D. Doolan, C. Dobano, and J. Baird, Acquired Immunity to Malaria, Clinical Microbiology Reviews, vol.22, issue.1, pp.13-36, 2009.
DOI : 10.1128/CMR.00025-08

M. Prudencio, A. Rodriguez, and M. Mota, The silent path to thousands of merozoites: the Plasmodium liver stage, Nature Reviews Microbiology, vol.98, issue.11, pp.849-856, 2006.
DOI : 10.1038/nrmicro1529

R. Menard, V. Heussler, M. Yuda, and V. Nussenzweig, Plasmodium pre-erythrocytic stages: what???s new?, Trends in Parasitology, vol.24, issue.12, pp.564-569, 2008.
DOI : 10.1016/j.pt.2008.08.009

L. Bannister and G. Mitchell, The malaria merozoite, forty years on, Parasitology, vol.67, issue.12, pp.1435-1444, 2009.
DOI : 10.1084/jem.149.1.172

K. Rieckmann, Human immunization with attenuated sporozoites, Bull World Health Organ, vol.68, pp.13-16, 1990.

R. Nussenzweig, J. Vanderberg, H. Most, and C. Orton, Specificity of Protective Immunity produced by X-irradiated Plasmodium berghei Sporozoites, Nature, vol.212, issue.5192, pp.488-489, 1969.
DOI : 10.1016/0014-4894(67)90084-7

J. Epstein, K. Tewari, K. Lyke, B. Sim, and P. Billingsley, Live Attenuated Malaria Vaccine Designed to Protect Through Hepatic CD8+ T Cell Immunity, Science, vol.334, issue.6055, pp.475-480, 2011.
DOI : 10.1126/science.1211548

M. Sedegah, T. Jones, M. Kaur, R. Hedstrom, and P. Hobart, Boosting with recombinant vaccinia increases immunogenicity and protective efficacy of malaria DNA vaccine, Proceedings of the National Academy of Sciences, vol.95, issue.13, pp.7648-7653, 1998.
DOI : 10.1073/pnas.95.13.7648

C. Tamminga, M. Sedegah, D. Regis, I. Chuang, and J. Epstein, Adenovirus-5-Vectored P. falciparum Vaccine Expressing CSP and AMA1. Part B: Safety, Immunogenicity and Protective Efficacy of the CSP Component, PLoS ONE, vol.6, issue.10, p.25868, 2011.
DOI : 10.1371/journal.pone.0025868.s005

S. Sheehy, C. Duncan, S. Elias, S. Biswas, and K. Collins, Phase Ia Clinical Evaluation of the Safety and Immunogenicity of the Plasmodium falciparum Blood-Stage Antigen AMA1 in ChAd63 and MVA Vaccine Vectors, PLoS ONE, vol.187, issue.2, p.31208, 2012.
DOI : 10.1371/journal.pone.0031208.s017

P. Crompton, M. Kayala, B. Traore, K. Kayentao, and A. Ongoiba, A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray, Proceedings of the National Academy of Sciences, vol.107, issue.15, pp.6958-6963, 2010.
DOI : 10.1073/pnas.1001323107

A. Hill, Vaccines against malaria, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.6, issue.1, pp.2806-2814, 2011.
DOI : 10.4161/hv.6.1.9931

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3146776

S. Agnandji, K. Asante, J. Lyimo, J. Vekemans, and S. Soulanoudjingar, Malaria Candidate Vaccine When Integrated in the Expanded Program of Immunization, The Journal of Infectious Diseases, vol.202, issue.7, pp.1076-1087, 2011.
DOI : 10.1086/656190

M. Lievens, J. Aponte, J. Williamson, B. Mmbando, and A. Mohamed, Statistical methodology for the evaluation of vaccine efficacy in a phase III multi-centre trial of the RTS,S/AS01 malaria vaccine in African children, Malaria Journal, vol.10, issue.1, p.222, 2011.
DOI : 10.1186/1475-2875-8-116

P. Gueirard, J. Tavares, S. Thiberge, F. Bernex, and T. Ishino, Development of the malaria parasite in the skin of the mammalian host, Proceedings of the National Academy of Sciences, vol.107, issue.43, pp.18640-18645, 2010.
DOI : 10.1073/pnas.1009346107

R. Amino, D. Giovannini, S. Thiberge, P. Gueirard, and B. Boisson, Host Cell Traversal Is Important for Progression of the Malaria Parasite through the Dermis to the Liver, Cell Host & Microbe, vol.3, issue.2, pp.88-96, 2008.
DOI : 10.1016/j.chom.2007.12.007

K. Baer, C. Klotz, S. Kappe, T. Schnieder, and U. Frevert, Release of Hepatic Plasmodium yoelii Merozoites into the Pulmonary Microvasculature, PLoS Pathogens, vol.153, issue.11, p.171, 2007.
DOI : 10.1371/journal.ppat.0030171.sv010

I. Cockburn, S. Tse, A. Radtke, P. Srinivasan, and Y. Chen, Dendritic Cells and Hepatocytes Use Distinct Pathways to Process Protective Antigen from Plasmodium in vivo, PLoS Pathogens, vol.80, issue.3, 2011.
DOI : 10.1371/journal.ppat.1001318.s005

D. Berenzon, R. Schwenk, L. Letellier, M. Guebre-xabier, and J. Williams, Protracted Protection to Plasmodium berghei Malaria Is Linked to Functionally and Phenotypically Heterogeneous Liver Memory CD8+ T Cells, The Journal of Immunology, vol.171, issue.4, 2003.
DOI : 10.4049/jimmunol.171.4.2024

N. Schmidt, R. Podyminogin, N. Butler, V. Badovinac, and B. Tucker, Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria, Proceedings of the National Academy of Sciences, vol.105, issue.37, pp.14017-14022, 2008.
DOI : 10.1073/pnas.0805452105

A. Reyes-sandoval, D. Wyllie, K. Bauza, A. Milicic, and E. Forbes, CD8+ T Effector Memory Cells Protect against Liver-Stage Malaria, The Journal of Immunology, vol.187, issue.3, pp.1347-1357, 2011.
DOI : 10.4049/jimmunol.1100302

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568294

K. Nganou-makamdop, G. Van-gemert, T. Arens, C. Hermsen, and R. Sauerwein, Long Term Protection after Immunization with P. berghei Sporozoites Correlates with Sustained IFN?? Responses of Hepatic CD8+ Memory T Cells, PLoS ONE, vol.3, issue.5, p.36508, 2012.
DOI : 10.1371/journal.pone.0036508.t002

Y. He, J. Zhang, C. Donahue, L. Falo, and . Jr, Skin-Derived Dendritic Cells Induce Potent CD8+ T Cell Immunity in Recombinant Lentivector-Mediated Genetic Immunization, Immunity, vol.24, issue.5, pp.643-656, 2006.
DOI : 10.1016/j.immuni.2006.03.014

H. Rowe, L. Lopes, Y. Ikeda, R. Bailey, and I. Barde, Immunization with a Lentiviral Vector Stimulates both CD4 and CD8 T Cell Responses to an Ovalbumin Transgene, Molecular Therapy, vol.13, issue.2, pp.310-319, 2006.
DOI : 10.1016/j.ymthe.2005.08.025

M. Iglesias, K. Mollier, A. Beignon, P. Souque, and O. Adotevi, Lentiviral Vectors Encoding HIV-1 Polyepitopes Induce Broad CTL Responses In Vivo, Molecular Therapy, vol.15, issue.6, pp.1203-1210, 2007.
DOI : 10.1038/sj.mt.6300135

URL : https://hal.archives-ouvertes.fr/hal-00167663

M. Iglesias, M. Frenkiel, K. Mollier, P. Souque, and P. Despres, A single immunization with a minute dose of a lentiviral vector-based vaccine is highly effective at eliciting protective humoral immunity against West Nile virus, The Journal of Gene Medicine, vol.302, issue.3, pp.265-274, 2006.
DOI : 10.1002/jgm.837

L. Chapatte, M. Ayyoub, S. Morel, A. Peitrequin, and N. Levy, Processing of Tumor-Associated Antigen by the Proteasomes of Dendritic Cells Controls In vivo T-Cell Responses, Cancer Research, vol.66, issue.10, pp.5461-5468, 2006.
DOI : 10.1158/0008-5472.CAN-05-4310

A. Beignon, K. Mollier, C. Liard, F. Coutant, and S. Munier, Lentiviral Vector-Based Prime/Boost Vaccination against AIDS: Pilot Study Shows Protection against Simian Immunodeficiency Virus SIVmac251 Challenge in Macaques, Journal of Virology, vol.83, issue.21, pp.10963-10974, 2009.
DOI : 10.1128/JVI.01284-09

URL : https://hal.archives-ouvertes.fr/pasteur-00457819

O. Adotevi, K. Mollier, C. Neuveut, M. Dosset, and P. Ravel, Targeting human telomerase reverse transcriptase with recombinant lentivector is highly effective to stimulate antitumor CD8 T-cell immunity in vivo, Blood, vol.115, issue.15, pp.3025-3032, 2010.
DOI : 10.1182/blood-2009-11-253641

URL : https://hal.archives-ouvertes.fr/pasteur-00460451

A. Pichlmair, S. Diebold, S. Gschmeissner, Y. Takeuchi, and Y. Ikeda, Tubulovesicular Structures within Vesicular Stomatitis Virus G Protein-Pseudotyped Lentiviral Vector Preparations Carry DNA and Stimulate Antiviral Responses via Toll-Like Receptor 9, Journal of Virology, vol.81, issue.2, pp.539-547, 2007.
DOI : 10.1128/JVI.01818-06

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1797478

K. Breckpot, D. Escors, F. Arce, L. Lopes, and K. Karwacz, HIV-1 Lentiviral Vector Immunogenicity Is Mediated by Toll-Like Receptor 3 (TLR3) and TLR7, Journal of Virology, vol.84, issue.11, pp.5627-5636, 2010.
DOI : 10.1128/JVI.00014-10

M. Rossetti, S. Gregori, E. Hauben, B. Brown, and L. Sergi, HIV-1-Derived Lentiviral Vectors Directly Activate Plasmacytoid Dendritic Cells, Which in Turn Induce the Maturation of Myeloid Dendritic Cells, Human Gene Therapy, vol.22, issue.2, pp.177-188, 2011.
DOI : 10.1089/hum.2010.085

C. Esslinger, L. Chapatte, D. Finke, I. Miconnet, and P. Guillaume, In vivo administration of a lentiviral vaccine targets DCs and induces efficient CD8+ T cell responses, Journal of Clinical Investigation, vol.111, issue.11, pp.1673-1681, 2003.
DOI : 10.1172/JCI200317098

K. Furmanov, M. Elnekave, D. Lehmann, B. Clausen, and D. Kotton, The Role of Skin-Derived Dendritic Cells in CD8+ T Cell Priming Following Immunization with Lentivectors, The Journal of Immunology, vol.184, issue.9, pp.4889-4897, 2010.
DOI : 10.4049/jimmunol.0903062

G. Dh and D. E-s-c-o-r-sd, C h a k r a v e r t yR ,B e n n e t tC L( 2 0 1 1 ) Conventional dendritic cells are required for the activation of helper-dependent CD8 T cell responses to a model antigen after cutaneous vaccination with lentiviral vectors, J Immunol, vol.186, pp.4565-4572

E. Montini, D. Cesana, M. Schmidt, F. Sanvito, and M. Ponzoni, Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration, Nature Biotechnology, vol.12, issue.6, pp.687-696, 2006.
DOI : 10.1038/nbt1216

S. Hacein-bey-abina, A. Garrigue, G. Wang, J. Soulier, and A. Lim, Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1, Journal of Clinical Investigation, vol.118, issue.9, pp.3132-3142, 2008.
DOI : 10.1172/JCI35700DS1

E. Montini, D. Cesana, M. Schmidt, F. Sanvito, and C. Bartholomae, The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy, Journal of Clinical Investigation, vol.119, issue.4, 2009.
DOI : 10.1172/JCI37630DS1

D. Nunzio, F. Felix, T. Arhel, N. Nisole, S. Charneau et al., HIV-derived vectors for therapy and vaccination against HIV, Vaccine, vol.30, issue.15, pp.2499-2509, 2012.
DOI : 10.1016/j.vaccine.2012.01.089

K. Wanisch and R. Yanez-munoz, Integration-deficient Lentiviral Vectors: A Slow Coming of Age, Molecular Therapy, vol.17, issue.8, pp.1316-1332, 2009.
DOI : 10.1038/mt.2009.122

J. Vargas, J. Gusella, G. Najfeld, V. Klotman, M. et al., Novel Integrase-Defective Lentiviral Episomal Vectors for Gene Transfer, Human Gene Therapy, vol.15, issue.4, pp.361-372, 2004.
DOI : 10.1089/104303404322959515

R. Yanez-munoz, K. Balaggan, A. Macneil, S. Howe, and M. Schmidt, Effective gene therapy with nonintegrating lentiviral vectors, Nature Medicine, vol.25, issue.3, pp.348-353, 2006.
DOI : 10.1038/nm1365

S. Philippe, C. Sarkis, M. Barkats, H. Mammeri, and C. Ladroue, Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo, Proceedings of the National Academy of Sciences, vol.103, issue.47, pp.17684-17689, 2006.
DOI : 10.1073/pnas.0606197103

URL : https://hal.archives-ouvertes.fr/hal-00166677

J. Matrai, A. Cantore, C. Bartholomae, A. Annoni, and W. Wang, Hepatocyte-targeted expression by integrase-defective lentiviral vectors induces antigen-specific tolerance in mice with low genotoxic risk, Hepatology, vol.267, issue.Suppl, pp.1696-1707, 2011.
DOI : 10.1002/hep.24230

F. Coutant, M. Frenkiel, P. Despres, and P. Charneau, Protective Antiviral Immunity Conferred by a Nonintegrative Lentiviral Vector-Based Vaccine, PLoS ONE, vol.101, issue.12, p.3973, 2008.
DOI : 10.1371/journal.pone.0003973.g005

URL : https://hal.archives-ouvertes.fr/pasteur-00457795

D. Negri, Z. Michelini, S. Baroncelli, M. Spada, and S. Vendetti, Successful Immunization with a Single Injection of Non-integrating Lentiviral Vector, Molecular Therapy, vol.15, issue.9, pp.1716-1723, 2007.
DOI : 10.1038/sj.mt.6300241

K. Karwacz, S. Mukherjee, L. Apolonia, M. Blundell, and G. Bouma, Nonintegrating Lentivector Vaccines Stimulate Prolonged T-Cell and Antibody Responses and Are Effective in Tumor Therapy, Journal of Virology, vol.83, issue.7, pp.3094-3103, 2009.
DOI : 10.1128/JVI.02519-08

D. Negri, Z. Michelini, S. Baroncelli, M. Spada, and S. Vendetti, Nonintegrating Lentiviral Vector-Based Vaccine Efficiently Induces Functional and Persistent CD8+ T Cell Responses in Mice, Journal of Biomedicine and Biotechnology, vol.272, issue.5259, p.534501, 2010.
DOI : 10.1371/journal.pone.0007226

B. Hu, H. Yang, B. Dai, A. Tai, and P. Wang, Nonintegrating Lentiviral Vectors Can Effectively Deliver Ovalbumin Antigen for Induction of Antitumor Immunity, Human Gene Therapy, vol.20, issue.12, pp.1652-1664, 2009.
DOI : 10.1089/hum.2009.012

B. Hu, B. Dai, and P. Wang, Vaccines delivered by integration-deficient lentiviral vectors targeting dendritic cells induces strong antigen-specific immunity, Vaccine, vol.28, issue.41, pp.6675-6683, 2010.
DOI : 10.1016/j.vaccine.2010.08.012

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956406

F. Grasso, D. Negri, S. Mochi, A. Rossi, and A. Cesolini, Successful therapeutic vaccination with integrase defective lentiviral vector expressing nononcogenic human papillomavirus E7 protein, International Journal of Cancer, vol.56, issue.2 Suppl, 2012.
DOI : 10.1002/ijc.27676

J. Cohen, V. Nussenzweig, R. Nussenzweig, J. Vekemans, and A. Leach, From the circumsporozoite protein to the RTS,S/AS candidate vaccine, Human Vaccines, vol.6, issue.1, pp.90-96, 2010.
DOI : 10.4161/hv.6.1.9677

P. Potocnjak, N. Yoshida, R. Nussenzweig, and V. Nussenzweig, Monovalent fragments (Fab) of monoclonal antibodies to a sporozoite surface antigen (Pb44) protect mice against malarial infection, Journal of Experimental Medicine, vol.151, issue.6, pp.1504-1513, 1980.
DOI : 10.1084/jem.151.6.1504

M. Rodrigues, R. Nussenzweig, and F. Zavala, The relative contribution of antibodies, CD4+ and CD8+ T cells to sporozoite-induced protection against malaria, Immunology, vol.80, pp.1-5, 1993.

K. Kumar, G. Sano, S. Boscardin, R. Nussenzweig, and M. Nussenzweig, The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites, Nature, vol.252, issue.7121, pp.937-940, 2006.
DOI : 10.1038/nature05361

G. Oliveira, K. Kumar, J. Calvo-calle, C. Othoro, and D. Altszuler, Class II-Restricted Protective Immunity Induced by Malaria Sporozoites, Infection and Immunity, vol.76, issue.3, pp.1200-1206, 2008.
DOI : 10.1128/IAI.00566-07

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258813

A. Leavitt, G. Robles, N. Alesandro, and H. Varmus, Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection, J Virol, vol.70, pp.721-728, 1996.

W. Weiss, S. Mellouk, R. Houghten, M. Sedegah, and S. Kumar, Cytotoxic T cells recognize a peptide from the circumsporozoite protein on malaria-infected hepatocytes, Journal of Experimental Medicine, vol.171, issue.3, pp.763-773, 1990.
DOI : 10.1084/jem.171.3.763

E. Franke, A. Sette, J. Sacci, . Jr, S. Southwood et al., A Subdominant CD8+ Cytotoxic T Lymphocyte (CTL) Epitope from the Plasmodium yoelii Circumsporozoite Protein Induces CTLs That Eliminate Infected Hepatocytes from Culture, Infection and Immunity, vol.68, issue.6, pp.3403-3411, 2000.
DOI : 10.1128/IAI.68.6.3403-3411.2000

O. Bruna-romero, G. Gonzalez-aseguinolaza, J. Hafalla, M. Tsuji, and R. Nussenzweig, Complete, long-lasting protection against malaria of mice primed and boosted with two distinct viral vectors expressing the same plasmodial antigen, Proceedings of the National Academy of Sciences, vol.98, issue.20, pp.11491-11496, 2001.
DOI : 10.1073/pnas.191380898

K. Kumar, P. Baxter, A. Tarun, S. Kappe, and V. Nussenzweig, Conserved Protective Mechanisms in Radiation and Genetically Attenuated uis3(-) and uis4(-) Plasmodium Sporozoites, PLoS ONE, vol.31, issue.12, p.4480, 2009.
DOI : 10.1371/journal.pone.0004480.t001

N. Schmidt, N. Butler, V. Badovinac, and J. Harty, Extreme CD8 T Cell Requirements for Anti-Malarial Liver-Stage Immunity following Immunization with Radiation Attenuated Sporozoites, PLoS Pathogens, vol.11, issue.4, p.1000998, 2010.
DOI : 10.1371/journal.ppat.1000998.s005

N. Schmidt, N. Butler, and J. Harty, Plasmodium-Host Interactions Directly Influence the Threshold of Memory CD8 T Cells Required for Protective Immunity, The Journal of Immunology, vol.186, issue.10, pp.5873-5884, 2011.
DOI : 10.4049/jimmunol.1100194

S. Chakravarty, G. Baldeviano, M. Overstreet, and F. Zavala, Effector CD8+ T Lymphocytes against Liver Stages of Plasmodium yoelii Do Not Require Gamma Interferon for Antiparasite Activity, Infection and Immunity, vol.76, issue.8, pp.3628-3631, 2008.
DOI : 10.1128/IAI.00471-08

A. Trimnell, A. Takagi, M. Gupta, T. Richie, and S. Kappe, Genetically Attenuated Parasite Vaccines Induce Contact-Dependent CD8+ T Cell Killing of Plasmodium yoelii Liver Stage-Infected Hepatocytes, The Journal of Immunology, vol.183, issue.9, pp.5870-5878, 2009.
DOI : 10.4049/jimmunol.0900302

N. Butler, N. Schmidt, and J. Harty, Sporozoites, The Journal of Immunology, vol.184, issue.5, pp.2528-2538, 2010.
DOI : 10.4049/jimmunol.0903529

A. Gruner, M. Mauduit, R. Tewari, J. Romero, and N. Depinay, Sterile Protection against Malaria Is Independent of Immune Responses to the Circumsporozoite Protein, PLoS ONE, vol.22, issue.12, p.1371, 2007.
DOI : 10.1371/journal.pone.0001371.g005

M. Mauduit, A. Gruner, R. Tewari, N. Depinay, and M. Kayibanda, A Role for Immune Responses against Non-CS Components in the Cross-Species Protection Induced by Immunization with Irradiated Malaria Sporozoites, PLoS ONE, vol.20, issue.11, p.7717, 2009.
DOI : 10.1371/journal.pone.0007717.s007

M. Mauduit, R. Tewari, N. Depinay, M. Kayibanda, and E. Lallemand, Minimal Role for the Circumsporozoite Protein in the Induction of Sterile Immunity by Vaccination with Live Rodent Malaria Sporozoites, Infection and Immunity, vol.78, issue.5, pp.2182-2188, 2010.
DOI : 10.1128/IAI.01415-09

D. Doolan, S. Southwood, D. Freilich, S. J. Graber, and N. , Identification of Plasmodium falciparum antigens by antigenic analysis of genomic and proteomic data, Proceedings of the National Academy of Sciences, vol.100, issue.17, pp.9952-9957, 2003.
DOI : 10.1073/pnas.1633254100

N. Butler, N. Schmidt, A. Vaughan, A. Aly, and S. Kappe, Superior Antimalarial Immunity after Vaccination with Late Liver Stage-Arresting Genetically Attenuated Parasites, Cell Host & Microbe, vol.9, issue.6, pp.451-462, 2011.
DOI : 10.1016/j.chom.2011.05.008

URL : http://doi.org/10.1016/j.chom.2011.05.008

E. Rodrigues, F. Zavala, R. Nussenzweig, J. Wilson, and M. Tsuji, Efficient induction of protective anti-malaria immunity by recombinant adenovirus, Vaccine, vol.16, issue.19, pp.1812-1817, 1998.
DOI : 10.1016/S0264-410X(98)00181-9

A. Reyes-sandoval, T. Berthoud, N. Alder, L. Siani, and S. Gilbert, Prime-Boost Immunization with Adenoviral and Modified Vaccinia Virus Ankara Vectors Enhances the Durability and Polyfunctionality of Protective Malaria CD8+ T-Cell Responses, Infection and Immunity, vol.78, issue.1, pp.145-153, 2010.
DOI : 10.1128/IAI.00740-09

J. Baumann, D. Unutmaz, M. Miller, S. Breun, and S. Grill, Murine T Cells Potently Restrict Human Immunodeficiency Virus Infection, Journal of Virology, vol.78, issue.22, pp.12537-12547, 2004.
DOI : 10.1128/JVI.78.22.12537-12547.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC525105

T. Hatziioannou, J. Martin-serrano, T. Zang, and P. Bieniasz, Matrix-Induced Inhibition of Membrane Binding Contributes to Human Immunodeficiency Virus Type 1 Particle Assembly Defects in Murine Cells, Journal of Virology, vol.79, issue.24, pp.15586-15589, 2005.
DOI : 10.1128/JVI.79.24.15586-15589.2005

N. Tsurutani, J. Yasuda, N. Yamamoto, B. Choi, and M. Kadoki, Nuclear Import of the Preintegration Complex Is Blocked upon Infection by Human Immunodeficiency Virus Type 1 in Mouse Cells, Journal of Virology, vol.81, issue.2, pp.677-688, 2007.
DOI : 10.1128/JVI.00870-06

H. Tervo, C. Goffinet, and O. Keppler, Mouse T-cells restrict replication of human immunodeficiency virus at the level of integration, Retrovirology, vol.5, issue.1, p.58, 2008.
DOI : 10.1038/385645a0

S. Bobadilla, N. Sunseri, and N. Landau, Efficient transduction of myeloid cells by an HIV-1-derived lentiviral vector that packages the Vpx accessory protein, Gene Therapy, vol.72, issue.5, 2012.
DOI : 10.1128/JVI.05384-11

E. Bergmann-leitner, R. Mease, D. L. Vega, P. Savranskaya, T. Polhemus et al., Immunization with Pre-Erythrocytic Antigen CelTOS from Plasmodium falciparum Elicits Cross-Species Protection against Heterologous Challenge with Plasmodium berghei, PLoS ONE, vol.9, issue.8, p.12294, 2010.
DOI : 10.1371/journal.pone.0012294.s002

P. Charneau, G. Mirambeau, P. Roux, S. Paulous, and H. Buc, HIV-1 Reverse Transcription A Termination Step at the Center of the Genome, Journal of Molecular Biology, vol.241, issue.5, pp.651-662, 1994.
DOI : 10.1006/jmbi.1994.1542

L. Ozaki, R. Gwadz, and G. Godson, Simple Centrifugation Method for Rapid Separation of Sporozoites from Mosquitoes, The Journal of Parasitology, vol.70, issue.5, pp.831-833, 1984.
DOI : 10.2307/3281779

R. Chattopadhyay, S. Conteh, M. Li, E. James, and J. Epstein, The Effects of radiation on the safety and protective efficacy of an attenuated Plasmodium yoelii sporozoite malaria vaccine, Vaccine, vol.27, issue.27, pp.3675-3680, 2009.
DOI : 10.1016/j.vaccine.2008.11.073

D. Grillot, M. Michel, I. Muller, C. Tougne, and L. Renia, Immune responses to defined epitopes of the circumsporozoite protein of the murine malaria parasite,Plasmodium yoelii, European Journal of Immunology, vol.7, issue.6, pp.1215-1222, 1990.
DOI : 10.1002/eji.1830200604

R. Zhu, M. Mancini-bourgine, X. Zhang, F. Bayard, and Q. Deng, Plasmid Vector-Linked Maturation of Natural Killer (NK) Cells Is Coupled to Antigen-Dependent NK Cell Activation during DNA-Based Immunization in Mice, Journal of Virology, vol.85, issue.19, 2011.
DOI : 10.1128/JVI.00062-11