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Delivery of cell-associated antigen represents an important strategy for vaccination. While
many experimental models have been developed in order to de“ne the critical parameters
for ef“cient cross-priming, few have utilized quantitative methods that permit the study
of the endogenous repertoire. Comparing different strategies of immunization, we report
that local delivery of cell-associated antigen results in delayed T cell cross-priming due to
the increased time required for antigen capture and presentation. In comparison, deliv-
ery of disseminated antigen resulted in rapid T cell priming. Surprisingly, local injection
of cell-associated antigen, while slower, resulted in the differentiation of a more robust,
polyfunctional, effector response. We also evaluated the combination of cell-associated
antigen with poly I:C delivery and observed an immunization route-speci“c effect regard-
ing the optimal timing of innate immune stimulation.These studies highlight the importance
of considering the timing and persistence of antigen presentation, and suggest that intra-
dermal injection with delayed adjuvant delivery is the optimal strategy for achieving CD8 +

T cell cross-priming.

Keywords: dentritic cells, cross-priming, polyfunctionalT cells, adjuvant delivery

INTRODUCTION
CD8 T cell responses are key components of the adaptive immune
system. These cells are considered particularly important in the
host response to microorganisms and cells undergoing malig-
nant transformation (Heemels and Ploegh, 1995). To carry out
their effector function, they must “rst be activated by dendritic
cells (DCs) presenting MHC I/peptide complexes (Mellman and
Steinman, 2001). In instances of direct infection of DCs, antigen
presentation via the endogenous pathway may account for CD8+

T cell priming; however, for many infections and most tumors,
an indirect pathway (referred to as cross-priming) is utilized for
the loading of antigen onto the MHC I of DCs (Albert et al.,
1998;Albert, 2004). The cross-priming pathway has also been tar-
geted for purposes of prophylactic and therapeutic vaccination
(Amigorena, 2000; Palucka et al., 2006; Mitchell et al., 2007;Weide
et al.,2008).While of potential value in therapeutic strategies, there
is a need to optimize strategies for antigen and adjuvant delivery,
taking care that conditions mimic those present during treatment
of humans (Russo et al., 2007; Fontana et al., 2009). Herein, we
investigate the impact of different routes of immunization when
employing cell-associated antigen for cross-priming by host DC.

Over the last 10 years, it has been shown that several factors par-
ticipate in ef“cient cross-priming: (i) the presence of high af“nity
CD8+ T cells (Zehn et al., 2009); (ii) CD4+ T cell help, acting
to •licenseŽ DCs via CD40L/CD40 engagement, along with other
activation stimuli (Bennett et al., 1997, 1998; Ridge et al., 1998;
Schoenberger et al., 1998;Albert et al., 2001); (iii) DC matura-
tion, often achieved by delivery of adjuvant (Longhi et al., 2009;
Tewari et al., 2010;Flynn et al., 2011); (iv) suf“cient antigen cap-
ture, thus allowing for high occupancy of MHC I (Buckwalter
and Srivastava, 2008); and (v) the persistence of cell-associated
antigen, which achieves sustained presentation and TCR stimu-
lation (Prlic et al., 2006; Jusforgues-Saklani et al., 2008). While
several of these parameters have been well characterized, exper-
imental models typically do not re”ect the conditions present
during vaccination of humans. In much of thein vivoexperimen-
tal work, strategies have been taken to increase the probability
of initial encounter between antigen-speci“c T cells and DCs
presenting their cognate antigen. For example, adoptive trans-
fer has been used to arti“cially increase the precursor frequency
of monoclonal, antigen responsive T cells (Kearney et al., 1994;
Kurts et al., 1996;den Haan et al., 2000). The trend, however,
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is moving toward physiologic situations with low cell precursor
frequency of responding T cells, and recent data has conclusively
demonstrated that all phases of T cell activation are in”uenced
by arti“cially increasing the precursor frequency: they are eas-
ier to activate, they expand more rapidly and typically result in
greater memory cell differentiation (Marzo et al., 2005; Badov-
inac et al., 2007; van Heijst et al., 2009). Newly described assays
have made it possible to measure low numbers of antigen-speci“c
T cells in naïve mice or during the “rst days following immu-
nization (Moon et al., 2007; Obar et al., 2008). Nonetheless,
consideration has not been given to the arti“cial dosing of anti-
gen used in these studies (e.g., LPS+ peptide), which remain
supra-threshold and do not accurately re”ect typical vaccination
protocols where antigen is limited. Moreover, the question of
cross-priming polyfunctional T cells has not been fully evaluated,
and again,optimization of vaccine delivery may help enhance ther-
apeutic strategies aimed at the clearance of chronic infection or
malignancies.

We report that following injection of cell-associated antigen,
targeting of cross-presenting antigen presenting cells (APCs) for
the generation of MHC I/peptide complexes is a limiting factor
during the priming of the endogenous repertoire. Strikingly, due
to the kinetics of antigen capture, local delivery of antigen resulted
in a delayed yet ultimately more robust effector T cell activation as
compared to systemic delivery of antigen. Our “ndings also have
important implications for the formulation of vaccines combined
with adjuvants, thus providing insight into how to best prime an
effector CD8+ T cell response.

RESULTS
LOCAL DELIVERY OF CELL-ASSOCIATED ANTIGEN RESULTS IN DELAYED
T CELL CROSS-PRIMING
To determine optimal conditions for achieving cross-priming, we
compared the effects of immunizing with a local versus systemic
dissemination of cell-associated antigen. C57BL/6 mice were
injected intradermally (i.d.) or intravenously (i.v.) with spleno-
cytes from H-2 Kbm1 mice engineered to express a membrane-
bound form of chicken ovalbumin in all tissues (referred to as
Kbm1mOva). Use of membrane associated Ova (mOva) ensured
that our model was not confounded by secreted protein captured
by endocytosis (Nierkens et al., 2008); and an altered Kb molecule
(known as Kbm1) ensured a role for host APCs in the cross-
priming of CD8+ T cells. In order to precisely monitor the priming
of the endogenous T cell repertoire, we utilized Kb…SIINFEKL
tetramer-based enrichment, thus allowing precise enumeration
and phenotypic analysis of Ovalbumin peptide-speci“c T cells
at early time points after immunization (gating strategy shown
in Figure 1A). Accumulation of tetramer-positive cells could be
observed as early as day 5 for i.v. immunization (Figure 1B), with
cells showing downregulation of CD62L and expression of CD25
(data not depicted). In contrast, the kinetics of T cell priming
was delayed when cell-associated antigen was delivered via the
i.d. route. In the latter condition, accumulation of Ova-speci“c
CD8+ T cells was not observed until day 7 post-immunization.
For both routes of immunization, antigen-speci“c T cells accu-
mulated over time, with day 9…12 being the peak of the response
(Figure 1B).

While prior studies suggest that the precursor frequency of
Ova-speci“c T cells is similar across individual C57BL/6 mice
(Obar et al., 2008), it is true that each mouse possesses distinct
T cell repertoires (Bousso et al., 1998). In addition, we wanted to
con“rm that the delayed priming was not a result of the inabil-
ity to access high af“nity Ova-speci“c T cells. Thus we employed
the strategy of adoptive transfer of low numbers (103) of mono-
clonal OT-I cells (Badovinac et al., 2007), transferred 1 day prior
to immunization. On day 5, tetramer-based enrichment was per-
formed using a combination of anti-CD45.1 and Kb…SIINFEKL
tetramer, thus permitting simultaneous assessment of the trans-
ferred CD45.1+ OT-I T cells and endogenous Ova-speci“c T cells.
As shown, only the i.v. immunization resulted in the early priming
of Ova-speci“c T cells. Representative plots are shown, indicating
that both the OT-I and the endogenous T cells behaved similarly,
and that responses were comparable to those observed in animals
that had not received OT-I (Figure 1C). Analysis of later time
points supported the conclusion that priming is delayed when
mice are immunized via the i.d. route (data not shown). Further-
more, we demonstrated that T cell precursor frequency in”uences
the kinetics of priming. Transfer of 106 OT-I prior to immuniza-
tion, in contrast to low transfer conditions, resulted in the robust
and rapid expansion of Ova-speci“c T cells in both i.v. and i.d.
conditions (Figure 1C).Also evident, the transferred cells outcom-
peted the endogenous repertoire. These data indicate that there
exists a qualitative difference between i.v. and i.d. immunization,
which is masked when using adoptive transfer of high numbers of
monoclonal T cells.

INTRADERMAL IMMUNIZATION CROSS-PRIMES CD8+ T CELLS WITH
GREATER EFFECTOR FUNCTION
To further de“ne the impact of early dissemination of antigen (i.v.
immunization) as compared to the establishment of an antigen
depot (i.d. immunization), we monitored T cell effector functions.
First, we performed anin vivo cytotoxicity assay to determine
if the expanded T cells possessed cytolytic effector function. At
different time points following immunization, mice received tar-
gets cells pulsed with SIINFEKL peptide and speci“c killing was
determined (Figure 2). We observed a rapid induction of CTL
activity after i.v. immunization that began to wane by day 12. Con-
sistent with the delayed expansion after local immunization, we
observed a stronger response on Day 12 following i.d. immuniza-
tion. While both routes of immunization elicit CTL induction, this
assay system does not providepercell information about effector
activity. To achieve such an analysis, we combined tetramer-based
enrichment with intracellular staining. Using this approach, it was
possible to determine the absolute number of tetramer-positive
CD8+ T cells (Figure 3A); as well as the percentage of those cells
producing IFN� (Figure 3B). Of note, the absolute number of
cells observed in this experiment is lower than those reported in
Figure 1B, a consequence of performing intracellular cytokine
stain, which requires additional washing and “xation steps. By
day 7, the number of Ova-speci“c T cells was similar for the two
routes of immunization, with the contraction phase beginning
after day 15.

Consistent with the delayed T cell expansion and cytotoxicity
test, IFN� production following i.v. immunization peaked at day
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FIGURE 1 | Route of immunization inßuences the timing of peakT cell
cross-priming. (A,B) Mice were immunized intradermally (ID) or intravenously
(IV) with 5 × 105 Kbm1mOva splenocytes. On days 5, 7, 9, and 12, 15
macroscopic lymph nodes and the spleen were harvested and a Kb…SIINFEKL
tetramer-based enrichment was performed. The gating strategy used for
tetramer-based enrichment described in the methods is shown (A). Single
cells were selected using SSC-W. Then cells were stained with a mixture of
antibodies to lineage markers and DAPI to exclude cells that are not of interest
(DUMP gate). CD3+ cells were selected and CD8 and Kb…SIINFEKL tetramer
labeling were used to detect antigen-speci“c CD8 + T cells. (B) Absolute
numbers of Ova-speci“c CD8 T cells at each of the time points were
determined. Data points indicate a single mouse. Results are representative of
four independent experiments. The distributions according to the two

immunization routes were not signi“cantly different over time employing a
general linear modeling analysis. (C)To evaluate the skewing of cross-priming
responses by adoptive transfer of monoclonal T cells, 103 or 106 CD45.1 OT-I
splenocytes were transferred into CD45.2 recipients prior to immunization.
Use of congenic markers allowed simultaneous assessment of transferred
and endogenous Ova-speci“c T cells (schematic representation). On day 5
post-immunization enrichment was performed using both K b…SIINFEKL
tetramer and CD45.1 antibody to distinguish endogenous tetramer-positive
cells and OT-I cells. Live CD3+ CD8+ DUMPŠ cells are shown.The upper region
highlights the transferred OT-I and the lower region marks the endogenous
Ova-reactive CD8+ T cells. Absolute cell numbers are indicated for the
respective cell populations. Plots were selected from an experiment with three
mice per group; Data are representative of three independent experiments.

7, as compared to the i.d. route where the peak response was on
day 12. Remarkably, comparing the peak responses indicated that
25…45% of the Ova-speci“c T cells were producing IFN� after
i.v. injection; whereas 50…70% of the cells were effector CD8+

T cells at the peak of the i.d. response (Figure 3B). Representa-
tive FACS plots highlight that not only did we achieve a higher
percentage of IFN� producing cells, but also, on a per cell basis,
many of the effector T cells were making 10-fold more cytokine as
compared to those isolated after i.v. immunization (Figure 3C, red
gate day 12). This was also evident using a population-based analy-
sis … as shown, the geometric mean ”uorescent intensity (MFI) of
tetramer-positive cells was signi“cantly higher in the i.d. condition
on days 9…15 (Figure 3D).

Next, we were interested in characterizing the quality of the
T cell response. Prior studies have indicated that cells producing
high levels of IFN� have the unique capacity to secrete multiple
cytokines, leading to their being referred to as polyfunctional T
cells (Seder et al., 2008). In our model system, we evaluated the
simultaneous production of IFN� , IL-2, and TNF� . Mice were
primed using the strategies discussed inFigure 1andex vivores-
timulation of the tetramer-enriched fraction was performed prior
to intracellular staining. As anticipated, the cells producing high
levels of IFN� also expressed TNF� and IL-2 (Figure 4A, IL-2
producing cells are shown in red). The response was evaluated
throughout the kinetics of T cell priming (Figure 4A), and for
purposes of comparing i.d. versus i.v. immunization, we focused
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FIGURE 2 | Both i.v. and i.d. immunization result in CTL induction.
Mice were immunized i.d. or i.v. with 5 × 105 Kbm1mOva splenocytes. At day
7 or 12 post-immunization, an in vivo cytotoxicity assay was performed.
Antigen-speci“c killing is reported. p-Values were calculated using a
Mann…Whitney test (comparing ID versus IV). NI, non-immunized mice,
shown here to indicate baseline killing responses.

on the peak of the response: Day 7 for i.v. immunization; and
Day 12 for i.d. immunization. The percentages of IFN� + cells
producing the three cytokines … IFN� , IL-2,and TNF� … was signif-
icantly higher after i.d. immunization (Figure 4B). The converse
was also true … the percentage of cells producing only IFN� was
higher following i.v. immunization (Figure 4C). Thus, we con-
clude that cross-priming via the i.d. route establishes a stronger,
polyfunctional response.

LOCAL IMMUNIZATION DOES NOT IMPACT THE DIVERSITY OR THE
AVIDITY OF THE T CELL RESPONSE
One potential caveat for the differences observed is that the rate
and means of antigen dissemination might in”uence the diversity
of the responding T cell population, with possible consequence
on the relative avidity for MHC/peptide complexes (Catron et al.,
2006; Zehn et al., 2009). To test this possibility, Ova tetramer-
positive CD8+ T cells were FACS sorted, followed by TCR gene
ampli“cation and characterization of the distribution of V� …J�
CDR3 length. This method accurately evaluates TCR diversity.
5× 103 cells per mouse, isolated from “ve mice per group, were
pooled for the analysis. As a control, we puri“ed 25,000 bulk
CD3+ CD8+ T cells from a non-immunized animal. Twenty-
two V� families were detected in both the non-immunized and
immunized animals. Data are represented as a pro“le of the V� …J�
products obtained, plotted in arbitrary intensity units as a func-
tion of the size of the DNA fragment (Pannetier et al., 1993). As
expected, analysis of the expanded antigen-speci“c cells in immu-
nized animals showed a non-Gaussian distribution of the peaks
as compared to the naïve bulk CD8+ population (Figure 5A).
Notably, the V� 12.1 and 13.1 families were highly represented
in the immunized animals, consistent with prior reports (Dillon
et al.,1994). (Please note the change in nomenclature … the popula-
tions found here correspond with V� 5 and V� 8, respectively). To
determine the diversity of the T cell responses, the number of dis-
tinct peaks detected in all immunoscope pro“les were determined
(Figure A1 in Appendix). As shown, the number of peaks was

signi“cantly reduced in immunized mice with comparable results
in the i.v. and i.d. conditions. Given that these results were obtained
from pooled mice, there exists the possibility that differences were
homogenized and thus not detected; we therefore repeated the
experiment using tetramer-positive cells puri“ed from individ-
ual animals. V� families represented in the primed responses are
shown (Figure A2 in Appendix), and the number of peaks per
mouse is plotted (Figure 5B).

Next, we evaluated the avidity of the responding T cells by
determining their ability to produce IFN� after restimulation with
limiting concentrations of SIINFEKL peptide. Responses were
in the linear range for peptide concentrations 10Š13…10Š9, after
which maximal IFN� production was achieved. No differences
were observed when comparing T cells isolated from mice that
had been primed via the i.d. versus i.v. route (Figure 5C). Based
on these data, we concluded that neither the diversity nor the avid-
ity of the Ova-speci“c CD8+ T cells was in”uenced by the route
of antigen delivery.

INTRADERMAL IMMUNIZATION RESULTS IN DELAYED BUT
PERSISTENT ANTIGEN CROSS-PRESENTATION
To further evaluate the differences observed, we determined the
relationship between antigen dissemination and antigen presenta-
tion by host accessory cells. First, we assessed the establishment
of an antigen depot following i.d. immunization. Luciferase-
expressing splenocytes isolated from transgenic animals were
injected into wild-type recipients. Due to the strain constraints,
FvB male mice were used as a source of donor splenocytes,
harboring minor histocompatibility differences with the female
recipients. Cells delivered via the i.d. route remained primarily
localized within the injection site (Figure A3A in Appendix).
Kinetic studies suggested persistence of donor cells for greater
than 13 days (Figure A3Bin Appendix). Moreover we observed
live injected splenocytes in the draining lymph node of i.d. immu-
nized mice and in the spleen of i.v. immunized animals, indicating
that there remains intact cell-associated antigen several days after
immunization (Figures A3C,D).

Functional studies were used to con“rm these “ndings. As
described above, mice were immunized with Kbm1mOva spleno-
cytes and at different time points, CFSE-labeled CD45.1+ OT-
I splenocytes were transferred as a means of assessing cross-
presentation by host APCs (Figure 6). OT-I transferred prior to
immunization and analyzed 3 days later showed signi“cant dilu-
tion of CFSE, indicating that cell-associated antigen injected via
the i.v. route had already been cross-presented in spleen and lymph
nodes (Figure 6, cohort 1). Given that up to seven cell divisions
could be observed and that the “rst cell division is thought to
require> 24 h post-engagement by host DCs (Celli et al., 2005), we
suggest that cross-presentation must have occurred immediately
following immunization.Antigen presentation persisted from days
3…6 as the second cohort of OT-I also showed dilution of CFSE
(Figure 6,cohort 2). In contrast to the i.v. condition, for i.d. immu-
nization only minimal OT-I divisions were observed for the “rst
cohort of transferred cells. By day 3…6, the response increased and
signi“cant OT-I proliferation could be observed in the draining
lymph node, with minor responses in the spleen. These data con-
“rm the local versus systemic dissemination of antigen via the two
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FIGURE 3 | Intradermal immunization results in a more robust
differentiation of effector CD8 + T cells. (AÐD) Mice were immunized i.d.
or i.v. with 5 × 105 Kbm1mOva splenocytes. Three hours prior to the de“ned
time point, mice were re-stimulated in vivo by injecting 5 µg of
CpG/DOTAP formulated as a mixture with 1 µg SIINFEKL peptide.
Kb…SIINFEKL tetramer-based enrichment combined with an intracellular
staining for IFN� was performed. The absolute number of
tetramer-positive cells is reported (A); and the percentage of
IFN� -producing cells among the population of tetramer-positive cells was
determined (B). Representative plots of enriched tetramer-positive cells
and the respective IFN� production, per cell, is shown. Data from live,

CD3+ CD8+ DUMPŠ cells are shown. The red gate highlights the
tetramer-positive cells with the higher IFN � staining and the numbers
correspond to the percentage of these cells among the tetramer-positive
cells population (C). To represent the respective per cell production of
IFN� , tetramer-positive cells were gated and the geometric mean
”uorescent intensity (MFI) is shown (D). Data points indicate a single
mouse. N.D., not determined, due to low absolute numbers of cells.
Results are representative of two independent experiments. Individual
pairings of ID versus IV were assessed by Mann…Whitney test and
p-values are shown (A,B,D). The global distributions were also evaluated
using time as a continuous variable (general linear modeling)(A,B,D).

routes, and helps to explain the delayed kinetics of T cell priming
after i.d. immunization.

Unexpectedly, the transfer of a third cohort of OT-I at 21 days
post-immunization indicated that when delivered via the i.d.
route, antigen was still being presented within the draining lymph
node (Figure 6, cohort 3). This was not observed in the i.v. con-
dition, suggesting the absence of APCs presenting Ova-peptide.
Based on these “ndings, we conclude that the localized admin-
istration of cell-associated antigen impacts the timing of cross-
presentation. While i.d. immunization is slightly slower due to
the need for antigen to be captured and cross-presented in local
lymphoid organs, the sustained presentation of MHC I/peptide
complexes could in”uence effector and memory response.

ADJUVANT DELIVERY MUST OCCUR AFTER ANTIGEN CAPTURE
In instances where microbial associated molecular patterns are
absent (e.g., cell-associated antigen), it is common practice to for-
mulate the vaccine with an adjuvant. Following from the result
of delayed cross-presentation after i.d. immunization (Figure 6,
cohort 1), we predicted that the optimal timing of adjuvant
delivery will depend on the route of immunization. While adju-
vants have been shown to be useful for enhancing the response
to an antigen, our hypothesis is based on the observation that
DC maturation prior to immunization can have the opposite
effect … inhibiting T cell priming due to a failure to phagocytose
cell-associated antigen (Wilson et al., 2006). To test our predic-
tion, mice were stimulated using poly I:C, injected at different
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FIGURE 4 | Intradermal immunization induces polyfunctionalT cells.
(AÐC)Mice were immunized i.d. or i.v. with 5 × 105 Kbm1mOva splenocytes. At
the different time points, lymph nodes and spleen were harvested and a
Kb…SIINFEKL tetramer-based enrichment was performed. The enriched
fraction was incubated for 4 h with SIINFEKL-pulsed splenocytes, followed by

surface and intracellular staining. (A) Data from live, CD3+ , CD8+ T cells are
shown. Cells producing IL-2 are highlighted in red. The percentages of IFN� +

cells that produce either the three cytokines … IFN� , IL-2, and TNF� (B) or only
one cytokine … IFN� (C) were calculated. p-values were calculated using a
Mann…Whitney test.

time relative to immunization with antigen. The absolute num-
ber of antigen-speci“c T cells wasdetermined at the respective
time of peak response (day 7 for i.v. and day 9 for i.d. immu-
nization). When poly I:C was injected 1 day prior, or the day of
i.v. immunization with the Kbm1mOva cells, T cell priming was
greatly reduced (Figure 7A). Strikingly, injection of poly I:C 1 day
after immunization enhanced T cell priming for the i.v. route.
For the i.d. immunization, poly I:C injection 1 day prior to, the
day of, or even 1 day after immunization, resulted in inhibited T
cell priming (Figure 7B). As shown, it was necessary to wait until
day 3 post-immunization to inject poly I:C in order to observe an
enhancement of T cell priming (Figure 7B). Following from the
results inFigures 6and7, we suggest that 1 day of antigen capture
is suf“cient to permit T cell priming after i.v. but that additional
time is required for antigen capture after i.d. immunization.

To con“rm that early delivery of adjuvant inhibited priming
due to a failure to capture and present cell-associated antigen,
we again utilized adoptively transferred CFSE-labeled OT-I as a
read-out. Administration of poly I:C 1 day after i.d. immuniza-
tion completely blocked OT-I proliferation and IFN� production

(Figure 7C). If instead we waited until day 3 post-immunization
to administer the poly I:C, we no longer observed a blockade and
in fact a greater percentage of OT-I showed maximal cell division
and effector function (Figure 7C, arrow). To examine precisely the
action of poly I:C on host DCs, we performed anin vivo kinetic
study,enumerating and phenotyping DC populations in the spleen
and lymph nodes. We focused on CD8� + DCs and CD103+ DCs,
as these two subsets are known to express TLR3 and have been
shown to be required for antigen cross-presentation (Edelson et al.,
2010). Following poly I:C injection,we observed a striking decrease
in the total number of splenic CD8� + DCs (Figure 8A). Analysis
of the remaining cells indicated that CD86 and MHC-II molecules
are upregulated within 15 h of injection, indicating that matura-
tion is a rapid process (Figure 8B). In contrast to the spleen, DC
number in lymph nodes increased after poly I:C injection; and
again the cells demonstrated a mature phenotype within 1 day of
poly I:C administration (Figures 8A,B).

Comparing the timing of poly I:C induced DC maturation
(Figures 8A,B), with the kinetics of antigen cross-presentation
(Figure 6), we propose a model to explain the differential impact
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FIGURE 5 | Route of immunization does not inßuenceT cell diversity. (A)
Mice were immunized i.d. or i.v. with 5 × 105 Kbm1mOva splenocytes. On day
9, tetramer-based enrichment was performed followed by FACS sorting. For
the non-immunized (NI) condition, bulk tetramer negative CD8+ T cells were
sorted. For immunized animals, cells were sorted from individual mice and
5,000 cells per animal were pooled to obtain 25,000 cells per condition.
Immunoscope analysis was performed to de“ne the length of the CDR3 loop
in the 24 V� families (IMGT nomenclature). Each color represents a distinct V�
family. The numbers correspond to the estimated percentage of total
population. The immunoscope pro“le is presented for families that represent
more than 5% of the total population. (B) Immunoscope was performed on
cells sorted from individual mice (3,000…5,000 cells sorted/mouse). The total
number of peaks detected on all the V� pro“les was enumerated and

represented. Data points indicate a single mouse. V� family representation for
each animal is shown in Figure A2 in Appendix. Statistical analysis comparing
ID and IV was assessed by Mann…WhitneyU-test and p-values are shown.
NI, non-immunized mice, and is shown to indicate baseline diversity of TCR.
(C)To assess functional avidity of the responding T cells, the draining lymph
node and spleen of “ve mice were pooled, day 8 post-immunization. CD8 + T
cells were puri“ed and analyzed by IFN� ELISPOT. SIINFEKL peptide pulsed
DCs were used to re-stimulate CD8 + T cells. SIINFEKL peptide concentrations
are indicated. Results are represented as the percentage of maximal IFN�
production. Data points indicate a replicates for each condition. Results are
representative of two independent experiments. Percentage of maximum
IFN-� production was analyzed using peptide concentration as a continuous
variable (general linear modeling).

of adjuvant delivery, with regards to the route of immuniza-
tion. Systemic dissemination of cell-associated antigen allows for

capture and cross-presentation within 1 day. As such, administra-
tion of poly I:C on day 1 serves to stimulate cross-presenting DCs
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FIGURE 6 | Delayed but persistent antigen presentation in the local
draining lymph node after intradermal immunization. Mice were
immunized i.d. or i.v. with 5 × 105 Kbm1mOva splenocytes. On days 0, 3, or 21,
5 × 106 CD45.1 CFSE-labeled OT-I splenocytes were adoptively transferred

into immunized recipients. Three days later, the spleen, draining lymph node
and a non-draining lymph node were harvested and the dilution of CFSE
staining of OT-I was determined. Results are representative of three
independent experiments.

and enhance priming (Figure 8C). In contrast, localized delivery
of cell-associated antigen requires 3 days for antigen uptake and
presentation. Consequently, administration of poly I:C on day 1
results in early maturation of DCs, which are unable to cross-
present cell-associated antigen (Figure 8D). If instead, adjuvant
administration is performed on day 3 it is possible to achieve
the bene“cial effects of DC maturation, and enhancement of
cross-priming is achieved (Figure 8E).

EARLY EXPOSURE TO POLY I:C INHIBITS CROSS-PRIMING AND BLOCKS
PROTECTIVE IMMUNITY TOLISTERIA
To test our model, we evaluated the timing of adjuvant deliv-
ery using an infectious model. Mice were immunized i.d. with
Kbm1mOva splenocytes, and poly I:C was either co-administered
on the day of immunization or given 3 days post-immunization.
On day 9, mice were challenged with Ova-expressingListe-
ria and 2 days later, the bacterial load was determined in the
spleen (Figure 9A) and in the liver (Figure 9B). We observed
that immunization with Kbm1mOva splenocytes alone conferred
partial protection toListeriachallenge. If mice received poly I:C
on the day of immunization, this basal level of protection was
completely abrogated. In contrast, the protection was signi“-
cantly improved when poly I:C was administered 3 days after
immunization. Indeed, the optimization of adjuvant delivery
enhanced priming and resulted in a 2…3 log reduction in bacterial
load.

In sum, our study reinforces the need to understand the basis
of therapeutic and prophylactic vaccination strategies, taking care
to appropriately time the administration of adjuvant in order to
effectively coordinate innate and adaptive immune response.

DISCUSSION
ROBUST CROSS-PRIMING AFTER INTRADERMAL IMMUNIZATION
There is considerable interest in the development of vaccine strate-
gies for the priming of CD8+ T cell responses. Stymieing the
development of strategies that can be translated to humans is
the fact that most experimental models utilize adoptive trans-
fer of T cells and/or delivery of extremely high doses of anti-
gen. Recent advances have solved the problem of detecting rare
antigen-speci“c cells within the endogenous repertoire. Most
notably, Moon et al. (2007)combined tetramer labeling and
magnetic bead-based enrichment, which permitted the enumer-
ation of T cells with a precursor frequency of 10Š7 (equivalent
to � 10 cells per mouse). This approach has now been applied
for the study of both CD4+ and CD8+ T cells, however in
these studies the priming conditions used trigger maximal acti-
vation of the endogenous repertoire. In our study, we have uti-
lized tetramer-based enrichment to evaluate vaccination strategies
that more closely re”ect what is done for immunotherapy in
humans. Speci“cally, we evaluated the ef“ciency of CD8+ T cell
cross-priming using cell-associated antigen, testing two important
parameters that face investigators interested in initiating adaptive
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FIGURE 7 | Adjuvant delivery must occur after antigen capture in
order to achieve CD8 + T cell priming. (A,B) Mice were immunized i.d.
or i.v. with 5 × 105 Kbm1mOva splenocytes and received 100 µg of poly I:C
at indicated time points. For mice immunized i.v., they received poly I:C
i.v. either: 1 day before immunization; the day of immunization combined
with antigen; 5 h or 1 day post-immunization. The spleen and 15
macroscopic lymph nodes were harvested on day 7, which corresponds
to the peak of the CD8+ T cell response. Kb…SIINFEKL tetramer-based
enrichment was performed and the absolute numbers of
tetramer-positive CD8+ T cells is reported (A). For mice immunized i.d.,
they received poly I:C at the same time points and one additional group
was added, 3 days post-immunization. Poly I:C was administrated i.v.
except for the mice injected on day 0 with poly I:C formulated with the
antigen. Analysis was performed on day 9 post-immunization, again

corresponding with peak CD8+ T cell response (B). p-values were
calculated using a Mann…Whitney test, comparing in a two-way test,
adjuvant condition to no poly I:C treatment. Dotted lines correspond to
median number of responding cells in the absence of poly I:C. NI,
non-immunized mice are shown to indicate baseline responses. (C) Mice
were immunized i.d. with 5 × 105 Kbm1mOva splenocytes. On day 1 or day
3 post-immunization, 50 µg of Poly I:C or PBS was injected i.v. On day 3
post-immunization, 5 × 106 CFSE-labeled CD45.1 OT-I splenocytes were
transferred i.v. Three days later the draining lymph node was harvested
and the dilution of CFSE staining of OT-I was determined, represented by
the histograms. Intracellular staining for IFN� was performed at the same
time, shown in the corresponding FACS plots. CD3 + CD8+ CD45.1+ cells
were gated for the analysis shown. Data are representative of three
independent experiments. NI, non-immunized mice.

immune responses … the route of vaccination and the use of adju-
vants. Importantly, there already exist therapeutic vaccines that

closely re”ect the model system studied herein (Fontana et al.,
2009).
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FIGURE 8 | Continued

FIGURE 8 | Poly I:C induces rapid DC maturation. Mice were injected i.v.
with 100 µg of Poly I:C. At de“ned time points, the spleen and a lymph
node were harvested. The total numbers of CD8 � + DCs and CD103+ DCs
per organ (A) and the expression of CD86 and IAb/IEb (B) were determined.
In (B) the gray histograms indicate the level of expression in untreated
animals and the black line corresponds to poly I:C-injected mice. (CÐE)
Proposed model to explain the different effects of Poly I:C depending on the
timing of delivery. The proposed timing of antigen uptake (black line) and
the kinetic of DC maturation upon Poly I:C injection (blue line) are
represented for three different conditions.

We chose to administer donor splenocytes derived from
Kbm1mOva mice as the source of antigen: this ensured the need for
antigen transfer to host DCs; excluded the possibility that secreted
antigen or peptide exchange could account for the generation of
MHC I/peptide complexes; and obviated the requirement for a
danger signal as live cells expressing a mutated Kb are ef“cient
sources of antigen for cross-priming (Krebs et al., 2009). While we
support a role for phagocytosis of donor cells as a means of antigen
transfer, an alternative possibility is the spread of antigen via exo-
somes produced by living cells (Wolfers et al., 2001). In our study,
comparison of the intradermal and intravenous routes permitted
us to determine the outcome of local versus systemic dissemination
of antigen. As expected,systemically disseminated antigen resulted
in rapid cross-presentation (Figures 1and6, cohort 1), which cor-
related with early differentiation of effector antigen-speci“c T cells
(Figures 2and3). This was in contrast to locally administered anti-
gen, which showed delayed cross-presentation and expansion of
responding T cells.

Although delayed, one of the interesting features of locally
administered antigen is that it acted as an antigen depot (FigureA3
in Appendix). Our data indicates that persistent antigen cross-
presentation by host DCs (Figure 6, cohort 3) correlates and
likely is the mechanism for inducing a more robust priming of
polyfunctional effector CD8+ T cells (Figures 3and 4). Inter-
estingly, the magnitude of the T cell response following i.v.
immunization was similar to that of the i.d. route. Thus, we
conclude that the route of immunization impacted T cell qual-
ity but not primary expansion, highlighting the importance of
providing in-depth study of vaccine candidates using the endoge-
nous repertoire as a read-out for successful priming. Based on
prior patient studies and experimental models of HIV,Leishma-
nia majorandMycobacteria tuberculosisthe T cell quality appears
important for ef“cient host response and control of the infectious
agent (Almeida et al., 2007; Darrah et al., 2007; Precopio et al.,
2007).

TIMING OF ADJUVANT DELIVERY HAS A PROFOUND IMPACT ON
CROSS-PRIMING EFFICIENCY
Concerning the timing of cross-priming via the i.d. and i.v routes,
we do not argue that the observed differences are not simply aca-
demic, nor do we consider that achieving T cell cross-priming
2 days earlier is going to improve vaccination strategies. Instead,
it is our contention that the timing of antigen capture and T
cell engagement has a profound impact on the appropriate tim-
ing for adjuvant delivery. Clearly, there is interest to coordinate
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FIGURE 9 |The differential effects of adjuvant impact protection
against Listeria . Mice were immunized i.d. with 5 × 105 Kbm1mOva
splenocytes. Poly I:C was administered either the day of immunization or
3 days later. On day 9 post-immunization, mice were challenged with
5 × 105 CFU of Ova-expressingListeria. Two days later, the spleen (A) and
the liver (B) were harvested and bacterial load per organ was determined.
NI, non-immunized mice. Dotted lines correspond to median CFU in the
absence of poly I:C. Mann…Whitney testp-values were calculated,
comparing immunization condition to the NI control.

both innate and adaptive responses, but a careful evaluation of
how to optimally administer adjuvant and antigen is required.
In our studies we chose to evaluate poly I:C, a synthetic double-
stranded RNA (dsRNA) that engages endosomal TLR3 and MDA/5
on stromal cells (Longhi et al., 2009). It can induce IFN� /� and

IL-12p70 by DCs and has been reported to be a superior adju-
vant for T cell priming (Longhi et al., 2009). In addition, the
similar expression pattern of host sensors in mice versus human
make poly I:C a more attractive adjuvant for study in experimen-
tal models as compared to CpG (Rehli, 2002). Poly I:C has been
tested as a direct therapeutic agent in the setting of viral infec-
tion and cancer; and has also been used as anex vivomaturation
agent for DC adoptive cell therapy trials. Several formulations of
poly I:C are under late stage testing, including Ampligen (Hemi-
spheRx) and Hiltonol (Oncovir, Inc.) (Nicodemus and Berek,
2010; Rosenfeld et al., 2010; Flynn et al., 2011; Okada et al.,
2011).

While poly I:C is considered a proin”ammatory adjuvant,
previously studies have also reported that pre-treatment of ani-
mals with poly I:C inhibited antigen cross-presentation (Wilson
et al., 2006). The contrasting action of poly I:C remains poorly
understood and the mechanism of action governing these polar
phenomena has not been explored. Herein, we demonstrated
that administration of poly I:C 1 day post-intravenous immu-
nization resulted in enhanced cross-priming, however the same
timing of administration resulted in a blockade for intrader-
mal injection (Figure 7A). Consistent with the need for DCs
to capture antigen prior to adjuvant administration, poly I:C
given on day three enhanced the cross-priming of CD8+ T
cells following local antigen delivery (Figure 7B). We showed
that poly I:C induces DC activation as established by upregula-
tion of CD86 and MHC-II expression 1 day after administration
(Figure 8). Together, these data establish that in order to enhance
cross-priming poly I:C must be delivered at a time point after
the host DCs have captured the injected cell-associated antigen
(Figures 8C…E).

Results of recent clinical trials that combine delivery of anti-
gen and adjuvant indicate the importance of de“ning the opti-
mal time of innate immune stimulation. Using the same NY-
ESO-1 protein preparation, delivered locally in the skin, it was
observed that co-administration of adjuvant permitted ef“cient
cross-priming, whereas pre-conditioning of the injection site
diminished the ability to stimulate antigen-speci“c T cells (Val-
mori et al., 2007; Adams et al., 2008). There have also been
studies showing that injection of RNA vaccine in combination
with innate stimulation is not always the best strategy to achieve
ef“cient priming. First, Carralot and colleagues showed that the
delivery of GM…CSF 24 h after RNA injection enhanced T cell
priming (Carralot et al., 2004). Importantly, this adjuvant effect
was not observed when GM…CSF was delivered in combination
with RNA. Moreover, in a follow-up study from Diken et al.,
it was shown in experiments comparable to ours that subcuta-
neous delivery of 20µg poly I:C, 1 day prior to RNA injection
intranodally, abrogated the uptake of RNA vaccine (Diken et al.,
2011). Taken together with the observations we have made in
mice, we suggest that there is a trade-off between stimulating
innate receptors in immature DCs for purposes of triggering
an in”ammatory response and the resulting decrease in anti-
gen capture that is due to the induction of DC maturation.
One option might be the use of agonists that bind receptors
selectively expressed on mature DCs (e.g., CD40L;Lanzavecchia,
1998).
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OPTIMAL T CELL PRIMING BY INTRADERMAL INJECTION
Our studies highlight the importance of considering the timing
and persistence of antigen presentation, and suggest intrader-
mal injection with delayed adjuvant delivery to be the optimal
strategy for achieving CD8+ T cell cross-priming. While many
studies of CD8+ T cell priming conclude with a remark about
how important their “ndings are for predicting ef“cient means
of vaccinating humans, our efforts have a true possibility to be
translated into practice. For example, Russo and Fontana have
conducted pre-clinical and clinical studies utilizing peripheral
blood lymphocytes genetically modi“ed to express tumor anti-
gens as a strategy for inducing tumor immunity in cancer patients
(Russo et al., 2007; Fontana et al., 2009). In their treatment pro-
tocols, patients received “ve bi-weekly, i.v. infusions of escalating
numbers of autologous lymphocytes, reaching doses of 5× 108

total lymphocytes infused (range: 2…7× 108). Their clinical trial
was not designed to assess ef“cacy; nonetheless, it was possible
to observe clinical responses in 3/10 patients, which correlated
with priming of Mage-3 speci“c CD8+ T cells (Fontana et al.,
2009). These studies, as well as others, highlight the feasibility
of utilizing cell-associated antigen as a means of immunizing
patients. It also points to the need for relevant mouse models
aimed at optimizing strategies for achieving robust CD8+ T cell
cross-priming.

In sum, we demonstrate that, while slower, local injection of
cell-associated antigen resulted in the differentiation of a poly-
functional effector cell response during the T cell priming. Our
studies also highlight the importance of considering the timing
and persistence of antigen presentation, and suggest intradermal
injection with delayed adjuvant delivery to be the optimal strat-
egy for achieving CD8+ T cell cross-priming. While we hope this
study will impact vaccine design for prophylaxis and therapy, it
is clear that in the latter situation additional investigations will
be required in order to overcome intrinsic suppressive and/or
regulatory mechanisms that limit the success of immunotherapy
strategies.

MATERIALS AND METHODS
MICE
C57BL/6J wild-type mice were obtained from Charles River.
PtprcaPepcb/BoyJ (CD45.1) and Tg(TcraTcrb) 1100Mjb (OT-I
Rag+ /+ ) mice were obtained from The Jackson Laboratory (Bar
Harbor, ME, USA). Mice expressing membrane-bound full-length
Ova under an actin promoter were a gift from Dr. M. Jenkins
(University of Minnesota, USA) and the cross onto the H-2Kbm1

line was performed by Dr. S. Schoenberger (LIAI, USA). All mice
were maintained and bred in a SPF helicobacter-negative facil-
ity, and used under approved protocols. In all experiments, 6- to
12-week-old mice were used.

REAGENTS
Antibodies for FACS analysis were obtained from BD Biosciences,
Biolegend, or eBiosciences (Table A1 in Appendix). Antibod-
ies used in the IFN� …ELISPOT assays were purchased from
Mabtech. The Ovalbumin H-2Kb epitope SIINFEKL peptide

was obtained from Polypeptide Group. Monomers were pre-
pared using a modi“ed version of that described (Altman et al.,
1996) and tetramerization was performed prior to use, using
PE…Streptavidin (Invitrogen), added for 1 h at 25�C. Intracellular
cytokine staining was done using the Cyto“x/Cytoperm/Brefeldin-
A kit (BD Biosciences). Poly I:C and CpG ODN2216 were pur-
chased from Invivogen. DOTAP was obtained from Roche. Label-
ing with carboxy”uorescein diacetate succinimidyl ester (CFSE)
was performed using the Vybrant cell tracer kit from Invitro-
gen. To label dead cells, DAPI or Aqua-Live/Dead Fixable Dead
Cell Stain kits from Invitrogen were used after tetramer-based
enrichment.

INJECTIONS
Splenocytes used for immunization were isolated from Kbm1mOva
mice. 5× 105 cells in a volume of 100µ l were injected intrader-
mally (i.d.) or intravenously (i.v.). The intradermal injection was
performed in the right ”ank with the inguinal lymph node being
the draining lymph node. For OT-I transfer, bulk splenocytes were
isolated from CD45.1 OT-I mice. 103, 106, or 5× 106 splenocytes
were transferred i.v. depending on the experiment. For injection
of Poly I:C, 100µg of Poly I:C was injected i.v. in a “nal volume of
100µ l. Forin vivorestimulation before intracellular staining, 5µg
of CpG is diluted in PBS and DOTAP; this was then formulated
with 1µg of SIINFEKL peptide and injected i.v. in a volume of
100µ l.

TETRAMER-BASED ENRICHMENT
Leukocytes were harvested from 15 lymph nodes and the spleen.
Cells were Fc-Blocked with anti-CD16/CD32 antibody and stained
with PE-labeled Kb…SIINFEKL tetramers in PBS containing 2%
FCS and 0.1% of Sodium Azide for 30 min at 4�C. It was fol-
lowed by an incubation with anti-PE magnetic microbeads (Mil-
tenyi). Cells were passed over a magnetic LS column to enrich
tetramer-positive cells. Bound cells were eluted (•enrichedŽ frac-
tion). Five microliter aliquot was collected for precise count-
ing of the bound fraction. Cells were stained with a mixture
of antibodies (CD11c, CD11b, CD4, NK1.1, F4/80, B220, CD3,
and CD8) to exclude cells (DUMP gate) and focus on CD8+

T cells (seeFigure 1A). Prior to analysis, DAPI was added to
mark dead cells. Cells were analyzed using a FACS Canto II
(BD Biosciences). Live, non-clumped, CD3+ CD8+ tetramer-
positive cells were gated. The percentage of tetramer-positive
cells was multiplied by the total number of cells in the enriched
fraction to obtain the total number of tetramer-positive CD8+

T cells.

TETRAMER-BASED ENRICHMENT COMBINED WITH INTRACELLULAR
STAINING
For in vivo restimulation, mice were injected with 5µg of
CpG/DOTAP formulated as a mixture with 1µg SIINFEKL pep-
tide 3 h prior to leukocyte harvest. Next, the tetramer-based
enrichment was performed with the addition of Brefeldin-A dur-
ing each incubation step. After the elution step, enriched cells were
stained with Aqua as a dead cell marker, incubated with surface
staining antibodies and “xed. Next, cells were permeabilized and
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stained using anti-IFN� as per the manufacturer•s instructions
(BD Biosciences). Forex vivorestimulation, the tetramer-based
enrichment was performed “rst and the eluted fraction was incu-
bated 4 h with SIINFEKL-pulsed splenocytes at 37�C. Then cells
were stained for IFN� , IL-2, and TNF� as per the manufacturer•s
instructions (BD Biosciences).

DETERMINING PERSISTENCE OF H-2Kb…SIINFEKL/MHC…PEPTIDE
COMPLEXES
CD45.1 OT-I splenocytes were isolated and stained using 5µM
CFSE in PBS. After washing with ice-cold PBS 5× 106 OT-I
splenocytes were injected i.v. into immunized mice. Three days
later the draining and non-draining lymph nodes, and the spleen
were harvested. Organs were processed independently and cells
were labeled with CD8� and CD45.1 antibodies allowing for
the identi“cation of the transferred CD8 OT-I T cells and the
determination of CFSE intensity.

IFN� ELISPOT
Spleen and the draining lymph node were harvested and CD8+ T
cells were puri“ed using anti-CD8 microbeads and MS columns
(Miltenyi). IFN� ELISPOT assays were performed as previously
described (Blachere et al., 2006). The ELISPOT plate evaluation
was performed in a blinded fashion by an independent evaluation
service (Zellnet Consulting) using an automated ELISPOT reader
(Carl Zeiss).

IMMUNOSCOPE
Kb…SIINFEKL tetramer-positive CD8+ T cells were sorted using a
FACSAria-II. Total RNA was prepared from sorted T cells using the
Total RNA Miniprep kit (Sigma), and cDNA was synthesized using
the SuperScript’II Reverse Transcriptase (Invitrogen). The differ-
ent V� germline genes can be clustered in 24 families according
to their level of homology (IMGT nomenclature). For quantita-
tive repertoire, PCR reactions were carried out by combining a
reverse primer and a speci“c ”uorophore-labeled probe for the
constant region (MGB…TaqMan probe) with 1 of 24 primers cov-
ering the different V� chains (Table A2in Appendix). Real-time
PCR reactions were subsequently carried out with a “nal concen-
trations of 400 nmol/L of each oligonucleotide primer,200 nmol/L
of the ”uorogenic probe, and FastStart master Mix (Roche). Ther-
mal cycling conditions comprised Taq DNA Polymerase activation
at 95�C for 10 min, then subjected to 40 cycles of denaturation
at 95�C for 15 s, annealing and extension at 60�C for 1 min. For
all these different reactions, real-time quantitative PCR was then
performed on an ABI-7300 system (Applied Biosystems). The rel-
ative usage of each V� family was calculated according to the
formula:

U
�
V� y

�
=

x= 24�

x= 1

2(Ct (x)ŠCt (y))

Ct(x) is the ”uorescent threshold cycle number measured
for the V� y family. For immunoscope pro“les, products were
then subjected to run-off reactions with a nested ”uorescent

primer speci“c for the constant region (Table A2 in Appen-
dix: Fam-primer) … run for a total of three cycles. The ”u-
orescent products were separated and analyzed using an ABI-
PRISM 3730 DNA analyzer. The size and intensity of each
band were analyzed with •Immunoscope softwareŽ (Pannetier
et al., 1993), which has been adapted to the capillary sequencer.
Fluorescence intensities were plotted in arbitrary units on
the y-axis, and CDR3 lengths (in amino acids) on thex-
axis.

CYTOTOXICITYIN VIVO
At different time points following the immunization, mice were
injected i.v. with 5× 106 CD45.1 splenocytes stained with 0.5µM
CFSE and pulsed with SIINFEKL peptide, and 5× 106 CD45.1
splenocytes stained with 5µM CFSE and left unpulsed. Fifteen
hours later, spleen was harvested and cells were stained with an
anti-CD45.1 antibody. The lysis of injected splenocytes was deter-
mined using the CFSE staining and the percentage of speci“c lysis
was calculated.

DC PHENOTYPE
Spleen and lymph node were digested with Collagenase D (Roche)
and Dnase (Invitrogen). Cells were stained for CD11c, CD11b,
CD8� , CD103, CD86, IAb/IEb, and analyzed by ”ow cytometry.
An aliquot was used to determine the absolute number of cells per
organ.

LISTERIAINFECTION
The Ovalbumin-expressingListeriais a kind gift from N. Glaichen-
haus. Mice were infected i.v. with 5× 105 colony forming units
(CFU). Two days later, the spleen and the liver were harvested and
mashed in NP-40 0.2% in water, and serial dilutions were plated
to determine the CFU per organ.

STATISTICAL ANALYSIS
Data was plotted with bars representing median value. We used
non-parametric (two-tailed) Mann…Whitney test to compare the
distributions between two conditions. In some instances, selective
comparisons between two groups within a multi-parameter exper-
iment were also performed using non-parametric Mann…Whitney
test. Continuous measurements were studied over time or accord-
ing to the peptide concentration using general linear modeling.
Statistical analysis was performed using Stata 11 software (Stata-
Corp, College Station, TX, USA) and Prism 5 (GraphPad Software
Inc., La Jolla, CA, USA).
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APPENDIX

Table A1 | Antibodies used for ßow cytometry experiments.

Antigen Clone Isotype Fluorochrome Company

cd3� 145-2C11 Hamster IgGl, � PerCP…Cy5.5 BD Pharmingen

CD4 RM4-5 Rat IgG2a,� Paci“c blue BD Pharmingen

CD8� 53-6.7 Rat IgG2a,� Alexa ”uor 700 BD Pharmingen

CD8� 53-6.7 Rat IgG2a,� PerCP…Cy5.5 BD Pharmingen

CD8� H35-17.2 Rat IgG2b, � APC eBioscience

CDllb Ml/70 Rat IgG2b, � eFluor 450 eBioscience

CDllc N418 Hamster IgG eFluor 450 eBioscience

CDllc HL3 Hamster IgGl, � APC BD Pharmingen

CD45.1 A20 Mouse IgG2a, � PE BD Pharmingen

CD45.1 A20 Mouse IgG2a, � APC BD Pharmingen

CD45.1 A20 Mouse IgG2a, � Paci“c blue Biolegend

CD86 GL1 Rat IgG2a,� FITC BD Pharmingen

CD103 M290 Rat IgG2a, � PE BD Pharmingen

NK1.1 PK136 Mouse IgG2a, � Paci“c blue Biolegend

B220 RA3-6B2 Rat IgG2a,� Paci“c blue BD Pharmingen

F4/80 BM8 Rat IgG2a, � eFluor 450 eBioscience

IA/IE M5/114.15.2 Rat IgG2b, � Alexa ”uor 700 eBioscience

IFN� XMG1.2 Rat IgGl, � APC BD Pharmingen

IL-2 JES6-5H4 Rat IgG2b Alexa ”uor 488 BD Pharmingen

TNF� MP6-XT22 Rat IgGl PE…Cy7 BD Pharmingen
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Table A2 | Sequences of the primers used for the immunoscope

analysis.

V� 1 TCACTGATACGGAGCTGAGGC

V� 2 GCCTCAAGTCGCTTCCAACCTC

V� 3 CACTCTGAAAATCCAACCCAC

V� 4 ATCAAGTCTGTAGAGCCGGAGGA

V� 5 CTGAATGCCCAGACAGCTCCAAGC

V� 12.1 AAGGTGGAGAGAGACAAAGGATTC

V� 12.2 CATTATGATAAAATGGAGAGAGAT

V� 12.3 AGAAAGGAAACCTGCCTGGTT

V� 13.3 CATTACTCATATGTCGCTGAC

V� 13.2 TTCATATGGTGCTGGCAGCACT

V� 13.1 TGCTGGCAACCTTCGAATAGGA

V� 14 AGGCCTAAAGGAACTAACTCCAC

V� 15 GATGGTGGGGCTTTCAAGGATC

V� 16 GCACTCAACTCTGAAGATCCAGAGC

V� 17 TCTCTCTACATTGGCTCTGCAGGC

V� 19 CTCTCACTGTGACATCTGCC

V� 20 CCCATCAGTCATCCCAACTTATCC

V� 21 CTGCTAAGAAACCATGTACCA

V� 23 TCTGCAGCCTGGGAATCAGAA

V� 24 AGTGTTCCTCGAACTCACAG

V� 26 ACCTTGCAGCCTAGAAATTCAGT

V� 29 TACAGGGTCTCACGGAAGAAGC

V� 30 CAGCCGGCCAAACCTAACATTCTC

V� 31 ACGACCAATTCATCCTAAGCAC

Reverse primer GGTAGCCTTTTGTTTGTTTGCAA

MGB…Taqman probe AGCCATCAAAAGCA

Fam-primer CTTGGGTGGAGTCACATTTCTC FIGURE A1 | Immunoscope proÞles from mice immunized i.d. or i.v.
Mice were immunized i.d. or i.v. with 5 × 105 Kbm1mOva splenocytes. On
day 9, 15 macroscopic lymph nodes and the spleen were harvested and a
Kb…SIINFEKL tetramer-based enrichment was performed for each mouse.
CD8 Kb…SIINFEKL tetramer-positive cells were sorted and pooled to obtain
25,000 cells per condition (corresponding to “ve mice per group). For the
non-immunized condition (NI), CD8+ T cells were sorted. An immunoscope
was performed to detect the 24 V � families (IMGT nomenclature). The
immunoscope pro“le was shown for each V � family. The total number of
peaks is indicated for each condition. Of note the values indicated in this
Figure are higher than those reported in Figure 5B as the former represent
pooled mice.
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FIGURE A2 | Single mouse analysis conÞrms that route of
immunization does not inßuenceT cell diversity. Mice were immunized
i.d. (A) or i.v. (B) with 5 × 105 Kbm1mOva splenocytes. On day 9, 15
macroscopic lymph nodes and the spleen were harvested and a
Kb…SIINFEKL tetramer-based enrichment was performed for each mouse.
CD8 Kb…SIINFEKL tetramer-positive cells were sorted. Immunoscope was
performed on cells sorted from individual mice (3,000…5,000 cells sorted
per mouse) to de“ne the length of the CDR3 loop in the 24 V � families
(IMGT nomenclature). Each color represents a distinct V� family.

FIGURE A3 | Intradermal injection of splenocytes results in a local
depot of donor cells. (A,B) FVB/N female recipients were immunized i.d.
or i.v. with 5 × 106 FVB/N-luciferase+ male splenocytes. (A,B) Following
immunization, mice injected i.d. were evaluated at 3 h and then on day 1, 2,
5, and 13. Prior to imaging, mice were injected i.p. with 3 mg of D-luciferin
(Synchem), followed by iso”urane inhalation to keep animals sedated during
analysis. Bioluminescence imaging was performed by using an IVIS Lumina
II system (Caliper Life Sciences). Images from mice were acquired over
10 min. Quanti“cation of the light emission was analyzed using Living
Image Software version 3.1 (Xenogen Corporation), expressed in
photons/s/cm 2/steradian. (A) Representative bioluminescence analysis
performed at 3 h is shown. (B) Kinetic analysis of the bioluminescent signal
is shown. (C,D) On days 3 and 7, the LNs (C) and the spleen (D) from mice
immunized i.d. or i.v. were harvested and placed in wells containing PBS
and D-luciferin to determine the total bioluminescent signal from each
organ. The bioluminescence is expressed as the total ”ux/organ in
photons/s. DLN, draining lymph node.
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