P. D. Crompton, S. K. Pierce, and L. H. Miller, Advances and challenges in malaria vaccine development, Journal of Clinical Investigation, vol.120, issue.12, pp.4168-4178, 2010.
DOI : 10.1172/JCI44423

C. Lavazec and C. Bourgouin, Mosquito-based transmission blocking vaccines for interrupting Plasmodium development, Microbes and Infection, vol.10, issue.8, pp.845-849, 2008.
DOI : 10.1016/j.micinf.2008.05.004

D. Vlachou, T. Schlegelmilch, G. K. Christophides, and F. C. Kafatos, Functional Genomic Analysis of Midgut Epithelial Responses in Anopheles during Plasmodium Invasion, Current Biology, vol.15, issue.13, pp.1185-1195, 2005.
DOI : 10.1016/j.cub.2005.06.044

A. S. Aly, A. M. Vaughan, and S. H. Kappe, Malaria Parasite Development in the Mosquito and Infection of the Mammalian Host, Annual Review of Microbiology, vol.63, issue.1, pp.195-221, 2009.
DOI : 10.1146/annurev.micro.091208.073403

G. F. Killeen, F. E. Mckenzie, B. D. Foy, C. Schieffelin, P. F. Billingsley et al., A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control, Am J Trop Med Hyg, vol.62, issue.5, pp.535-579, 2000.

E. M. Zdobnov, C. Von-mering, I. Letunic, D. Torrents, M. Suyama et al., Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster, Science, vol.298, issue.5591, pp.5591-149, 2002.
DOI : 10.1126/science.1077061

R. A. Holt, G. M. Subramanian, A. Halpern, G. G. Sutton, R. Charlab et al., The Genome Sequence of the Malaria Mosquito Anopheles gambiae, Science, vol.298, issue.5591, pp.5591129-5591178, 2002.
DOI : 10.1126/science.1076181

M. D. Adams, S. E. Celniker, R. A. Holt, C. A. Evans, C. A. Evans et al., The Genome Sequence of Drosophila melanogaster, Science, vol.287, issue.5461, pp.5461-2185, 2000.
DOI : 10.1126/science.287.5461.2185

V. Nene, J. R. Wortman, D. Lawson, B. Haas, C. Kodira et al., Genome Sequence of Aedes aegypti, a Major Arbovirus Vector, Science, vol.316, issue.5832, pp.5832-1718, 2007.
DOI : 10.1126/science.1138878

URL : https://hal.archives-ouvertes.fr/hal-00156214

M. M. Riehle, K. Markianos, O. Niaré, J. Xu, J. Li et al., Natural Malaria Infection in Anopheles gambiae Is Regulated by a Single Genomic Control Region, Science, vol.312, issue.5773, pp.5773-577, 2006.
DOI : 10.1126/science.1124153

H. W. Kwon, T. Lu, M. Rutzler, and L. J. Zwiebel, Olfactory responses in a gustatory organ of the malaria vector mosquito Anopheles gambiae, Proceedings of the National Academy of Sciences, vol.103, issue.36, pp.13526-13531, 2006.
DOI : 10.1073/pnas.0601107103

A. C. Gingras, R. Aebersold, and B. Raught, Advances in protein complex analysis using mass spectrometry, The Journal of Physiology, vol.32, issue.1, pp.1-11, 2004.
DOI : 10.1113/jphysiol.2004.080440

D. Mayer, S. Baginsky, and M. Schwemmle, Isolation of viral ribonucleoprotein complexes from infected cells by tandem affinity purification, PROTEOMICS, vol.77, issue.17, pp.4483-4487, 2005.
DOI : 10.1002/pmic.200402095

N. Jorba, S. Juarez, E. Torreira, P. Gastaminza, N. Zamarreno et al., Analysis of the interaction of influenza virus polymerase complex with human cell factors, PROTEOMICS, vol.321, issue.10, pp.2077-2088, 2008.
DOI : 10.1002/pmic.200700508

S. P. Gygi, B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb et al., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nat. Biotechnol, vol.17, pp.10-994, 1999.

A. Guaragna, A. Amoresano, V. Pinto, G. Monti, G. Mastrobuoni et al., Synthesis and Proteomic Activity Evaluation of a new Isotope-Coded Affinity Tagging (ICAT) Reagent, Bioconjugate Chemistry, vol.19, issue.5, pp.1095-2104, 2008.
DOI : 10.1021/bc800010b

P. L. Ross, Y. L. Huang, J. N. Marchese, B. Williamson, K. Parker et al., Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents, Molecular & Cellular Proteomics, vol.3, issue.12, pp.1154-1169, 2004.
DOI : 10.1074/mcp.M400129-MCP200

S. E. Ong, B. Blagoev, I. Kratchmarova, D. B. Kristensen, H. Steen et al., Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics, Molecular & Cellular Proteomics, vol.1, issue.5, pp.376-386, 2002.
DOI : 10.1074/mcp.M200025-MCP200

M. Mann, Functional and quantitative proteomics using SILAC, Nature Reviews Molecular Cell Biology, vol.295, issue.12, pp.952-958, 2006.
DOI : 10.1038/nrm2067

R. L. Tellam, G. Wijffels, and P. Willadsen, Peritrophic matrix proteins, Insect Biochemistry and Molecular Biology, vol.29, issue.2, pp.87-101, 1999.
DOI : 10.1016/S0965-1748(98)00123-4

P. F. Billingsley and W. Rudin, The Role of the Mosquito Peritrophic Membrane in Bloodmeal Digestion and Infectivity of Plasmodium Species, The Journal of Parasitology, vol.78, issue.3, pp.430-440, 1992.
DOI : 10.2307/3283640

M. Huber, E. Cabib, and L. H. Miller, Malaria parasite chitinase and penetration of the mosquito peritrophic membrane., Proceedings of the National Academy of Sciences, vol.88, issue.7, pp.2807-2810, 1991.
DOI : 10.1073/pnas.88.7.2807

R. R. Dinglasan, M. Devenport, L. Florens, J. R. Johnson, C. A. Mchugh et al., The Anopheles gambiae adult midgut peritrophic matrix proteome, Insect Biochemistry and Molecular Biology, vol.39, issue.2, pp.125-134, 2009.
DOI : 10.1016/j.ibmb.2008.10.010

S. B. Pinto, F. Lombardo, A. C. Koutsos, R. M. Waterhouse, K. Mckay et al., Discovery of Plasmodium modulators by genome-wide analysis of circulating hemocytes in Anopheles gambiae, Proc Natl Acad Sci U S A, vol.106, pp.50-21270, 2009.

S. M. Paskewitz and L. Shi, The hemolymph proteome of Anopheles gambiae, Insect Biochemistry and Molecular Biology, vol.35, issue.8, pp.815-824, 2005.
DOI : 10.1016/j.ibmb.2005.03.002

A. Kumari, S. K. Gakhar, and V. Hooda, Antibodies raised against hemolymph of Anopheles culicifacies reduce the fecundity and malaria parasite development, J Vector Borne Dis, vol.46, issue.4, pp.255-2600972, 2009.

S. H. Kappe, M. J. Gardner, S. Brown, J. Ross, K. Matuschewski et al., Exploring the transcriptome of the malaria sporozoite stage, Proceedings of the National Academy of Sciences, vol.98, issue.17, pp.17-9895, 2001.
DOI : 10.1073/pnas.171185198

S. H. Kappe, C. A. Buscaglia, and V. Nussenzweig, SPOROZOITE MOLECULAR CELL BIOLOGY, Annual Review of Cell and Developmental Biology, vol.20, issue.1, pp.29-59, 2004.
DOI : 10.1146/annurev.cellbio.20.011603.150935

J. Ribeiro and I. Francischetti, : Sialome and Post-Sialome Perspectives, Annual Review of Entomology, vol.48, issue.1, pp.73-88, 2003.
DOI : 10.1146/annurev.ento.48.060402.102812

I. M. Francischetti, J. G. Valenzuela, V. M. Pham, M. K. Garfield, and J. M. Ribeiro, Toward a catalog for the transcripts and proteins (sialome) from the salivary gland of the malaria vector Anopheles gambiae, J Exp Biol, vol.205, pp.16-2429, 2002.

J. G. Valenzuela, R. Charlab, E. C. Gonzalez, I. K. De-miranda-santos, O. Marinotti et al., The D7 family of salivary proteins in blood sucking diptera, Insect Molecular Biology, vol.22, issue.2, pp.149-155, 2002.
DOI : 10.1021/bi973050y

D. E. Kalume, M. Okulate, J. Zhong, R. Reddy, S. Suresh et al., A proteomic analysis of salivary glands of femaleAnopheles gambiae mosquito, PROTEOMICS, vol.8, issue.14, pp.3765-3777, 2005.
DOI : 10.1002/pmic.200401210

V. Choumet, A. Carmi-leroy, C. Laurent, P. Lenormand, J. C. Rousselle et al., The salivary glands and saliva of Anopheles gambiae as an essential step in the Plasmodium life cycle: a global proteomic study, Proteomics, vol.7, pp.183384-94, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00527461

D. E. Champagne, Antihemostatic Molecules from Saliva of Blood-Feeding Arthropods, Pathophysiology of Haemostasis and Thrombosis, vol.34, issue.4-5, pp.4-5, 2005.
DOI : 10.1159/000092428

F. Lombardo, R. Ronca, C. Rizzo, M. Mestres-simòn, A. Lanfrancotti et al., The Anopheles gambiae salivary protein gSG6: An anopheline-specific protein with a blood-feeding role, Insect Biochemistry and Molecular Biology, vol.39, issue.7, pp.457-466, 2009.
DOI : 10.1016/j.ibmb.2009.04.006

S. Das, A. Radtke, Y. J. Choi, A. M. Mendes, J. G. Valenzuela et al., Transcriptomic and functional analysis of the Anopheles gambiae salivary gland in relation to blood feeding, BMC Genomics, vol.11, issue.1, pp.1471-2164, 2010.
DOI : 10.1186/1471-2164-11-566

C. Rizzo, R. Ronca, G. Fiorentino, V. D. Mangano, S. B. Sirima et al., Wide cross-reactivity between Anopheles gambiae and Anopheles funestus SG6 salivary proteins supports exploitation of gSG6 as a marker of human exposure to major malaria vectors in tropical Africa, Malaria Journal, vol.10, issue.1, pp.206-1475, 2011.
DOI : 10.1186/1475-2875-7-195

E. Calvo, B. J. Mans, J. M. Ribeiro, and J. F. Andersen, Multifunctionality and mechanism of ligand binding in a mosquito antiinflammatory protein, Proc. Natl. Acad. Sci, pp.3728-3733, 2009.
DOI : 10.1073/pnas.0813190106

Y. Dong, R. Aguilar, Z. Xi, E. Warr, E. Mongin et al., Anopheles gambiae Immune Responses to Human and Rodent Plasmodium Parasite Species, PLoS Pathogens, vol.31, issue.6, pp.52-1553, 2006.
DOI : 10.1371/journal.ppat.0020052.st007

URL : http://doi.org/10.1371/journal.ppat.0020052

P. A. Rossignol, J. M. Ribeiro, and A. Spielman, Increased intradermal probing time in sporozoite-infected mosquitoes, Am J Trop Med Hyg, vol.33, issue.1, pp.17-20, 1984.

P. A. Rossignol, J. M. Ribeiro, and A. Spielman, Increased biting rate and reduced fertility in sporozoite-infected mosquitoes, Am J Trop Med Hyg, vol.35, issue.2, pp.277-279, 1986.

J. W. Wekesa, R. S. Copeland, and R. W. Mwangi, Effect of Plasmodium falciparum on blood feeding behavior of naturally infected Anopheles mosquitoes in western Kenya, Am J Trop Med Hyg, vol.47, issue.4, pp.484-488, 1992.

J. C. Koella and M. J. Packer, Malaria parasites enhance blood-feeding of their naturally infected vector Anopheles punctulatus, Parasitology, vol.97, issue.02, pp.105-109, 1996.
DOI : 10.1016/0035-9203(91)90012-N

J. C. Koella, F. L. Sorensen, and R. A. Anderson, The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae, Proceedings of the Royal Society B: Biological Sciences, vol.265, issue.1398, pp.1398-763, 1998.
DOI : 10.1098/rspb.1998.0358

R. A. Anderson, J. C. Koella, and H. Hurd, The effect of Plasmodium yoelii nigeriensis infection on the feeding persistence of Anopheles stephensi Liston throughout the sporogonic cycle, Proceedings of the Royal Society B: Biological Sciences, vol.266, issue.1430, pp.1430-1729, 1999.
DOI : 10.1098/rspb.1999.0839

J. Charlwood and E. Tomás, Do developing malaria parasites manipulate their mosquito host? Evidence from infected Anopheles funestus (Giles) from Mozambique, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.105, issue.6, pp.352-354, 2011.
DOI : 10.1016/j.trstmh.2011.02.006

T. Lefevre, F. Thomas, A. Schwartz, E. Levashina, S. Blandin et al., MalariaPlasmodium agent induces alteration in the head proteome of theirAnopheles mosquito host, PROTEOMICS, vol.21, issue.11, pp.1908-1915, 2007.
DOI : 10.1002/pmic.200601021

D. G. Biron, L. Marché, F. Ponton, H. D. Loxdale, N. Galéotti et al., Behavioural manipulation in a grasshopper harbouring hairworm: a proteomics approach, Proceedings of the Royal Society B: Biological Sciences, vol.18, issue.1, pp.1577-2117, 2005.
DOI : 10.1006/jtbi.1996.0346

F. Ponton, T. Lefevre, C. Lebarbenchon, F. Thomas, H. D. Loxdale et al., Do distantly related parasites rely on the same proximate factors to alter the behaviour of their hosts?, Proceedings of the Royal Society B: Biological Sciences, vol.186, issue.1, pp.1603-2869, 2006.
DOI : 10.1006/jtbi.1996.0346

URL : https://hal.archives-ouvertes.fr/hal-00199184

G. L. Waring, Morphogenesis of the eggshells in Drosophila, Int Rev Cytol, vol.198, pp.67-108, 2000.
DOI : 10.1016/S0074-7696(00)98003-3

V. Cavaliere, F. Bernardi, P. Romani, S. Duchi, and G. Gargiulo, eggshell: First of all the eggshell genes must be transcribed, Developmental Dynamics, vol.4, issue.470, pp.2061-2072, 2008.
DOI : 10.1002/dvdy.21625

T. Sota and M. Mogi, Interspecific variation in desiccation survival time of Aedes (Stegomyia) mosquito eggs is correlated with habitat and egg size, Oecologia, vol.147, issue.6, pp.353-358, 1992.
DOI : 10.1007/BF00317691

J. C. Beier, R. Copeland, C. Oyaro, A. Masinya, W. O. Odago et al., Anopheles gambiae complex egg-stage survival in dry soil from larval development sites in western Kenya, J Am Mosq Control Assoc, vol.6, issue.1, pp.105-109, 1990.

D. A. Amenya, W. Chou, J. Li, G. Yan, P. D. Gershon et al., Proteomics reveals novel components of the Anopheles gambiae eggshell, Journal of Insect Physiology, vol.56, issue.10, pp.1414-1419, 2010.
DOI : 10.1016/j.jinsphys.2010.04.013

B. Boisson, J. C. Jacques, V. Choumet, E. Martin, J. Xu et al., Gene silencing in mosquito salivary glands by RNAi Function and evolution of a mosquito salivary protein family, FEBS LettCalvo E., Mans B.J., Andersen J.F. & Ribeiro J.M. J Biol Chem, vol.580, issue.281 4, pp.14-5793, 1988.

R. Chaerkady, D. S. Kelkar, B. Muthusamy, K. Kandasamy, S. B. Dwivedi et al., A proteogenomic analysis of Anopheles gambiae using high-resolution Fourier transform mass spectrometry, Genome Research, vol.21, issue.11, 2011.
DOI : 10.1101/gr.127951.111