammation, Immunity, vol.36, issue.3, pp.451-463, 2012.
DOI : 10.1016/j.immuni.2011.12.020

J. Mjösberg, Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161, Nature Immunology, vol.169, issue.11, pp.1055-1062, 2011.
DOI : 10.1093/nar/gkp045

K. Bartemes, IL-33-Responsive Lineage-CD25+CD44hi Lymphoid Cells Mediate Innate Type 2 Immunity and Allergic Inflammation in the Lungs, The Journal of Immunology, vol.188, issue.3, pp.1503-1513, 2012.
DOI : 10.4049/jimmunol.1102832

H. Spits, D. Santo, and J. , The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling, Nature Immunology, vol.169, issue.1, pp.21-27, 2011.
DOI : 10.1016/j.molimm.2004.06.010

H. Spits, Innate lymphoid cells ??? a proposal for uniform nomenclature, Nature Reviews Immunology, vol.37, issue.2, pp.145-149, 2013.
DOI : 10.1038/nri3365

C. Possot, Notch signaling is necessary for adult, but not fetal, development of ROR??t+ innate lymphoid cells, Nature Immunology, vol.11, issue.10, pp.949-958, 2011.
DOI : 10.1038/ni.2105

M. Cherrier, S. Sawa, and G. Eberl, Notch, Id2, and ROR??t sequentially orchestrate the fetal development of lymphoid tissue inducer cells, The Journal of Experimental Medicine, vol.209, issue.4, pp.729-740, 2012.
DOI : 10.4049/jimmunol.170.12.5834

S. Wong, Transcription factor ROR?? is critical for nuocyte development, Nature Immunology, vol.173, issue.3, pp.229-236, 2012.
DOI : 10.1016/0092-8674(92)90029-C

J. Lee, AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch, Nature Immunology, vol.181, issue.2, pp.144-151, 2012.
DOI : 10.1007/s00281-009-0163-6

S. Sawa, Lineage Relationship Analysis of ROR??t+ Innate Lymphoid Cells, Science, vol.330, issue.6004, pp.665-669, 2010.
DOI : 10.1126/science.1194597

URL : https://hal.archives-ouvertes.fr/pasteur-01402753

W. Zheng and R. Flavell, The Transcription Factor GATA-3 Is Necessary and Sufficient for Th2 Cytokine Gene Expression in CD4 T Cells, Cell, vol.89, issue.4, pp.587-596, 1997.
DOI : 10.1016/S0092-8674(00)80240-8

D. Zhang, L. Cohn, P. Ray, K. Bottomly, and A. Ray, Transcription Factor GATA-3 Is Differentially Expressed in Murine Th1 and Th2 Cells and Controls Th2-specific Expression of the Interleukin-5 Gene, Journal of Biological Chemistry, vol.272, issue.34, pp.21597-21603, 1997.
DOI : 10.1074/jbc.272.34.21597

K. Ansel, I. Djuretic, B. Tanasa, and A. Rao, LOCUS ACCESSIBILITY, Annual Review of Immunology, vol.24, issue.1, pp.607-656, 2006.
DOI : 10.1146/annurev.immunol.23.021704.115821

J. Zhu, Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses, Nature Immunology, vol.130, issue.11, pp.1157-1165, 2004.
DOI : 10.1016/S1074-7613(01)00084-X

H. Liang, Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity, Nature Immunology, vol.170, issue.1, pp.58-66, 2012.
DOI : 10.1074/jbc.M412649200

K. Wolterink, R. García-ojeda, M. Vosshenrich, C. Hendriks, R. et al., The intrathymic crossroads of T and NK cell differentiation, Immunological Reviews, vol.277, issue.1, pp.126-137, 2010.
DOI : 10.1111/j.1600-065X.2010.00960.x

URL : https://hal.archives-ouvertes.fr/pasteur-01488625

E. Rothenberg, J. Zhang, and L. Li, Multilayered specification of the T-cell lineage fate, Immunological Reviews, vol.109, issue.1, pp.150-168, 2010.
DOI : 10.1111/j.1600-065X.2010.00964.x

J. Zhang, A. Mortazavi, B. Williams, B. Wold, and E. Rothenberg, Dynamic Transformations of Genome-wide Epigenetic Marking and Transcriptional Control Establish T Cell Identity, Cell, vol.149, issue.2, pp.467-482, 2012.
DOI : 10.1016/j.cell.2012.01.056

S. Samson, GATA-3 Promotes Maturation, IFN-?? Production, and Liver-Specific Homing of NK Cells, Immunity, vol.19, issue.5, pp.701-711, 2003.
DOI : 10.1016/S1074-7613(03)00294-2

C. Vosshenrich, Erratum: A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127, Nature Immunology, vol.7, issue.12, pp.1217-1224, 2006.
DOI : 10.1038/ni1206-1343b

C. Ting, M. Olson, K. Barton, and J. Leiden, Transcription factor GATA-3 is required for development of the T-cell lineage, Nature, vol.384, issue.6608, pp.474-478, 1996.
DOI : 10.1038/384474a0

A. Brickshawana, V. Shapiro, H. Kita, and L. Pease, Lineage-Sca1+c-Kit-CD25+ Cells Are IL-33-Responsive Type 2 Innate Cells in the Mouse Bone Marrow, The Journal of Immunology, vol.187, issue.11, pp.5795-5804, 2011.
DOI : 10.4049/jimmunol.1102242

Y. Kondo, Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system, International Immunology, vol.20, issue.6, pp.791-800, 2008.
DOI : 10.1093/intimm/dxn037

M. Fort, IL-25 Induces IL-4, IL-5, and IL-13 and Th2-Associated Pathologies In Vivo, Immunity, vol.15, issue.6, pp.985-995, 2001.
DOI : 10.1016/S1074-7613(01)00243-6

T. Halim, Retinoic-Acid-Receptor-Related Orphan Nuclear Receptor Alpha Is Required for Natural Helper Cell Development and Allergic Inflammation, Immunity, vol.37, issue.3, pp.463-474, 2012.
DOI : 10.1016/j.immuni.2012.06.012

R. Hendriks, Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus, European Journal of Immunology, vol.16, issue.6, pp.1912-1918, 1999.
DOI : 10.1002/(SICI)1521-4141(199906)29:06<1912::AID-IMMU1912>3.0.CO;2-D

M. Nawijn, Enforced Expression of GATA-3 During T Cell Development Inhibits Maturation of CD8 Single-Positive Cells and Induces Thymic Lymphoma in Transgenic Mice, The Journal of Immunology, vol.167, issue.2, pp.715-723, 2001.
DOI : 10.4049/jimmunol.167.2.715

H. Veiga-fernandes, Tyrosine kinase receptor RET is a key regulator of Peyer???s Patch organogenesis, Nature, vol.14, issue.7135, pp.547-551, 2007.
DOI : 10.1038/nature05597

R. Yagi, J. Zhu, and W. Paul, An updated view on transcription factor GATA3-mediated regulation of Th1 and Th2 cell differentiation, International Immunology, vol.23, issue.7, pp.415-420, 2011.
DOI : 10.1093/intimm/dxr029

G. Lee, P. Fields, T. Griffin, and R. Flavell, Regulation of the Th2 Cytokine Locus by a Locus Control Region, Immunity, vol.19, issue.1, pp.145-153, 2003.
DOI : 10.1016/S1074-7613(03)00179-1

G. Wei, Genome-wide Analyses of Transcription Factor GATA3-Mediated Gene Regulation in Distinct T Cell Types, Immunity, vol.35, issue.2, pp.299-311, 2011.
DOI : 10.1016/j.immuni.2011.08.007

E. Bresnick, K. Katsumura, H. Lee, K. Johnson, and A. Perkins, Master regulatory GATA transcription factors: mechanistic principles and emerging links to hematologic malignancies, Nucleic Acids Research, vol.40, issue.13, pp.5819-5831, 2012.
DOI : 10.1093/nar/gks281

T. Taghon, M. Yui, and E. Rothenberg, Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3, Nature Immunology, vol.19, issue.8, pp.845-855, 2007.
DOI : 10.1038/ni1486

D. Amsen, Direct Regulation of Gata3 Expression Determines the T Helper Differentiation Potential of Notch, Immunity, vol.27, issue.1, pp.89-99, 2007.
DOI : 10.1016/j.immuni.2007.05.021

T. Fang, Notch Directly Regulates Gata3 Expression during T Helper 2 Cell Differentiation, Immunity, vol.27, issue.1, pp.100-110, 2007.
DOI : 10.1016/j.immuni.2007.04.018

URL : http://doi.org/10.1016/j.immuni.2007.04.018

J. Mjösberg, The Transcription Factor GATA3 Is Essential for the Function of Human Type 2 Innate Lymphoid Cells, Immunity, vol.37, issue.4, pp.649-659, 2012.
DOI : 10.1016/j.immuni.2012.08.015

T. Hoyler, The Transcription Factor GATA-3 Controls Cell Fate and Maintenance of Type 2 Innate Lymphoid Cells, Immunity, vol.37, issue.4, pp.634-648, 2012.
DOI : 10.1016/j.immuni.2012.06.020

N. Satoh-takayama, cell subsets from Id2-dependent precursors, The Journal of Experimental Medicine, vol.207, issue.2, pp.273-280, 2010.
DOI : 10.4049/jimmunol.167.5.2511

URL : https://hal.archives-ouvertes.fr/pasteur-00459092