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Richard G. Jarman4, Thomas W. Scott5 and Christine Chevillon2

1Insects and Infectious Diseases, Institut Pasteur, CNRS URA 3012, 25 rue du Docteur Roux,

75724 Paris Cedex 15, France
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In contrast to the prevailing view that invertebrate immunity relies on broad-

spectrum recognition and effector mechanisms, intrinsic genetic compatibility

between invertebrate hosts and their pathogens is often highly specific in

nature. Solving this puzzle requires a better understanding of the molecular

basis underlying observed patterns of invertebrate host–pathogen genetic

specificity, broadly referred to as genotype-by-genotype interactions. Here,

we identify an invertebrate immune gene in which natural polymorphism is

associated with isolate-specific resistance to an RNA virus. Dicer-2 (dcr2)

encodes a key protein upstream of the RNA interference (RNAi) pathway, a

major antiviral component of innate immunity in invertebrates. We surveyed

allelic polymorphism at the dcr2 locus in a wild-type outbred population and

in three derived isofemale families of the mosquito Aedes aegypti that were

experimentally exposed to several, genetically distinct isolates of dengue

virus. We found that dcr2 genotype was associated with resistance to

dengue virus in a virus isolate-specific manner. By contrast, no such associ-

ation was found for genotypes at two control loci flanking dcr2, making it

likely that dcr2 contains the yet-unidentified causal polymorphism(s). This

result supports the idea that host–pathogen compatibility in this system

depends, in part, on a genotype-by-genotype interaction between dcr2 and

the viral genome, and points to the RNAi pathway as a potentially important

determinant of intrinsic insect-virus genetic specificity.

1. Introduction
Intrinsic compatibility between invertebrate hosts and their pathogens often

depends on the specific pairing of genotypes [1,2]. This genetic specificity,

referred to as genotype-by-genotype interactions, has been documented in a

wide variety of invertebrate host–pathogen systems [3–9] and can reach extreme

levels [10]. This observation is in contrast with the conventional view that invert-

ebrate immune systems only respond differently to broad classes of pathogens,

for example, Gram-positive and Gram-negative bacteria [11]. To resolve this

apparent paradox, a better understanding of the molecular basis underlying

observed genotype-by-genotype interactions between invertebrates hosts and

pathogens is required [12,13]. Molecular determinants of host–pathogen

specificity have been well described in plant-pathogen systems [14,15] and in

the case of compatibility patterns between genetically diverse pathogens and

major histocompatibility complex (MHC) variants of vertebrates [16,17]. With a

few exceptions [18–21], the genetic basis of invertebrate host–pathogen

compatibility is poorly understood. Identifying the mechanisms underlying

host–pathogen genetic specificity has important implications for a broad

spectrum of evolutionary, epidemiological and medical phenomena [1,13].

& 2012 The Author(s) Published by the Royal Society. All rights reserved.

 on December 3, 2012rspb.royalsocietypublishing.orgDownloaded from 

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2012.2437&domain=pdf&date_stamp=2012-11-28
mailto:louis.lambrechts@pasteur.fr
http://dx.doi.org/10.1098/rspb.2012.2437
http://dx.doi.org/10.1098/rspb.2012.2437
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org/


In the present study, we examined the role of an invert-

ebrate immune gene in strain-specific resistance to an RNA

virus. Dicer-2 (dcr2) encodes a ribonuclease acting upstream

of the RNA interference (RNAi) pathway [22], a major

antiviral component of innate immunity in invertebrates

[23–25]. Building on a previous study that revealed strong

genetic specificity in the interaction between Aedes aegypti

mosquitoes and dengue viruses (DENV) in a natural situation

in Thailand [5], we sought to determine whether genetic

polymorphism at the dcr2 locus could explain, in part, the

observed compatibility pattern. DENV (serotypes 1–4) are

mosquito-borne RNA viruses of the genus Flavivirus that

cause a spectrum of clinical manifestations ranging from

mild febrile illness to life-threatening haemorrhagic fever,

and are the most important insect-borne viral infection of

humans [26]. Aedes aegypti is the primary mosquito vector

of DENV worldwide [26].

We genotyped dcr2 and two flanking loci (AAEL006790

and AAEL006800; figure 1a) in a wild-type Ae. aegypti popu-

lation from Ratchaburi, Thailand and in three independent

isofemale families (i.e. the progeny of individual females)

derived from this population. AAEL006800 is a gene encoding

a sodium/chloride-dependent transporter located approxi-

mately 11.5 kb downstream of dcr2, and AAEL006790 is a

hypothetical protein-coding gene located approximately 92 kb

upstream of dcr2 (figure 1a). They were chosen in the close

vicinity of dcr2 as ‘negative controls’ to verify the locus-

specificity of genotype–phenotype associations tested at

the dcr2 locus. AAEL006800 is the closest gene downstream

of dcr2, whereas two other short genes (AAEL006801 and

AAEL006808) are located between dcr2 and AAEL006790. The

outbred population and the isofemale families represent two

complementary approaches to assess genotype–phenotype

associations. The outbred population provides a representative

sample of the natural genetic diversity at a locus, but has

reduced power to detect genotype–phenotype associations at

this locus because the genetic background, including other

genes underlying the phenotype, is diverse. In other words,

background variation in the outbred population results in a

stringent, although less sensitive, test of genotype–phenotype

associations. Conversely, isofemale families display restricted

overall genetic diversity (a maximum of four parental alleles

per locus), and increased power to detect genotype–phenotype

associations because siblings share a relatively homogenous

genetic background. Wemeasured the probability of viral infec-

tion of midgut epithelial cells and subsequent dissemination to

secondary tissues, which are two essential steps for DENV

transmission by Ae. aegypti bite. Both events are prerequisites

for virus transmission and have been used to define a

‘midgut infection barrier’ and a ‘midgut escape barrier’

underlying Ae. aegypti resistance to DENV [27].

2. Material and methods

(a) Mosquitoes and viruses
A laboratory Ae. aegypti population was established with a large
number (more than 1500) of immatures (larvae and pupae) col-
lected during 2007 in Ratchaburi, Thailand [5]. Mosquitoes
were maintained as a large, randomly mating population
(more than 1800 adults per generation) under standard con-
ditions for two generations to minimize the influence of
parental effects that can be confounded with genetic effects
[28]. We also derived three independent Ae. aegypti isofemale
families (denoted as A, B and C) generated as the progeny of
three inseminated females randomly chosen from the outbred
population. Families A, B and C were represented by
125, 112 and 96 individual females, respectively. We examined
statistical associations between genetic polymorphism and infec-
tion phenotype both in the parental, outbred population and
within the isofemale families. We exposed mosquitoes to an arti-
ficial DENV infectious blood meal as described previously [5].
The parental population was exposed to two DENV-1 isolates
collected in Ratchaburi, Thailand in 2007 (RTB-138 and RTB-
196) represented by 20 and 40 phenotyped Ae. aegypti females,
respectively. The three families were exposed to three other
DENV-1 isolates (BKK, KPP and RTB) collected during 2007 in
Thailand [5], resulting in 28–53 (mean 37) phenotyped females
per family-isolate pair. Prior to their use in experimental infec-
tions, all five isolates were passaged five times in Aedes

albopictus (C6/36) cells, with the exception of RTB-196 that was
passaged two times in Toxorhynchites splendens mosquitoes and
three times in C6/36 cells.

Two conventional indices of mosquito resistance to DENV
were measured: (i) the proportion of mosquitoes that became
infected and (ii) the proportion of infected mosquitoes (excluding
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Figure 1. Allelic polymorphism in the dcr2 genomic region of Aedes aegypti. (a) Schematic of the Dicer-2 (dcr2) genomic region showing the position of flanking

genes (AAEL006790 and AAEL006800) used as control loci. Distances are not drawn to scale. (b) Pie charts of the frequency of alleles (coded with numbers,

independently for each locus) identified in a sample of 100 Ae. aegypti females from the outbred mosquito population for the three genes shown in (a).
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uninfected ones) that developed a disseminated infection (virus
was detected in their head or their legs) 14 days after the infec-
tious blood meal at 288C [5]. These phenotypes relate to the
Ae. aegypti ‘midgut infection barrier’ and ‘midgut escape barrier’
to DENV transmission that were previously described [27]. The
complete genome sequences of BKK, KPP and RTB virus isolates
(GenBank accession nos HM469966, HM469967 and HM469968,
respectively), showed 2.4 per cent overall nucleotide divergence
and 1.8 per cent mean pairwise nucleotide divergence. The com-
plete genome sequences of isolates RTB-138 and RTB-196 are not
available yet, but the sequence of more than 96 per cent of
their genomes showed similar levels of nucleotide divergence.
Because the infectious blood meal offered to mosquitoes was
standardized (including the infectious dose), isolate was used
as a proxy for virus genetic identity.

Phylogenetic relationships between the five DENV-1 isolates
in the study and a representative set of DENV-1 isolates pre-
viously collected in southeast Asia were examined by focusing
on the coding part of the viral genome (see alignment in the
electronic supplementary material, file S1). Absence of recombi-
nation events was verified with the RDP3 software [29].
Phylogenetic relationships were inferred with MEGA5 [30]
using the maximum-likelihood method and the general
reversible model (GRTþ Gþ I) based on a Gamma discrete dis-
tribution and a 3.63 per cent proportion of invariant sites. The
bootstrap consensus tree was based on 500 replicates and the
few nucleotide positions containing gaps were ignored.

(b) Mosquito genotyping
The dcr2 gene (ID AAEL006794 in VectorBase: http://aaegypti.
vectorbase.org/) was genotyped by amplifying a 572-bp region
located at positions 1559–2106 in the transcript sequence
(AAEL006794-RA) consisting of (i) 205 bp in exon 7, transcript
positions 1599–1803, located in a putative helicase domain; (ii) a
64-bp intron; and (iii) 303 bp in exon 8, transcript positions
1804–2106, in a putative dsRNA binding domain. Specific
forward and reverse PCR primers were as follows: FOR
50-CGTGTTAGAGGAGGGGATTG, REV 50-CAACTTGATATTGC
GCATGG. PCR products were verified on an agarose gel and
sequenced by the Sanger technique. The intron contained two
poly-T sequences of 10þ nucleotides that appeared to present fre-
quent insertions/deletions in this Ae. aegypti population, which
resulted in unreadable sequencing chromatograms for heterozy-
gotes and prevented further analysis. Exon 7, therefore, was
sequenced using the forward primer and exon 8 using the reverse
primer. The 205 nucleotides of exon 7 were 100 per cent conserved
in both the outbred population and the isofemale families, so
that dcr2 genotype was determined based on exon 8 polymorph-
ism. Seven biallelic single nucleotide polymorphisms (SNPs)
were identified (1806C. T, 1839C. T, 1840C.A, 1851C.T,
1884G. A, 2004G. C and 2029A. G, where numbers refer to
the transcript position and letters indicate the most and least
frequent alleles, respectively). All are synonymous substitutions
with the exception of 1840C.A and 2029A. G, which result
in a leucine to isoleucine (Leu. Ile) and isoleucine to valine
(Ile. Val) amino acid changes in the protein, respectively. The
AAEL006800 control locus was genotyped based on six biallelic
SNPs identified by amplifying a 417-bp region of exon 6 with
the following PCR primers: FOR 50-GCGTCGTGCCGGTCGT
AGTC-30 and REV 50-GGTTTCCCTGCCCCCAACGG-30. The
AAEL006790 control locus was genotyped based on seven biallelic
SNPs identified by amplifying a 266-bp region including Intron
2–3 (144 bp) with the following PCR primers: FOR 50-GGTTACC
GTCGCTGAAAGAA-30 and REV 50-ATGCTCCACAGTACCGA
TCA-30. All sequencing chromatograms were aligned in Geneious

Pro v. 5.6 [31] and verified manually. Alleles were reconstructed
using the PHASE algorithm implemented in DnaSP v. 5.0 [32],

with separate runs for each isofemale family and for the parental
population. We primarily used allelic information instead of indi-
vidual SNPs because SNPs are most often biallelic and, therefore,
might not faithfully represent the true allelic diversity of the locus.
The number of alleles identified is contingent on the number of
SNPs considered per locus, which in turn depends on the size
of the PCR product. We arbitrarily chose a number of SNPs that
provided sufficient resolution to discriminate at least four alleles
(i.e. the maximum number of alleles expected to be found in the
isofemale families).

(c) Population genetics
The occurrence of linkage disequilibrium (LD) was tested for each
pair of loci in the outbred population using exact probability tests
for genotypic disequilibrium (batches¼ 5000; iterations¼ 20 000;
dememorization¼ 1000) implemented in GENEPOP v. 4.0 [33].
Recombination parameters were estimated in PHASE v. 2.1.1
[34] using the general model for recombination rates of
multi-allelic loci other than microsatellites (i.e. that does not
assume a stepwise mutation model). All default priors were
unchanged with the exception of a prior background recom-
bination parameter of 2 " 1025. Different prior values (range
4 " 1026–8 " 1023) for the background recombination par-
ameter did not qualitatively change the results. The final run
was iterated 10 times (all loci). Results shown are those with
the best average goodness-of-fit from 10 independent runs of
the algorithm. The possibility that laboratory colonization
resulted in a demographic bottleneck was examined in the
outbred population using two complementary analyses. First,
because allele number decreases faster than heterozygosity
when populations shrink in size, a signature of bottlenecks
observed in subsequent generations is He. Heq, where He is
the expected heterozygosity in the population of interest under
Hardy–Weinberg equilibrium and Heq is the expected hetero-
zygosity in a population with the same sample size and allele
number at mutation-drift equilibrium [35]. This analysis was
performed using BOTTLENECK v. 1.2 [36]. Second, we calcu-
lated Tajima’s D and Fu and Li’s F* statistics for each of the
three genes in DnaSP v. 5.0 [32]. Negative values of D and F*
indicate an excess of rare alleles relative to expectation under
demographical stability and quasi-neutral evolution, and are
interpreted as a recent population bottleneck (or a selective
sweep in a demographically stable population).

(d) Genotype–phenotype associations
For the outbred population, only the two most common geno-
types of each locus were included in the genotype–phenotype
association analyses because the sample sizes for other
genotypes were too small for a meaningful analysis. The pro-
portion of infected mosquitoes and the proportion of infected
mosquitoes that developed a disseminated infection (exclud-
ing uninfected ones) were analysed using a nominal logistic
regression that included the effects of genotype, isolate, infec-
tious dose and their interactions up to the second order. The
isolate " infectious dose interaction was omitted from the
model because one of the two isolates had only been used at
one virus concentration and, therefore, this interaction could
not be tested. For the isofemale families, the analysis was con-
ducted in two steps. First, the proportion of infected females
and the proportion of infected females with a disseminated infec-
tion were analysed with a nominal logistic regression that
included the effects of family, isolate, genotype and their inter-
actions up to the second order. Genotype was nested within
family because each family contained a different set of geno-
types. Second, because the main effect of the family proved
insignificant in the initial analysis, the same analysis was per-
formed without including the family, so that all genotypes
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were pooled regardless of family. Differences were considered
statistically significant at p , 0.05. All statistical analyses were
performed with JMP v. 10.0 (SAS Institute Inc., NC, USA).

Full datasets, including phenotypes, genotypes and individual
SNP calls are provided for both the outbred population (see the
electronic supplementary material, file S2) and the isofemale
families (see the electronic supplementary material, file S3).

3. Results
Phylogenetic analysis of the coding region of viral genomes

detected no major recombination event among the five

DENV-1 isolates used in the present study and other viruses

that recently circulated in Thailand. The five DENV-1 isolates

of the study belong to two sister groups nested within a large

phylogenetic lineage referred to as genotype I (figure 2). All

five isolates are closely related to viruses that circulated

during 2001 in Bangkok and Kamphaeng Phet (see BKK01

and KPP01 in figure 2). Four of the five isolates cluster

together in one sister group, whereas the KPP isolate

diverged slightly earlier and belongs to the other sister

group. Pairwise differences between isolates were nucleotide

substitutions scattered throughout the viral genome (see the

electronic supplementary material, file S1).

Single nucleotide polymorphisms (SNPs) surveyed at the

dcr2 locus in a sample of 100 individuals of the outbred

Ae. aegypti population defined 17 genotypes resulting from

10 different dcr2 alleles (provisionally named 01 to 10) with

frequencies ranging from 0.5 to 61.5 per cent (figure 1b).

Flanking genes displayed a similar pattern of polymorphism

with 11–12 genotypes based on six to eight alleles per

locus (figure 1b). Consistent with their close physical proxi-

mity, genotypic LD was significant between each pair

of loci (dcr2-AAEL006790: p ¼ 0.0017; dcr2-AAEL006800:

p ¼ 0.0023; AAEL006790-AAEL006800: p ¼ 0.0433). Fifteen

of the 42 possible pairs of individual SNPs resulted in
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significant LD between dcr2 and AAEL006790, whereas 8 of

the 42 possible pairs of SNPs showed significant LD between

dcr2 and AAEL006800. The median value of recombination

rate estimated for the dcr2 genomic region was 4 " 1026 per

generation (95% CI 1.0 " 1028–3.7 " 1024). Assuming an

effective population size between 500 and 1000 individuals,

this corresponds to 0.1–0.2% recombination per Mb, in agree-

ment with a previous genome-wide estimate of 0.15 per cent

recombination per Mb [37,38]. There was no indication of

a population bottleneck that may have occurred during

laboratory colonization of the population. Heterozygosity

calculated from the allele frequencies (He) at the three loci

did not deviate significantly from expected heterozygosity

at mutation-drift equilibrium (Heq), with a tendency for a het-

erozygosity deficit instead of the expected heterozygosity

excess following a population bottleneck (dcr2: He ¼ 0.59,

Heq ¼ 0.69, p ¼ 0.15; AAEL006790: He ¼ 0.49, Heq ¼ 0.53,

p ¼ 0.35; AAEL006800: He ¼ 0.44, Heq ¼ 0.62, p ¼ 0.13). Simi-

larly, Tajima’s D and Fu and Li’s F* statistics did not detect

any departure from neutral evolution at mutation-drift

equilibrium, with a tendency for a deficit of rare alleles

instead of the expected excess of rare alleles following a

population bottleneck (dcr2: D ¼ 0.515, p. 0.1, F* ¼ 0.361,

p. 0.1; AAEL006790: D ¼ 1.04, p. 0.1, F* ¼ 1.26, p. 0.1;

AAEL006800: D ¼ 2 0.09, p. 0.1, F* ¼ 0.795, p. 0.1).

In the three isofemale families, parental haplotypes could

be inferred from the relative proportions of genotype combi-

nations at the three loci (see the electronic supplementary

material, figure S1). In families A and B (n ¼ 125 and

n ¼ 112, respectively), individuals were partitioned into

four clusters of genotypes with approximately equal frequen-

cies that were consistent with a single possible combination

of parental haplotypes (see the electronic supplementary

material, figure S1). Only one recombinant (0.8%) was

observed in family A. In family C, 100 per cent of individuals

(n ¼ 96) had the same genotype at all three loci. Taken

together, patterns of polymorphism confirmed that a single

mating pair had founded each isofemale family.

Females in the outbred population were experimentally

exposed to two genetically distinct (1.2% nucleotide diver-

gence) DENV-1 isolates that were designated as RTB-138

and RTB-196. Out of the 17 different dcr2 genotypes ident-

ified in the population, only the two most common dcr2

genotypes (01–01 and 01–10) had large enough sample

sizes (n. 10) to be analysed statistically. We analysed both

the proportion of virus-exposed mosquitoes that became

infected and the proportion of infected mosquitoes that

developed a disseminated viral infection 14 days after the

infectious blood meal as a function of the dcr2 genotype

(01–01 or 01–10), the virus isolate (RTB-138 or RTB-196)

and the infectious dose (RTB-196 was used at two different

concentrations in the artificial infectious blood meal). The

only factor that significantly influenced the probability of

infection was the dcr2 genotype " isolate interaction (likeli-

hood-ratio x2 ¼ 5.75, d.f. ¼ 1, p ¼ 0.0165), indicating that

(i) there was a significant genotype–phenotype association

and (ii) this association was virus isolate-specific. Including

the two flanking genes in the model did not change the

significance of the dcr2 genotype " isolate interaction (LR

x2 ¼ 5.04, d.f. ¼ 1, p ¼ 0.0247). This interaction remained

the only significant effect when dcr2 genotypes were defined

by the most informative individual SNP alone (i.e. with

the highest minor allele frequency) at the dcr2 locus (LR

x2 ¼ 5.75, d.f. ¼ 1, p ¼ 0.0165). Among infected mosquitoes

(excluding uninfected), the only factor that significantly

influenced the probability of dissemination was again the

dcr2 genotype " isolate interaction (LR x2 ¼ 4.57, d.f. ¼ 1,

p ¼ 0.0325). The result was robust when using the most

informative individual SNP alone (LR x2 ¼ 4.57, d.f. ¼ 1,

p ¼ 0.0325). Because the interaction effect resulted in a similar

pattern for infection and dissemination, for the sake of simpli-

city, the cumulative probability of infection þ dissemination

is shown in figure 3. Although the infection þ dissemina-

tion probability of both isolates was similar (approx. 50%)

for mosquitoes with genotype 01–01, it was strikingly differ-

ent for mosquitoes with genotype 01–10 (figure 3). Among

mosquitoes with genotype 01–10, none had a disseminated

infection with isolate RTB-138, whereas almost 90 per cent

had a disseminated infection with isolate RTB-196.

Because of the significant LD, distribution overlap between

the two most common dcr2 genotypes and the two most

common genotypes at the control loci was 76.3 per cent

for AAEL006790 and 88.1 per cent for AAEL006800. In

contrast to the dcr2 locus, however, no genotype " isolate

interaction associated with infection probability was detected

at either control locus when considering their two most

common genotypes (AAEL006790: LR x2 ¼ 0.26, d.f. ¼ 1,

p ¼ 0.6090; AAEL006800: LR x2 ¼ 0.05, d.f. ¼ 1, p ¼ 0.8186)

despite an increase in statistical power due to larger sample

sizes (n ¼ 61, n ¼ 74 and n ¼ 79 for dcr2, AAEL006790

and AAEL006800, respectively). The genotype " isolate
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Figure 3. Isolate- and locus-specific association between viral dissemination

and dcr2 genotype in the outbred mosquito population. Interaction plot

showing the percentage of mosquitoes in the outbred population that

developed a disseminated viral infection by two different DENV isolates (blue,

RTB-138; orange, RTB-196) as a function of the two most common genotypes

at the dcr2 locus and at two control flanking loci (right-hand side of the

dashed vertical line), compared with the percentage of dissemination in the

entire population (left-hand side of the dashed vertical line). Dotted, vertical

bars are 95% CI of the percentages. P-values above the graph indicate the

statistical significance of the genotype " isolate interaction term in a

multifactorial logistic regression accounting for the effects of infectious dose,

isolate and genotype. Note that for simplicity, uninfected individuals are

included in this analysis so that dissemination prevalence is a composite

phenotype reflecting both midgut infection and viral dissemination. Separate

analyses showed a similar effect of the genotype " isolate interaction on both

virus infection and dissemination probabilities.
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interaction remained insignificant at each control locus

when the genotypes were defined by the most informative

individual SNP alone (AAEL006790: LR x2 ¼ 0.26, d.f. ¼ 1,

p ¼ 0.6090; AAEL006800: LR x2 ¼ 0.05, d.f. ¼ 1, p ¼ 0.8186).

Likewise, when the analysis of dissemination probability

(excluding uninfected females) was performed for the two

most common genotypes of each control locus, no significant

genotype " isolate interaction was detected (AAEL006790:

LR x2, 0.01, d.f. ¼ 1, p. 0.9999; AAEL006800: LR

x2 ¼ 2.32, d.f. ¼ 1, p ¼ 0.1280). The genotype " isolate

interaction remained insignificant when the analysis of disse-

mination at control loci was performed with the most

informative individual SNP alone (AAEL006790: LR

x2, 0.01, d.f. ¼ 1, p. 0.9999; AAEL006800: LR x2 ¼ 2.32,

d.f.¼ 1, p ¼ 0.1280). In combination, our analysis demon-

strated that among the three neighbour genes examined, the

genotype"isolate interaction was specific to dcr2 (figure 3).

Females in the isofemale families derived from the

outbred Ae. aegypti population were exposed to three differ-

ent, genetically distinct (2.4% overall nucleotide divergence)

DENV-1 isolates designated RTB, BKK and KPP. Analysis

of the proportion of infected females including the effects

of family, isolate, dcr2 genotype (nested within the families

because each family contained a different set of dcr2

genotypes; electronic supplementary material, figure S1)

and their interactions confirmed the significant effect

of the family " isolate interaction (LR x2 ¼ 13.4, d.f. ¼ 4,

p ¼ 0.0096) previously reported [5], but detected no influence

of the dcr2 genotype (LR x2 ¼ 2.29, d.f. ¼ 4, p ¼ 0.6825)

or its interaction with the isolate (LR x2 ¼ 6.20, d.f. ¼ 8,

p ¼ 0.6302). An initial genotype–phenotype association

analysis of dissemination (excluding uninfected females)

that included the effects of family, isolate and dcr2 genotype

(nested within family) revealed a strong main effect of the

isolate (LR x2 ¼ 29.5, d.f. ¼ 2, p, 0.0001), but no overall

influence of the family (LR x2 ¼ 0.69, d.f. ¼ 2, p ¼ 0.7077).

In this analysis, the genotype " isolate interaction (nested

within the family) was statistically significant (LR x2 ¼ 23.8,

d.f. ¼ 8, p ¼ 0.0025), indicating that within each separate

family, there was an isolate-specific genotype–phenotype

association. Because the main family effect was not a signifi-

cant predictor of the phenotype, it was removed from the

subsequent analysis. Thus, all dcr2 genotypes were pooled

regardless of family. In this analysis, again the probability

of virus dissemination was significantly influenced by the

dcr2 genotype " isolate interaction (LR x2 ¼ 25.0, d.f. ¼ 8,

p ¼ 0.0015). Including the two flanking genes in the model

did not change the significance of the dcr2 genotype " isolate

interaction (LR x2 ¼ 25.4, d.f. ¼ 8, p ¼ 0.0013). Analysis of

the most informative individual SNP at the dcr2 locus

confirmed a significant genotype " isolate interaction (LR

x2 ¼ 15.0, d.f. ¼ 4, p ¼ 0.005). By contrast, no significant

genotype " isolate interaction was detected when the

same analysis was performed at either one of the control

loci (AAEL006790: LR x2 ¼ 7.35, d.f. ¼ 8, p ¼ 0.4997;

AAEL006800: LR x2 ¼ 13.6, d.f. ¼ 8, p ¼ 0.0920) despite an

identical statistical power due to equal sample size and gen-

otype number at all three loci. The genotype " isolate

interaction remained insignificant at the control loci when

genotypes were defined by the most informative indivi-

dual SNP (AAEL006790: LR x2 ¼ 1.17, d.f. ¼ 2, p ¼ 0.557;

AAEL006800: LR x2 ¼ 4.15, d.f. ¼ 2, p ¼ 0.126). Analyses per-

formed with the isofemale families confirmed the conclusion

obtained from the parental outbred population; i.e. that iso-

late-specific resistance is associated with polymorphism at

the dcr2 locus, but not with other polymorphisms present

in the same chromosomal region (figure 4).

The ranking order of isolates did not strongly differ across

genotypes for the two control loci, with isolate RTB result-

ing in the highest percentage of viral dissemination

(approx. 90%) and isolates KPP and BKK achieving a similar

level (approx. 50%). By contrast, there was a marked differ-

ence in the ranking order of isolates across dcr2 genotypes

(figure 4). This strong interaction appeared to be primarily

driven by genotype 01–10, which conferred strong resistance

against isolate RTB (approx. 25% dissemination versus .90%

for other dcr2 genotypes). Genotype 01–10 was not a univer-

sal resistance genotype, however, because approximately

80 per cent of mosquitoes with this genotype had a dissemi-

nated infection with isolate KPP. Thus, the isolate- and
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Figure 4. Isolate- and locus-specific association between viral dissemination and dcr2 genotype in the mosquito families. Interaction plot showing the percentage of

infected mosquitoes in the three isofemale families that developed a disseminated viral infection from three different DENV isolates (green, BKK; blue, KPP; red, RTB)

as a function of the genotype at the dcr2 locus (b) and at the two control loci (a,c). Dotted, vertical bars are 95% CI of the percentages. P-values above the graphs

indicate the statistical significance of the genotype " isolate interaction term in a two-way logistic regression accounting for the effects of isolate and genotype.

Genotypes from the three families are pooled because the main effect of family was insignificant and thus removed from the analysis. Note that for purposes of

clarity, one data point (KPP isolate, genotype 01–03) was omitted in (a) because it consisted of only two individuals.
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locus-specific association detected between the dcr2 genotype

and the viral dissemination phenotype in the outbred popu-

lation was also found in the isofemale families exposed to

three additional DENV-1 isolates.

4. Discussion
Although the occurrence of specific genetic interactions

between invertebrate hosts and their pathogens is ubiquitous

in nature, the underlying molecular basis has rarely been

defined. In the present study, we document a statistical

association consistent with a genotype-by-genotype inter-

action between the mosquito antiviral gene dcr2 and DENV.

The dcr2 locus encodes the ribonuclease Dicer-2 that acts

upstream of the RNAi pathway, an important antiviral

defence mechanism of plants and invertebrates [39]. Dicer-2

recognizes and cleaves long double-stranded RNA (dsRNA)

molecules resulting from secondary structures or replication

intermediates. It processes viral dsRNA into 21–23 bp small

interfering RNAs (siRNAs), which are incorporated into an

RNA-induced silencing complex (RISC), leading to

sequence-specific degradation of the target viral RNA [22].

Transient silencing of key genes of the RNAi pathway,

including dcr2, results in a significant increase in DENV-2

titres in Ae. aegypti mosquitoes [24]. Constitutive impairment

of the RNAi pathway also results in increased dissemination

of Sindbis virus from the midgut of Ae. aegypti [40]. In

Drosophila, Dicer-2 displays an exceptionally elevated rate of

amino acid substitution, suggestive of rapid evolution

through natural selection by RNA viruses [41,42]. It is

worth noting that the low DENV prevalence in wild

Ae. aegypti populations [43] and a relatively modest fitness

cost of infection [44] make it unlikely that dcr2 polymorphism

is primarily shaped by DENV-mediated selection.

Our analyses were based on the same tests of genotype–

phenotype associations at one candidate gene, dcr2 and two

control genes flanking the dcr2 locus. Although statistical

power was identical or greater for the control genes than

for the candidate gene, dcr2 was the only locus for which

the interaction between mosquito genotype and virus isolate

significantly influenced the outcome of infection. Our

results point to the RNAi pathway as a possibly important

determinant of intrinsic insect-virus genetic specificity. This

is one of the few candidate immune genes underlying

strain-specific resistance identified in a natural invertebrate

population. This finding highlights the difficulty associated

with the genetic mapping of a locus involved in strain-

specific resistance. Because the effect of such a locus is

most apparent by comparing resistance patterns across sev-

eral pathogen strains, it will often go undetected by

conventional mapping strategies that use a single pathogen

strain [45]. Mapping loci involved in specific host–pathogen

interactions requires that multiple combinations of host and

pathogen genotypes are considered simultaneously [13].

Although alternatives are unlikely, our study design does

not allow us to conclusively assign a causal role to the dcr2

locus because the statistical association could result from

undetected LD between dcr2 and the causal polymorph-

ism(s). Below, we discuss three potential scenarios. (i) Large

chromosomal inversions may link physically distant genetic

loci. Existence of inversion polymorphisms has been hypoth-

esized in Ae. aegypti because some genomic regions have a

reduced recombination rate [46]. Direct evidence for segregat-

ing chromosomal inversions, however, has only been

detected in the forest form Ae. aegypti formosus, which is

found in West Africa [47]. To the best our knowledge, segre-

gating chromosomal inversions have not been detected

among wild populations of the domestic form Ae. aegypti

aegypti that we used in our study. If dcr2 is located within a

chromosomal inversion, flanking genes would remain valid

controls. In the unlikely event that the inversion breakpoint

was located precisely at the dcr2 locus, at least one of the

two flanking genes would remain a valid control locus. In

contrast to this hypothesis, both flanking loci showed similar

levels of LD with dcr2 in the outbred population and we

failed to detect the genotype–phenotype association found

at the dcr2 locus. (ii) A demographic bottleneck during lab-

oratory colonization of the mosquito population may have

artificially increased LD. Maintaining a large population

size at each generation since the initial field collection,

however, should have limited genetic drift during the coloni-

zation process. Accordingly, population genetic parameters

in the outbred population did not display any signature of

a recent demographic bottleneck. (iii) Long-range LD may

exist between dcr2 and a physically unlinked locus due to epi-

static selection [48]. In this case, the dcr2 locus would be in

stronger LD with one or more distant gene(s) than with phys-

ically close loci because of functional relationships between

the genes. Even under this scenario, however, our conclusion

that polymorphism at the dcr2 locus influences the phenotype

would remain valid.

We do not expect that the dcr2 locus is solely respon-

sible for the variation in Ae. aegypti resistance to DENV,

which is known to be a polygenic trait [27]. In the present

study, a variance component analysis estimated that the

specific dcr2 genotype " virus isolate interaction explained

17.8 per cent of the total variance in the probability of

viral dissemination among the isofemale families. The exist-

ence of other genetic factors influencing mosquito resistance

to DENV may help to explain why in the isofemale families

dcr2 genotype was only associated with isolate-specific

probability of viral dissemination from the midgut to the

rest of the mosquito body, but not with midgut infection

probability. In the outbred population, dcr2 genotype influ-

enced both infection of midgut epithelial cells and

subsequent dissemination to secondary tissues. We specu-

late that the isofemale families may have captured a

subset of polymorphisms at other genetic loci involved in

resistance to DENV that were not fully representative of

the outbred population.

The underlying mechanism of virus isolate-specific resist-

ance of different dcr2 genotypes remains to be characterized.

We hypothesize that non-synonymous polymorphisms

within dcr2 may result in differential dsRNA binding affi-

nities of the Dicer-2 protein for particular dsRNA

sequences and thus differential recognition of particular

viral strains, leading to variation in the efficiency of RNAi-

mediated antiviral activity. This hypothesis is supported by

results of an in vitro study that detected significant variation

among different DENV strains in their sensitivity to Dicer-2

knock-down [49]. Alternatively, different viral RNAi sup-

pressors may differentially affect the activity of Dicer-2

allelic variants [23,50,51]. Future studies will dissect the

mechanistic basis of Dicer-2 implication in insect-virus

genetic specificity.
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