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Abstract

T3SS-2, and to compare it with other known T3SSs.

pv phaseolicola through RT-PCR experiments.

Background: The central role of Type Il secretion systems (T3SS) in bacteria-plant interactions is well established,
yet unexpected findings are being uncovered through bacterial genome sequencing. Some Pseudomonas syringae
strains possess an uncharacterized cluster of genes encoding putative components of a second T3SS (T355-2) in
addition to the well characterized Hrcl T3SS which is associated with disease lesions in host plants and with the
triggering of hypersensitive response in non-host plants. The aim of this study is to perform an in silico analysis of

Results: Based on phylogenetic analysis and gene organization comparisons, the T35S-2 cluster of the P. syringae
pv. phaseolicola strain is grouped with a second T3SS found in the pNGR234b plasmid of Rhizobium sp. These
additional T3SS gene clusters define a subgroup within the Rhizobium T3SS family. Although, T35S-2 is not
distributed as widely as the Hrc1 T3SS in P. syringae strains, it was found to be constitutively expressed in P. syringae

Conclusions: The relatedness of the P. syringae T35S-2 to a second T3SS from the pNGR234b plasmid of Rhizobium
sp., member of subgroup I of the rhizobial T3SS family, indicates common ancestry and/or possible horizontal
transfer events between these species. Functional analysis and genome sequencing of more rhizobia and

P. syringae pathovars may shed light into why these bacteria maintain a second T3SS gene cluster in their genome.

Keywords: HrcIType Il secretion system, Pseudomonas syringae, Rhizobium Type Il secretion system, Phylogenetic analysis,
Pathogenicity, Gene organization, Horizontal transfer events, Commmon ancestry, Evolutionary relationships, RT-PCR

Background

Gram-negative proteobacteria deploy various types of pro-
tein secretion systems for exporting selected sets of pro-
teins to the cell surface, the extracellular space or into host
cells [1,2]. Type III Secretion Systems (T3SS) are directly
related to pathogenicity or to symbiosis with higher organ-
isms and constitute essential mediators of the interactions
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between gram-negative bacterial cells and eukaryotic ones
[3-8] as the T3SS efficiently translocates bacterial proteins
(effectors) directly into the host cell cytoplasm when fully
developed.

The T3SS apparatus comprises three distinct parts:
a) the basal body, which forms a cylindrical base that
penetrates the two bacterial membranes and the periplas-
mic space; b) the extracellular part with the needle or the
pilus as its main feature which is formed through the
polymerization of specialized protein subunits that are
T3SS substrates themselves; and c) the cytoplasmic part,
which forms the export gate for secretion control. This
apparatus is built by specific core proteins encoded by a

© 2012 Gazi et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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conserved subset of genes tightly organized in gene clus-
ters with counterparts in the bacterial flagellum [6,7].

Phylogenetic analyses of the core T3SS proteins
revealed that the T3S systems evolved into seven distinct
families that spread between bacteria by horizontal gene
transfer. (1) The Ysc-T3SS family, named after the arche-
typal Yersinia system, is present in a-, -, y-, and 8- pro-
teobacteria. At least in a-proteobacteria the system
confers resistance to phagocytosis and triggers macro-
phage apoptosis. (2) The Ssa-Esc-T3SS family is named
after the archetypal T3SS of enteropathogenic and enter-
ohemorrhagic E.coli. (3) The Inv-Mxi-Spa-T3SS family
named after the Inv-Spa system of Salmonella enterica
and the Inv-Mxi T3S system of Shigella spp.. The family
members trigger bacterial uptake by nonphagocytic cells.
(4) The Hrc-Hrpl- and (5) the Hrc-Hrp2-T3SS families
are present in plant pathogenic bacteria of the genus
Pseudomonas, Erwinia, Ralstonia and Xanthomonas.
The two families are differentiated on the basis of their
genetic loci organization and regulatory systems. (6) The
Rhizobiales-T3SS family (hereafter referred to as Rhc-
T3SS) is dedicated to the intimate endosymbiosis serving
nitrogen fixation in the roots of leguminous plants.
(7) Finally the Chlamydiales-T3SS is present only in
these strictly intracellular nonproteobacteria pathogens
[8,9]. The phylogenetic trees obtained by the above ana-
lysis were totally incongruent with the evolutionary tree
of bacteria based on 16S rRNA sequences. These results
imply that T3S systems did not originate within their
present host bacteria, but spread through horizontal gene
transfer events [9]. Furthermore, apart from a high degree
of gene homologies within the T3SS families, the overall
genetic organization (synteny) is also conserved [8].

In this study, we present a detailed phylogenetic and
gene synteny analysis of core T3SS proteins. This ana-
lysis reveals the presence of three distinct Rhc-T3SS
family subgroups. From these subgroups, the one desig-
nated as subgroup II was found to comprise T3S systems
from various Pseudomonas syringae strains as well as
from Rhizobium sp. NGR234. The T3SS of subgroup II
will be hereafter referred to as T3SS-2, because these
systems exist in their bacterial hosts next to the well-
studied T3SS from the pNGR234a plasmid of Rhizobium
sp. and the HrcI-Hrpl T3S system of P. syringae. Inter-
estingly, at least two of the genes from the additional
T3SS-2 gene cluster in P. syringae pv phaseolicola strain
1448a were found to be transcriptionally active.

Methods

Sequence analysis

Genomic regions

The regions comprising and surrounding the T3SS-2 gene
clusters of P. syringae pv phaseolicola 1448a, P. syringae pv
oryzae str. 1_6, P. syringae pv tabaci ATCC11528, Rhizobium
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spp. NGR234 and the regions comprising and surrounding
the unique T3SS gene clusters of Bradyrhizobium japonicum
USDA 110, Rhizobium etli CIAT 652 and R. etli CNF 42
were retrieved from the NCBI Genome database. In
the cases of P. syringae pv tabaci ATCC11528 and
P. syringae pv aesculi the nucleotide sequence in the
region close to the T3SS gene cluster was retrieved
(GenBank: N° ACHU01000133 and N° ACXS0100008
3.1 respectively) after being identified through MegaBLAST
searches and found to be present in P. syringae pv phaseoli-
cola 1448a, but absent from P. syringae pv tomato DC3000
and Pseudomonas syringae pv syringae B728A; coding
sequences were identified with NCBI's ORF Finder tool.

Amino acid sequence analysis

Each coding sequence annotated in the T3SS gene clusters
of P. syringae pv phaseolicola 1448a, R. etli CIAT 652 and
Rhizobium spp. NGR234 was analyzed by Psi-BLAST
searches [10] against the NCBI non-redundant database
reduced for bacteria using the following parameters: BLO-
SUM 65 substitution matrix; expected threshold 10; word
size 3; gap costs: existence: 11, extension 1; the filter for
low complexity regions was set to on. The number of
descriptions and alignments to be reported was set to 500
and conditional compositional adjustments were on. The
program FoldIndex®© was used with default parameters for
the prediction of structural disorder propensity from the
amino acid sequences [11]. Secondary structure predic-
tions were performed with PSIPRED ([12]. Physical and
chemical parameters of sequences under study were esti-
mated by ProtParam [13]. Coiled coil predictions and as-
signment of the heptad repeat positions in proteins were
produced in COILS [14] and MATCHER [15] respectively.
Sequence threading techniques and fold-recognition algo-
rithms were used to identify distant homologs. 3-D struc-
tural profiles for T3SS proteins were predicted from
sequence data was performed using the PHYRE pipeline
[16]. The program Memstat3 [17] was used for the predic-
tion of membrane o-helices in proteins.

Nucleotide sequence analysis

The gene synteny of the T3SS-2 clusters of P. syringae
pv phaseolicola 1448a, P. syringae pv oryzae str. 1_6, P.
syringae pv tabaci ATCC11528, Rhizobium spp. NGR234
and the gene synteny of the unique T3SS gene clusters
of B. japonicum USDA 110, R etli CIAT 652, R etli
CNF 42, were compared to other known T3SS gene
clusters of various bacteria using the BLASTN and
BLASTP tools of the Genbank. Codon Usage Bias ana-
lysis was performed using DnaSP v5 [18].

Phylogenetic analysis
T3SS core protein sequences were retrieved using Psi-
BLAST searches with the P. syringae pv phaseolicola 1448a
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T3SS-2 gene cluster coding frames and were aligned with
the multiple alignment method ClustalW, version 1.8 [19].

Phylogenetic relations were inferred using the neighbour-
joining method [20] implemented in the MEGA4 software
[21]. The bootstrap consensus tree inferred from 1000
replicates [22] is taken to represent the evolutionary history
of the amino acid sequences analyzed [22]. Branches corre-
sponding to partitions reproduced in less than 50% boot-
strap replicates are collapsed. The percentage of replicate
trees in which the associated taxa clustered together in the
bootstrap test (1000 replicates) are shown next to the
branches [22]. The tree is drawn to scale, with branch
lengths in the same units as those of the evolutionary dis-
tances used to infer the phylogenetic tree. The evolutionary
distances were computed using the Poisson correction
method [23] and are in the units of the number of amino
acid substitutions per site. All positions containing align-
ment gaps and missing data were eliminated only in pair
wise sequence comparisons.

Cultivation

P. syringae strains were routinely grown at 28°C in
LB medium. Bacteria of overnight culture were col-
lected at an OD (optical density) of 0.8. The bacterial
pellet was washed with 10 mM MgCl, and the cells
were resuspended (OD: 0.6-0.7) in Hrp-induction
media [24] for overnight cultivation at 28°C. The next
day the bacterial cells were collected (OD: 0.7-0.8) for
RNA extraction.

RT-PCR

For the RT-PCR reactions, total RNA was extracted
from overnight bacterial cultures of P. syringae pv pha-
seolicola 1448a and P. syringae pv tomato DC3000, using
both LB and Hrp-induction media [24]. Total RNA was
treated with RNase-free DNase I for 45 min at 37°C
[25]. From both culture conditions equal amounts of the
extracted total RNA were subjected to RT-PCR with
gene specific primers for the PSPPH_2530, PSPPH_2524
and 16S rDNA genes, using the OneStep RT-PCR kit
according to the manufacturer’s instructions (QIAGEN).
For negative control, PCR was performed on the total
RNA without Reverse Transcriptase assay, using the 16S
rDNA primers, in order to accredit no DNA contamin-
ation in the total RNA isolation samples. The RT-PCR
products were then analyzed by agarose gel electrophor-
esis. Primers sequences for 16S RNA were 5-CGGGTA
CTTGTACCTGGTGGC-3' and 5-CTTGCCAGTTTTG
GATGCAGTTC-3/, for PSPPH_2530 were 5-AGGCCC
TGACGACGCTGCTG-3' and 5-CCAGGTGCCTGTG
TTCGGCAGT-3' and for PSPPH_2524 5-TCCTGCTG
TGCCTGTTATCCGGCG-3' and 5-GACGGTCGGTAG
CGACTTGAGTGAC-3".
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Results and discussion
Analysis of core components of P. syringae T3SS-2 and
the Rhc-T3SS family
Phylogenetic analysis of core proteins
In the subsequent sections the unified nomenclature for
T3SS proteins (Table 1) will be followed [26]. The phylo-
genetic analysis of various T3SS core proteins (including
T3SS-2 proteins), e.g. SctU (RhcU/HrcU/YscU/FIhB and
their homologues), SctV (RhcV/HrcV/LerD/FIhA homo-
log proteins), SctQ (RhcQ/HrcQ/YscQ/FliN/ and their
homologues) and the T3SS ATPases SctN (RhcN/HrcN/
YscN/FliI and homologues), confirmed the broad classi-
fication of the non-flagellar T3SS into seven families.
However, the T3SS-2 proteins were grouped in the same
clade with the Rhic T3SS proteins with high bootstrap
values, suggesting that these lineages share a more re-
cent common origin than with other T3SS families.
Interestingly, the Rhc T3SS family can be further subdi-
vided into three subgroups: Subgroup I is represented by
the well-known T3SSs of Rhizobium sp. NGR234, and B.
japonicum USDA 110 while subgroup III is represented by
the T3SS present in R. etli. Proteins from the T3SS-2 sys-
tem of various P. syringae strains are grouped closer to the
T3SS-2 of Rhizobium sp. NGR234 (Figure 1, 2, Additional
files 1, Additional file 2 & Additional file 3: Figures S1, S2
& S3), forming the subgroup II of the Ric T3SS family.

All required core T3SS components are present in the

T3SS- of P. syringae strains

BLASTP and Psi-BLAST searches revealed the main
T3SS components of the novel T3SS-2 gene cluster of P.
syringae pv phaseolicola 1448a which are also conserved
in P. syringae pv oryzae str. 1_6, P. syringae pv tabaci
ATCC11528 (Additional file 4: Table S1) and P. syringae
pv aesculi. Similar searches and comparisons were also
carried out with the T3SSs of R etli CNF 42, R etli
CIAT 652 and Rhizobium sp. strain NGR234. In the fol-
lowing, the prefix Hrc;; will be used to specify the con-
served T3SS-2 proteins of P. syringae pv phaseolicola
1448a, P. syringae pv oryzae str. 1_6 and P. syringae pv
tabaci, while the prefix Rhcy; will be used to distinguish
the Rhc proteins of the T3SS-2 gene cluster found in
plasmid pNGR234b of Rhizobium sp. NGR234 (see
below). The T3SS protein nomenclature when used is
indicated by the prefix Sct according to Table 1.

All major T3SS core proteins were found in the T3SS
gene clusters mentioned above, including the T3SS
ATPase protein SctN (RhcN/HrcN/YscN/Flil homolog),
its negative regulator SctL (NolV/HrpE/YscL/FliH homo-
log), the two T3SS gate proteins SctU and SctV (RhcU/
HrcU/YscU/FIhB and RhcV/HrcV/LerD/FIhA homologs
respectively), the protein building the inner ring of the
T3SS basal body Sct] (RhcJ/Hrc]/Ysc] homolog), the pro-
tein building the cytoplasmic ring SctQ (RhcQ/HrcQ/



Table 1 T3SS proteins assigned under the unified nomenclature using the Sct (SeCreTion) prefix

T3SS family  Unified nomenclature vs  SctV SctW SctN  SctO SctP SctQ SctR  SctS  SctT  SctU SctC SctD  SctF Sctl  Sct) SctK SctL
Species

Ysc Yersinia sp. LcrD YopN YscN  YscO YscP YscQ YscR  YscS  YscT  YscU YscC YscD  Ysck Yscl  YscJ  YscK YscL
Pseudomonas PcrD PopN PscN  PscO PscP PscQ PscR PscS  PscT  PscU PscC PscD  PscF Pscl  Psc)  PscK PscL
aeruginosa

Inv-Mxi-Spa  Shigella flexneri MxiA  Orf15MxiC  Spal  SpaM  SpaN SpaO SpaP SpaQ SpaR  SpaU MxiD MxiG  MxiH ~ Mxil  MxiJ MxiK MxiN

Spa47 Spal3  Spa32 Spa33  Spa24 Spa9 Spa29 Spa40
Salmonella enterica InvA InvE InvC  Invl InvJ SpaO InvK  SpaP SpaQ  SpaR  Spas InvG PrgH  Prgl Prg)  Prgk OrgA OrgB
InvL InvN
Ssa-Esc Salmonella enterica SsaV SsaN  SsaO SsaP SsaQ SsaR  SsaS  SsaT  SsaU SpiA SsaC SpiB  SsaG Ssal SsaK
SsaD

EPEC SepA SepL SepB  Orf15 SepQ EscR EscS EscT  EscU SepC ORFD2 rOrf8  SepD ORF5

Chlamydiales Chlamydia CdsV  CopN CdsN  CT670  CT671 CdsQ CdsR  CdsS  CdsT  CdsU CdsC CdsD  CsdF CdsJ CdsL
trachomatis CdsO  CdsP

Hrp-Hrc1 Pseudomonas HrcV HrpJ HreN HrpO - HrpP HrcQa &  HrcR HreS  HrcT - HrcU HrcC HrpQ  HrpA  HrpB  HrcJ HrpD HrpE
syringae HrcQg
Erwinia amylovora HrcV HrpJ HreN o HrpO - HrpP HrcQ HrcR HreS  HrcT  HrcU HrcC HpQ HrpA  HrpB  Hrd HrpE

Hrp-Hrc2 Burkcholderia SctV SctN - HrpD  HpaC SctQ SctR - SctS SctT  SctU SctC SctD Sct) Sctl
pseudomallei
Ralstonia HrcV HreN HrpD HpaP HrcQ HrcR HrcS  HrcT HrcU HrcC HrpW  HrpY  Hrp)  Hrdd HrpF
solanacearum
Xanthomonas HrcV HpaA HreN HrpB7  HpaP HrcQ HrcR HrcS  HrcT  HrcU HrcC HrpD5  HrpE  HrpB2  Hrc) HrcLHrpB5
campestris HpaC

Rhc Subgroup | Rhizobium Y4yR - RheN Y4y - RhcQ RhcR  RhcS  RhcT  RhcU  NolW RhcCy &  Y4yQ NolU  NolT NolV
pNGR234a RhcC,
Subgroup Il P. Hre,V HrcyN  Hrc,O Hrc,Q Hr¢R  HrgS  Hrg T HrgU  HrgC Hrg/G, HrpQ HrcJ Hrp,E
syringae
Subgroup Il Rhe, vV - Rhc,O - Rhc,Q Rh¢,R Rhg,S  Rhg T RheU Rhe,Cy & Rhp,Q Rhe,L
Rhizobium pNGR234b Rhc,Cy
Subgroup Il Rhev - RheN  RhcO - RhcQ RhcR RhcS  RhcT  RhcU RheCy NolU  RhdJ RhcL
Rhizobium etli

Flagellar FIhA Flil FliJ FliY FliM & FliP FliQ FliR FIhB FIiG FliF FliH

FIiN

Shaded boxes are indicative of proteins with analog function but no sequence homology to the Ysc T3SS family. Double names are also reported for various cases.

881/21/081T-1 Li7L/WOY [RAUSDPIWIOIG MMM//:d1Yy

881:ZL 'zL0z Abojoiqooin DNG [P 12 1zeD

Gl jJo ¢ abed
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A B-Rhc a-Rhc
Hrc2
Ssa-Esc
Flagellar
a FIhB
Inv-Mxi-Spa
Hrc1
g Ysc P
Chlamydiale -
NP_444167| Y4yO Rhizobium sp- N
B 9 a-Rhc
99 AAL98701| Y4yO Sinorhizobium fre: Subgroup |
99 NP_106872| HrcU Mesorhizobium loti
89 L NP_768462| RhcU Bradyrhizobium japonicul A 110
] YP_002824478 | RhellU Rhizobitim sp: NGF a-Rhe
= (Psyrpo1_010100018253) P. syringae pv or Subgroup Il
L2 '499EI (Unassigned ORF/ contig ACHU01000133) tabaci ATCC 11528
o9l (PSPPH_2538) P. syringae pv phaseolicola
56| [~ (RHE_PD00061) Rhizobium etli a-Rhc
99l (RHECIAT_PB0000093) Rhizol IAT652  Subgroup Il
emb|CAQ71851.1| SctU Cupriavidus taiwanensis
ref|ZP 03582581.1| BescU  Burkholderia mulitivorans CGD1
o ! ' , , B-Rhc
99 ref|YP_002234649.1| BcscU Burkholderia cenocepacia J2315 )
o7 reflYP_001779057.1 Burkholderia cenocepacia MC0-3  Burkholderia subgroup
0.1 97 " ref|YP_623389.1| Burkholderia cenocepacia AU 1054
Figure 1 Evolutionary relationships of SctU proteins. The yellow star indicates the position of the P. syringae pv phaseolicola 1448a Hrc,U.
A. The phylogram of 192 SctU sequences with the eight main families named according to Troisfontaines & Cornelis (2005) [8], while the
flagellum proteins are depicted in black. The T3SS family encompasing the B-rhizobium Cupriavidus taiwanensis and of Burkholderia cenocepacia
group is indicated here with a light purple color (marked as 3-Rhc). Branches corresponding to partitions reproduced in less than 50% bootstrap
replicates are collapsed. There were a total of 686 positions in the final dataset. Phylogenetic analyses were conducted in MEGA4 [21]. B. The Rhc
T3SS clade as derived from the phylogram in A, groups the P. syringae Hrc,U sequences close to the Rhc,U protein of the Rhizobium sp. NGR234
T3SS-2. The values at the nodes are the bootstrap percentages out of 1000 replicates. The locus numbers or the protein accession number of
each sequence is indicated.

YscQ/FliY homolog) and the three core membrane pro-
teins SctR, SctS, SctT (RhcRST/HrcRST/YscRST/FLiPQR
homologs) (Additional file 4: Table S1).

It is noteworthy that the promoter regions of the
T3SS-2 ORFs/operons of P. syringae pv phaseolicola
1448a, do not appear to harbor "hrp box" elements
like those which have been described for the T3SS-1
genes of various P. syringae strains [27]. This, coupled
with the low expression level seen in minimal media
(Figure 3), leave open the question whether T3SS-2

in this or other P. syringae strains is expressed under
in planta conditions and whether it is plays a role in
their phytopathogenic potential or in any other aspect
of their life cycle.

The split secretin gene

A distinguishing feature of gene organization in Rhc
T3SS clusters is a split gene coding for the outer mem-
brane secretin protein SctC, i.e. a HrcC/YscC homologue
[28]. This is also true for the subgroup II Rhc T3SS gene



Gazi et al. BMC Microbiology 2012, 12:188
http://www.biomedcentral.com/1471-2180/12/188

Page 6 of 15

49 — gbJAAV30230.

100_|— AAS91816.1

9 gb|AAR26336.1
70 ref|NP 930967,

100 |

100

82

100

ref|YP 436207.
ref|NP 880904.
ref|NP 888157.
ref|NP 88446f

3 gb|ABW87282.1| HrcV X.

100 *refINP 640760.1] HrcV X.
100 —— emb|CAA90179.1|S¢
L— gb]AAL06368.1|
gb|ABC60082.1|Esa
ref[NP 902272.1|SsaV
ref|[YP 001050342. Ssa

ref|ZP 00828869.1|EscV.
ref|YP 454980.1|S

31
] 58

55 |

0.1

Figure 2 Evolutionary relationships of SctV proteins. Classification of the SctV T3SS proteins into the main T3SS/flagellar families. The

colouring scheme of Figure 1 is used.
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Figure 3 RT-PCR analysis for the PSPPH_2530, PSPPH_2524 and 16S gene expression in bacterial total RNA. A. RT-PCR analysis for the
PSPPH_2524 expression: 1) on total RNA from P. syringae pv phaseolicola 1448a cultivated in Hrp-induction medium, 2) on total RNA from P. syringae
pv phaseolicola 1448a cultivated in LB medium, 3) on total RNA from P. syringae pv tomato DC3000 cultivated in LB medium (as a negative control).
B. RT-PCR analysis for the PSPPH_2530 expression: 1) on total RNA from P. syringae pv phaseolicola 1448a cultivated in Hrp-induction medium, 2) on
total RNA from P. syringae pv phaseolicola 1448a cultivated in LB medium, 3) on total RNA from P. syringae pv tomato DC3000 cultivated in LB
medium (as a negative control). C. RT-PCR analysis for the 165 rDNA expression (as a positive control): 1) on total RNA from P. syringae pv phaseolicola
1448a cultivated in Hrp-induction medium, 2) on total RNA from P. syringae pv phaseolicola 1448a cultivated in LB medium, 3) on total RNA from

P. syringae pv tomato DC3000 cultivated in LB medium. D. Negative control PCR was performed on the total RNA isolates from 1) P. syringae pv

1 2 3 M1 M1 1 2 3 M2

phaseolicola 1448a cultivated in Hrp-induction medium 2) P. syringae pv phaseolicola 1448a cultivated in LB medium, 3) P. syringae pv tomato DC3000
cultivated in LB medium, without Reverse Transcriptase assay using the 165 rDNA primers in order to accredit no DNA contamination in the total RNA
samples. PCR products were electrophoretically resolved on ethidium bromide (0.5 pg mL")-containing agarose gels (1.5%, w/v). M1: A DNA digested
with Pstl, M2: A DNA digested with EcoRI-Hindlll. Even though the total mRNA templates were equal for all PCR samples, the signals in hrp induction

medium are very weak, so they have been highlighted by an arrow.

clusters. In the T3SS-2 clusters of the three P. syringae
pathovars the secretin gene is split in two ORFs
(Figure 4, Additional file 4: Table S1). In P. syringae pv
phaseolicola 1448a, loci PSPPH_2524 (hrc;CI) and
PSPPH_2521 (hrc;C2) code for the N-terminal and the
C-terminal part of secretin, respectively, of a HrcC/YscC
homolog. Comparisons of Hrc;C1 and Hrc;C2 with the
RhcC1 and Rhc2 proteins of Rhizobium sp. NGR234: are
given in Additional file 5: Figure S4, respectively. A simi-
lar situation occurs in P. syringae pv oryzae str. 1_6
while in P. syringae pv tabaci ATCC11528 hrc;C2 gene
is further split into two parts. However in P. syringae pv
phaseolicola 1448a and P. syringae pv tabaci ATCC11528
the two hrc;Cl, hreyC2 genes are only separated by an
opposite facing ORF coding for a TPR-protein, while in
the subgroup I Rhc T3SS these two genes are separated
even further (Figure 4). Although the functional signifi-
cance of the split secretin gene is not known, there are
reports of constitutive expression of the ricCI1 gene in
contrast to the rest of the T3SS operons in rhizobia
[29,30]. In subgroup III only the rhcCl could be

identified (RHECIAT_PB0000097 in the R. etli CIAT 652
and RHE_PDO00065 in R. etli CNF 42) in Psi-BLAST
searches using the Hrc;Cl protein sequence as query
(25% identity to RhcCl of Rhizobium sp. NGR234)
(Figure 4).

The Hrc,Q protein

The PSPPH_2534 locus (designated hrc;Q) in the
T3SS-2 cluster of P. syringae pv phaseolicola 1448A
codes for a polypeptide chain of 301 residues, which
has sequence similarities with members of the HrcQ/
YscQ/FliY family. Members of this family usually consist
of two autonomous regions [26] which either are orga-
nized as two domains of a single protein or can be split up
into two polypeptide chains. The Hrc;Q is comparable in
length with the long proteins of the family. The same is
true in the Rhc-T3SS case, where an HrcQ ortholog is
found. In agreement with the other HrcQ/YscQ/FLiY
members the sequence conservation is especially high at
the C-terminus [31,32]. In the originally described T3SS-1
(Hrc-Hrpl) of P. syringae strains this gene is split into two
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adjacent ORFs coding for separate polypeptides (HrcQa
and HrcQg). No splitting occurs however in the T3SS-2
clusters of the P. syringae strains.

The HrpO-like protein
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A conserved feature in gene organization of T3SS gene
clusters and the flagellum is the presence of a small ORF
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(Additional file 4: Table S1).

Figure 4 Genetic organization of the Rhc T3SS gene clusters, indicating the diversification of three main subgroups. ORFs are
represented by arrows. White arrows indicate either low sequence similarities between syntenic ORFs like the PSPPH_2532: hrpO), case or ORFs
not directly related to the T3SS gene clusters that were excluded from the study. Homologous ORFs are indicated by similar coloring or shading
pattern. Only a few loci numbers are marked for reference. Gene symbols (N, E, J etc.) for the T35S-2 genes are following the HrcT nomenclature.
1) Subgroup | cluster (Rhc-), is represented by Bradyrizhobium japonicum USDA110 and includes also the T3SS present on the pNGR234a plasmid
of strain NGR234 (not shown); 2) Subgroup Il (Hrc,/Rhcy), represented by the T3SS-Il gene clusters of Rhizobium sp. NGR234 pNGR234b plasmid
[38], P. syringae pv phaseolicola 1448A [44], P. syringae pv tabaci ATCC 11528 and P. syringae pv oryzae str. 1_6 (this study, see Materials and
Methods); and 3) subgroup I, represented by the sole T3SS of the Rhizobium etli CIAT652 (plasmid b) and the R. etli CNF42 plasmid d [37]. Gene
products of the Hrc,/Rhc, supgroup Il T3SS share greater sequence homologies with each other than with genes of subgroups I and il

downstream of the gene coding for the ATPase (hrcN/
yscN/flil homologue). These ORFs code for proteins of
the HrpO/YscO/Fli] family, a diverse group character-
ized by low sequence similarity, and heptad repeat
motifs suggesting a high tendency for coiled-coil forma-
tion and a propensity for structural disorder [33]. Such a
gene is also present in the Rhizobium NGR234 T3SS-2
but is absent from the subgroup III Rkc-T3SS where the
rhcQ gene is immediately downstream of the riicN gene
(Figure 4). In the P. syringae pathovars included in Figure 4
there is a small ORF (PSPPH_2532 in strain P. syringae pv
phaseolicola 1448A, Figure 4) coding for a polypeptide
wrongly annotated as Myosin heavy chain B (MHC B) in
the NCBI protein database. Sequence analysis of this pro-
tein and its homologs in the other two P. syringae strains
using BLASTP searches did not reveal any significant
similarities to other proteins. However, these small
proteins are predicted as unfolded in their entire length,
while heptad repeat patterns are recognizable in the lar-
gest part of their sequence, thus strongly resembling the
properties of members of the HrpO/YscO/FliJ family [33],
(Additional file 6: Figure S5). A potentially important fea-
ture in the P. syringae pv phaseolicola 1448a T3SS-2 clus-
ter is a predicted transposase gene between the ORF
coding for the above described HrpO/YscO/Fli] family
member and the ORF for the Hrc; N ATPase (Figure 4);
this gene is absent from the P. syringae pv tabaci and
P. syringae pv oryzae str.1_6 T3SS-2 clusters. The in-
sertion of the transposase gene does not disrupt genes
hregN or hrpyO as concluded by amino acid sequence
comparison with other members of the SctN and SctO
protein families respectively (including ORFs from
other T3SS-2 P. syringae strains). These genes are cap-
able of producing the respective full-length proteins
and no premature termination, due to transposase in-
sertion, is observed.

The HrpQ-like protein

Another common feature of P. syringae T3SS-2 and the
Rhizobium T3SSs excluding subgroup III, is a gene usu-
ally positioned upstream of the sctV gene (rhcV/hrcV/
lerD/flhA homolog) and in close proximity to it. Psi-

BLAST searches for the PSPPH_2517 encoded protein
revealed moderate similarities to the HrpQ/YscD family
of T3SS proteins; these were confirmed by sequence
threading techniques. For example, a segment of of
PSPPH_2517 corresponding to 45% of its amino acid se-
quence scores an E-value of 2e-05 and a 26% identity
with YscD protein from Yersinia enterocolitica (ref]|
YP_006007912.1); the same segment scores an E-value
of le-13 with 25% identity to the 90% of its sequence
with the equivalent protein from B. japonicum
USDA110 (ref| NP_768443.1). The chosen folding tem-
plates belong to various forkhead - associated (FHA) pro-
tein domains from different origins. FHA cytoplasmic
domains characterize the YscD/EscD protein family and
may suggest phosphopeptide recognition interactions [34].
A protein with the above characteristics is present in the
B. japonicumm USDA110 T3SS cluster (encoded by the
y4yQ gene) while an ortholog could not be identified in
the R. etli T3SS.

Gene clusters organization in the Rhc-T3SS family and the
P. syringae T3SS-2
Subgroup I of the Rhc-T3SS family comprises the first
described and well characterized T3SS-1 of Rhizobium
NGR234 present in the plasmid pNGR234a [35], along
with that of B. japonicurm USDA110 and others [36].
The T3SS core genes in this case are organized in three
segments. The biggest segment harbors the genes rhcll,
rheT, rheS, rheR, rheQ, y4yj), rheN, nolV, nolll, rhcj, nolB,
in the same DNA strand with the rkcCI gene flanking
the nolB gene in the opposite strand (Figure 4, Subgroup
I). The second one harbors the rhcV gene usually be-
tween the y4yS and y4yQ genes, all in the same orienta-
tion. In the case of the B. japonicum USDA110 however
there are two additional open reading frames (ORFs) be-
tween the ricV and the y4yQ gene in the same orienta-
tion (Figure 4, Subgroup I). The third segment harbors
the rhcC2 gene usually between the y4x/ and the y4xK
genes.

Subgroup III of the Rhc-T3SS family includes the T3SS
of R. etli strains CIAT652 (plasmid b) and CNF42 (plas-
mid d) [37]. The gene organization is very different from
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that of subgroup I in that there is no rkcC2 gene, while
the rhcV gene is in close proximity to the biggest segment.
In the biggest segment the genes y4yJ (hrpO/yscO/fli]
homolog) and nolB are missing. Additional genes present
in the subgroup III are coding for a HrpK-like protein
(hypothetical translocator of the Hrc-Hrpl T3SS) and a
HrpW-like protein.

Gene clusters of subgroup II of the Rhc T3SS family,
represented by the the T3SS-2 of Rhizobium NGR234
(pPNGR234b plasmid) [38] and the recently identified
T3SS-2 gene clusters of the P. syringae, possesses vari-
ous characteristics that classify them as intermediates
between the T3SS subgroups I and III. On one hand,
subgroup II clusters share the sctO, sctD and sctC2 genes
with subgroup I clusters and but not with subgroup III;
on the other hand, some subgroup II clusters posses pu-
tative translocator genes present in subgroup III, but ab-
sent from subgroup L.

The T3SS-2 clusters of the P. syringae strains are es-
sentially syntenic, with the exceptions of an IS element
(insertion sequence element) being present between the
HrcyN and Hrp;O coding frames in the P. syringae pv
phaseolicola 1448a cluster and the absence of a TPR
(tetratricopeptide repeats) protein coding frame in the
P. syringae pv oryzae str.1_6 cluster. The Rhizobium
sp. NGR234 pNGR234b-plasmid borne cluster has two
extended regions of synteny with those of the P. syrin-
gae strains. One is the region from hrc;C; to hreyT,
[not including the IS element in the P. syringae pv pha-
seolicola 1448a cluster (see above)]. The other is the
region from hrp;Q to PSPPH_2522 which, however, is
inverted in the Rhizobium sp. NGR234 pNGR234b T3SS
cluster relative to those in the pseudomonads. The coding
frame for the RhcU/HrcU/YscU/FhIB homolog in the
NGR234 cluster is transposed in relation to the Pseudo-
monas cluster (position which is maintained in the R.etli
and B. japonicum clusters). In subgroup II of Rhc-T3SS
gene clusters an /rc;C2 gene can be identified in synteny
to the subgroup I cluster. A common property of sub-
groups II and III of Rhc-T3SS gene clusters is the presence
of hrpK-like genes.

Common to all Rhc-T3SS subgroups is the absence of
a hrpP/yscP —like gene which usually resides between
the hrpO/yscO-like gene and the hrcQ/yscQ homolog
gene. A hrpO/yscO-like gene is absent from the sub-
group III cluster. Subgroup I and III clusters maintain
synteny with the P. syringae T3SS-2 clusters for most of
the core T3SS ORFs. Finally, a gene coding for a HrpW
homolog is found only in the R. etli clusters.

Non-conserved T3SS proteins

The translocator of the P. syringae T355-2

A common feature of the R. etli Rhc T3SS (subgroup III)
and the T3SS-2 of P. syringae pathovars (but not of the
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Rhizobium sp. NGR234 T3SS-2) is the presence of an
OREF coding for a hypothetical translocator protein: The
PSPPH_2540 locus of the P. syringae pv phaseolicola
1448a T3SS-2 codes for a large protein of 1106 residues.
The C-terminal part of this protein (residues 421 —
1106) is homologous to the HrpK proteins of the Hrc-
Hrpl T3SS family based on Psi-BLAST searches (25%
identity with HrpK of Erwinia amylovora). HrpK shares
low similarity with the putative translocator, HrpF, from
Xantomonas campestris pv vesicatoria. Furthermore, the
C-terminal part of the protein coded by PSPPH_2540
also possesses two predicted transmembrane o-helices
comprising residues 879-898 and 1029-1047 (MEM-
SAT3 analysis). The subgroup I Rhc T3SS lacks a hrpK
ortholog. The HrpK protein was initially identified as a
component of the Hrc-Hrpl family of T3S systems [39].
Interestingly, the R. etli T3SS gene cluster possesses two
copies of hrpK-like genes, plus an additional hrpW-like
gene, coding for an Hrp-secreted protein homologous to
class III pectate lyases which is absent from the P. syrin-
gae pv phaseolicola 1448a T3SS-2 gene cluster but
present in the extremity of the Hrc-Hrpl gene cluster of
P. syringae pv phaseolicola 1448a. These differences pos-
sibly suggest variations in the mode of interaction of
these bacteria with their hosts.

The two unknown ORFs upstream of the rhcV gene in
subgroup Il Rhc-T3SS gene clusters

The choice of the B. japonicurn USDA 110 T3SS as
archetypal for subgroup I in the Rhc family (Figure 4)
and for synteny comparisons with the subgroup II gene
clusters, was based on the DNA segment encompassing
rhcV (y4yQ-y4yS). The presence of two small open read-
ing frames upstream of the ricV gene and downstream
of the y4yQ gene of the known Rhizobium T3SS
resembled the case of the P. syringae pv phaseolicola
1448a T3SS-2 where loci PSPPH_2518 and PSPPH_2519
are found between the ORF coding for the SctV protein
(RhcV/HreV/LerD/FIhA homolog) and the ORF coding
for the SctD protein (HrpQ/YscD homolog).

The PSPPH_2519 locus, upstream of the hrc;V gene
of P. syringae pv phaseolicola 1448a genome, encodes
for a 112 long polypeptide with sequence similarities to
the VscY protein of Vibrio parahaemolyticus, according
to Psi-BLAST searches (E-value =0.005). The vscY gene
is located upstream of the verD gene and this synteny is
also conserved in the Ysc T3SS gene cluster family. Pro-
teins YscY, VscY and PSPPH_2519 all possess TPR
repeats (Tetratricopeptide Repeats) as predicted by Psi-
BLAST searches and fold recognition methods. YscY has
been found to directly bind the YscX protein, a secreted
component of the Ysc T3SS [40]. The bl[1801 locus of
B. japonicum USDA110 encodes for a 142 long polypep-
tide with TPR repeats and sequence similarities to the



Gazi et al. BMC Microbiology 2012, 12:188
http://www.biomedcentral.com/1471-2180/12/188

AscY (Aeromonas salmonicida) and YscY proteins accord-
ing to Psi-BLAST searches. The position of bll1801 is like-
wise upstream of the rhcV gene in B. japonicum
USDA110 T3SS gene cluster. A protein with the above
characteristics could not be identified for the R. etli T3SS
(subgroup III), however it is present in the T3SS-2 of Rhi-
zobium NGR234.

Transcription regulators in P. syringae T3SS-2

The Hrc-Hrp2 and the Rhc T3S (subgroup I) systems
possess transcription regulators that belong to the AraC/
XylS in contrast to the Hrc-Hrpl T3SS that depends on
the alternative sigma factor HrpL. The known transcrip-
tion factors are related to the T3SS regulation of AraC
and LuxR/UhaP families of transcription regulators and
characterized by two a-helix-turn-a-helix (HTH) motifs
in a tetrahelical bundle.

However, the PSPPH_2539 locus of P. syringae T3SS-2
codes for a hypothetical transcription regulator with dif-
ferent characteristics. The N-terminal part of the hypo-
thetical protein (Figure 5, blue-purple area) is predicted to
adopt a structure similar to the DNA-binding domains of
the PhoB transcription factor. The characteristic HTH
motif is a common feature of transcription factors. Al-
though the PSPPH_2539 ORF is annotated in the NCBI as
a LuxR-type of transcription regulator, the choice of the
DNA-binding domain of PhoB as a structural template
indicates that PSPPH_2539 probably has an a-/- doubly
wound fold (distinguished by the presence of a C-terminal
[B-strand hairpin unit that packs against the shallow cleft
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of the partially open tri-helical HTH core) motif. Tran-
scription factors are usually multidomain proteins, thus
the assignment of PSPPH_2539 as a LuxR-type transcrip-
tion regulator in the NCBI is probably due to full-length
inadequate Psi-BLAST searches biased by the presence of
Tetratricopeptide Repeats (TPR) in the large carboxyterm-
inal domain.

The middle part of the protein (Figure 5, yellow area)
was found homologous to the AAA* ATPases (COG3903)
based on fold-recognition algorithms and Psi-BLAST
searches. These ATPases are associated with diverse cellu-
lar activities and are able to induce conformational
changes in their targets [41]. In the context of the tran-
scription process, AAA* ATPase domains are involved in
the remodeling of ¢°* RNA polymerases. Especially the
residues 195 to 300 probably possess the receiver or ligand
binding domain of the hypothetical transcription factor
(green area, Figure 5).

TPR-repeats proteins present in P. syringae T3SS-2

Apart from the PSPPH_2539 C-terminal domain, there
are two more ORFs, PSPPH_2519 and PSPPH_2523,
from the P. syringae pv phaseolicola 1448a T3SS-2 that
are predicted to code for proteins that possess TPR
domains. TPR domains are typically found in class II
chaperones of T3S systems - chaperones of the translo-
cators - as well as in transcriptional regulators of the
T3S systems, e.g. the HrpB protein of Ralstonia solana-
cearum, HilA of Salmonella enterica [42] and SicA, of
Salmonella typhimurium involved in the activations of
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Figure 5 Predicted PSPPH_2539 protein domain structure based on fold recognition analysis. See text for details on the various structural
templates used. Black dots connect the C-terminus of one threading domain with the N-terminus of the following domain. Residues 195-300
(green segment) are represented separately as an alternative fold for the N-terminal subdomain of the full length AAA™ ATPase domain (yellow).
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T3SS virulence genes [43]. Proteins with TPR repeats
also exist in the Hrc-Hrp2 T3S system of X. campestris
(HrpB2 protein) and in the T3S system of Rhizobia
(e.g. the 182 residue long Y4yS protein). On the other
hand, the Hrc-Hrpl system of P. syringae does not
possess proteins with TPR repeats.

DNA characteristics of the P. syringae T35SS-2 gene cluster
The T3SS-2 cluster of P. syringae pv phaseolicola 1448a
is separated by 1.42 Mb from the well-characterized
Hrc-Hrpl T3SS cluster in the main chromosome. Both
clusters are located on DNA segments with GC content
similar to their neighbouring areas. No sequences asso-
ciated with HrpL-responsive promoters (characteristic
for the regulation of the Hrc-Hrpl operons in P. syringae
pathovars) were found in the T3SS-2 gene cluster [44]
indicating a different way of regulation from the Hrc-Hrpl
system. The ORF PSPPH_2539 that resides between the
core genes and the #rpK homolog PSPPH_2540, codes for
a hypothetical transcription regulator (Figure 4, 5). No
trna genes, however, have been found in the vicinity of
this cluster, while two insertion sequence (IS) elements
occur in the border and in the middle region of the T3SS-
2 gene cluster (Figure 4).

The GC content of the T3SS-2 cluster in the P. syringae
strains is close to the chromosome average (58-61%),
which might suggest that it has been resident in the P. syr-
ingae’s genome for a long time [45]. The codon usage in-
dexes (Additional file 7: Table S2) of the T3SS-2 cluster
show the same degree of codon usage bias as the hrc-hrpl
T3SS cluster of P. syringae pv phaseolicola 1448a. Further-
more, the GC content in the third coding position (GC3)
of various genes across the T3SS-2 is close to the respect-
ive mean of the genome GC3, as in the case of Hrc-Hrpl
(Additional file 7: Table S2). These equal GC levels could
indicate an ancient acquisition of the T3SS-2 gene cluster
by P. syringae that was lost in some of its strains. However
the scenario of a more recent acquisition from a hypothet-
ical donor with equal GC levels can not be excluded.

Evidence for expression of the P. syringae T3SS-2

There are no reports so far for the expression or func-
tion of T3SS-2 in members of P. syringae. To obtain pre-
liminary expression evidence of functional putative RNA
transcripts, the hrcyN (sctN) and hre;C1 (sctC) from P.
syringae pv phaseolicola 1448a were detected by RT-
PCR in total RNA extracts from cultures grown in rich
(LB) and minimal (M9) media, after exhaustive treat-
ment with RNase-free DNase I (Supplier Roche Applied
Science). Putative transcripts were detected under both
growth conditions that were tested, using equal amounts
of the extracted total RNA as an RT-PCR template.
Interestingly, the detected transcript levels were remark-
ably higher in LB medium (Figure 3), compared to
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minimal (M9) medium, probably indicating that the
genes are expressed in both cultivation conditions.

Conclusions

Rhizobia are a-proteobacteria that are able to induce the
formation of nodules on leguminous plant roots, where
nitrogen fixation takes place with T3SS being one import-
ant determinant of this symbiosis [36,46,47]. Sequences of
the symbiotic plasmids of Rhizobium strains NGR234 and
R etli CFN42 together with the chromosomal symbiotic
regions of B. japonicum USDA110 and Mesorhizobium loti
R7A have been recently reported [36-38]. An unusual fea-
ture of the Rhizobium strains NGR234 [38], is the presence
of an additional T3SS gene cluster.

Members of the P. syringae species are gram negative
plant-associated y-proteobacteria that can exist both as
harmless epiphytes and as pathogens of major agricul-
tural crops [48-52]. Pathogenic varieties of this species
utilize a Hrc-Hrpl T3SS to inject effector proteins and
thus subvert signalling pathways of their plant hosts.
This secretion system (Hrc-Hrpl T3SS) and its effector
proteins are responsible for the development of the
characteristic disease symptoms on susceptible plants
and the triggering of the Hypersensitive Response (HR)
in resistant plants [26,49,50,52].

Comparative genomics of closely related isolates or
species of pathogenic bacteria provides a powerful tool
for rapid identification of genes involved in host specificity
and virulence [53]. In this work, we reported sequence
similarity searches, phylogeny analysis and prediction of
the physicochemical characteristics of the hypothetical
T3SS-2 proteins, as well as gene synteny analysis of the
T3SS-2 gene cluster in P. syringae pv phaseolicola 1448a,
P. syringae pv oryzae str. 1_6 and P. syringae pv tabaci
ATCC11528 in order to characterize this recently identi-
fied gene cluster. This analysis revealed that the T3SS-2
most closely resembles the T3SS of the Ric-T3SS family. It
further typifies a second discrete subfamily (subgroup II)
within the Rhc-T3SS family in addition to the ones repre-
sented by the R etli T3SS (subgroup III) and the known
Rhizobium-T3SS (subgroup I). Usually, the presence of
two T3SS gene clusters in the same genome is not the re-
sult of gene duplication inside the species but rather the
result of independent horizontal gene transfers. This may
reflect progressive coevolution of the plant patho/symbio-
system to either colonize various hosts or interact with the
plant in different disease/symbiotic stages.

In our phylogenetic analysis proteins encoded in the
T3SS-2 cluster of P. syringae strains are grouped to-
gether with the Rhizobium NGR234 T3SS-2. This find-
ing suggests the possibility of an ancient acquisition
from a common ancestor for Rhizobium NGR234 T3SS-
2 and the P. syringae T3SS-2. T3SSs of the Rhizobium
family possesses a GC-content in same range (59-62%),
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a value lower than the chromosome average. Since the
GC content of T3SS-2 is almost the same as that of the
genome of the P. syringae strains, it is difficult to
characterize the second T3SS gene cluster as a genomic
island based solely on this criterion. However, the gen-
ome sequencing of two other members of P. syringae
[pathovars tomato DC3000, syringae B728A] revealed
the total absence of a T3SS-2 like cluster.

The T3SS-2 gene cluster found in P. syringae pv pha-
seolicola 1448a, P. syringae pv oryzae str.1_6, P. syrin-
gae pv tabaci and of Rhizobium sp. NGR234, is also
present in P. syringae pv aesculi (strains NCPPB 3681
and 2250)[54], P. syringae pv savastanoi (str. NCPPB 3335)
[55], P. syringae pv glycinea (strains: B076 and race 4) [56],
P. syringae pv lachrymans str. M301315 (GenBank:
AEAF01000091.1), P. syringae pv actinidiae str. M302091
(GenBank: AEAL01000073.1), P. syringae pv. morspru-
norum str. M302280PT (GenBank: AEAE01000259.1) and
P. syringae Cit 7 (GenBank: AEAJ01000620.1). This T3SS-2
defines a distinct lineage in the Rhc T3SS family of at least
the same evolutionary age as the split between the NGR234
T3SS-2 from the other rhizobial T3SSs.

In light of these findings, there are two plausible sce-
narios. One is that P. syringae acquired the T3SS-2
cluster from an ancient donor which is common both
to P. syringae and the Rhizobium sp. NGR234 T3SS-2,
before the diversification of the P. syringae pathovars
from each other, followed by subsequent loss from cer-
tain members of the group. Another scenario is that
multiple horizontal transfers from hypothetical donors
into selected pathovars/strains occurred after their di-
versification. The present data set does not allow us to
consider whether the hypothesis of an earlier acquisi-
tion followed by subsequent loss from members such
as P. syringae pv tomato DC3000 might be considered
more likely than several independent acquisitions.

The genes hrcpN and hreV in P. syringae pv tabaci and
P. syringae pv oryzae T3SS-2 clusters were split into at
least two open reading frames in various positions sug-
gesting possibly that they might be degenerate pseudo-
genes, while the hrc;C2 gene in P. syringae pv tabaci is
further split in two ORFs as well (Figure 4). However, this
is not the case for the P. syringae pv phaseolicola 1448a,
P. syringae pv savastanoi and P. syringae pv aesculi T3SS-
2 where all these genes remain intact while /rc;CI and
hregN transcripts were observed in P. syringae pv phaseo-
licola 1448a T3SS-2 case (Figure 4). Remarkably, the
T3SS-2 genes expression was even higher in rich com-
pared to minimal medium (Figure 3). Minimal media of
slightly acidic pH are thought to simulate in planta condi-
tions and promote expression of the P. syringae T3SS-1
and effectors [24,57,58]. Such genes typically possess con-
served motifs (hrp boxes) in their promoter regions and
are transcriptionally controlled by the alternative sigma
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factor HrpL. However, the T3SS-2 operons in the P. syrin-
gae pv phaseolicola 1448a genome do not appear to have
hrp boxes like those found in T3SS-1 genes of P. syringae
strains [27]. This suggests that Psph 1448a does restrict
T3SS-2 expression to in planta conditions and the poten-
tial contribution of the T3SS-2 in P. syringae life cycle
may not be connected with the phytopathogenic potential
of this species. Further functional studies are thus needed
to reveal the exact biological roles of this secretion system
in bacterium-plant interactions or other aspects of the
bacterial life cycle. Suppression of other secretion systems
under the T3SS-1 inducing conditions has also been
reported for the T6SS of P. syringae pv syringae B728a
[59] as well as for the P. aeruginosa T3SS [60], which do
not appear to play a role in plant pathogenesis [59,61,62].

Gene transfer between phylogenetically remote bacteria
would be favored by colonization of the same environmen-
tal niche [63]. In nature, Rhizobium is normally viewed as
a microbe that survives saprophytically in soil, in nitrogen
fixing nodules of legumes or as endophytes in gramineous
plants, for example field grown [64] and wild rice [65].
P. syringae pv phaseolicola 1448A and P. syringae pv
oryzae str.1_6 are pathogens of the common bean and
rice, respectively, while Rhizobium sp. NGR234 forms
nitrogen fixing nodules with more legumes than any
other microsymbiont [38]. Thus, there is ample oppor-
tunity for niche overlap between at least one of the
P. syringae pathovars possessing T3SS-2 and Rhizo-
bium sp. NGR234. At this point, a role for T3SS-2 in
host-bacterium interactions for the rhizobia or the
P. syringae strains possessing the system remains to be
established and it is not obvious why these bacteria main-
tain a second T3SS gene cluster in their genome. Func-
tional analysis and genome sequencing of more rhizobia
that share common niches with P. syringae as well as the
sequencing of more P. syringae pathovar genomes may
shed light into these questions.

Additional files

Additional file 1: Figure S1. Unrooted neighbor-joining phylogenetic
tree of SctQ proteins of flagellar and non-flagellar T3S proteins. The tree
was calculated by CLUSTALW (1.82) using bootstrapping (500 replicates)
as a method for deriving confidence values for the groupings and was
drawn by MEGA 4.0. Bootstrap values are indicated in each branching
point. Scale bar represents numbers of substitution per site. The arrow
indicates a possible position of root so that the tree will be compatible
with the monophyly of the flagellar T3SS. Consistently with phylograms
based on other conserved proteins of the Pph T3SS-2, the Hrc,Q
polypeptide does not fall into any of the two Hrcl/Hrc2 T3SS families but
it is grouped with the Rhc family.

Additional file 2: Figure S2. Unrooted neighboring joining tree
including all known SctV T3SS families and the flagelar proteins.
Bootstrap values are percentages of 500 repetitions taking place. Multiple
alignment performed with ClustalW.

Additional file 3: Figure S3. Evolutionary relationships of 250 HrcN/
YscN/Flil proteins. A. The phylogram of 253 SctN sequences subdivided in
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seven main families, depicted with different colors and named according
to [8], while the flagellum proteins are depicted in black. The
evolutionary history was inferred as in case of Figure 2. B. The Rhc T35S
clade as derived from the phylogram in A, groups clearly the P. syringae
Hrc,V sequences close to the Rhc,V protein of the Rhizobium sp. NGR234
T3SS-2. The values at the nodes are the bootstrap percentages out of
1000 replicates. The locus numbers or the protein accession number of
each sequence is indicated.

Additional file 4: Table S1. Sequence comparisons of T35S-2 proteins
with proteins from from subgroups Il of Rhc T3SS gene clusters.
Percentage identities of various T3SS proteins in comparison to the Pph
T3SS-2 proteins. Pph T35S-2 cluster shares a higher degree of common
genes with T355-2 of Rhizobium sp. NGR234 than with Rhc T3SS gene
clusters of subgroup | or lll. Shading in grayscale is according to
percentage identity.

Additional file 5: Figure S4. Multiple alignements with ClustalW
version 1.8 [19] for A) RhcC1 proteins (ref|YP 274720.1| HrcliC1
[Pseudomonas syringae pv. phaseolicola 1448al, ref|ZP 04589253.1| HrclIC1
[Pseudomonas syringae pv. oryzae str. 1_6], ref[YP 002824487.1| RhclIC
[Rhizobium sp. NGR234], ref[NP 444156.1| NolW [Rhizobium sp. NGR234],
ref[NP 106861.1] NOLW [Mesorhizobium loti MAFF303099], ref|NP
768451.1] RhcC1 [Bradyrhizobium japonicum USDA 110] and B) RhcC2
proteins (ref|ZP 04589255.1|HrplIC2 [Pseudomonas syringae pv. oryzae str.
1_6], ref|]YP 002824481.1| RhcllC2 [Rhizobium sp. NGR234], ref|[NP 106858.1]
RhcC2 [Mesorhizobium loti MAFF303099], ref|[NP 768482.1| RhcC2
[Bradyrhizobium japonicum USDA 110] and refINP 444146.1] Y4xJ
[Rhizobium sp. NGR234]. Visualization of the alignment was performed in
http://www.bioinformatics.org/sms2/color_align_cons.html.

Additional file 6: Figure S5. Sequence analysis for HrpO-like proteins.
The analysis of PSPPH_2532 (HrpllO) indicates that this hypothetical
protein belongs to the HrpO/YscO/FliJ family of T3SS proteins [5,33]. The
same is evident for the sequence annotated as RhcZ in the T35S-2 of
Rhizobium sp. NGR342. Residues predicted in a-helical conformation are
indicated in yellow and unfolded regions in red. Green areas indicate
ordered regions. Residues for which a high propensity for coiled-coil
formation is predicted are indicated in blue rectangular. Here a-helix
prediction was performed with PsiPRED, disordered prediction with
FOLDINDEX and coiled coils prediction with COILS. Accession numbers or
loci numbers are: AAC25065 (HrpQ), P25613 (FliJ), AAB72198 (YscO),
PSPPH_2532 (HrpliO), NGR_b22960 (RhcZ), NGR234_462 (Y4yJ).

Additional file 7: Table S2. Codon Usage Bias Table.
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