C. De-duve, The lysosome. Sci Am, pp.64-72, 1963.

N. Fujita and T. Yoshimori, Ubiquitination-mediated autophagy against invading bacteria, Current Opinion in Cell Biology, vol.23, issue.4, pp.492-497, 2011.
DOI : 10.1016/j.ceb.2011.03.003

V. Kirkin, D. Mcewan, and I. Novak, A Role for Ubiquitin in Selective Autophagy, Molecular Cell, vol.34, issue.3, pp.259-269, 2009.
DOI : 10.1016/j.molcel.2009.04.026

A. Hamai and P. Codogno, New Targets for Acetylation in Autophagy, Science Signaling, vol.5, issue.231, p.29, 2012.
DOI : 10.1126/scisignal.2003187

H. Jeong, F. Then, T. Melia, . Jr, J. Mazzulli et al., Acetylation Targets Mutant Huntingtin to Autophagosomes for Degradation, Cell, vol.137, issue.1, pp.60-72, 2009.
DOI : 10.1016/j.cell.2009.03.018

T. Johansen and T. Lamark, Selective autophagy mediated by autophagic adapter proteins, Autophagy, vol.70, issue.3, pp.279-296, 2011.
DOI : 10.1016/j.cell.2009.03.048

D. Glick, S. Barth, and K. Macleod, Autophagy: cellular and molecular mechanisms, The Journal of Pathology, vol.21, issue.1, pp.3-12, 2010.
DOI : 10.1002/path.2697

D. Mijaljica, M. Prescott, and R. Devenish, Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum, Autophagy, vol.7, issue.7, pp.673-682, 2011.
DOI : 10.4161/auto.7.7.14733

S. Orenstein and A. Cuervo, Chaperone-mediated autophagy: Molecular mechanisms and physiological relevance, Seminars in Cell & Developmental Biology, vol.21, issue.7, pp.719-726, 2010.
DOI : 10.1016/j.semcdb.2010.02.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914824

D. Klionsky, H. Abeliovich, P. Agostinis, D. Agrawal, G. Aliev et al., Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes, Autophagy, vol.4, issue.2, pp.151-175, 2008.
DOI : 10.4161/auto.5338

URL : https://hal.archives-ouvertes.fr/hal-00214269

S. Tooze and T. Yoshimori, The origin of the autophagosomal membrane, Nature Cell Biology, vol.17, issue.9, pp.831-835, 2010.
DOI : 10.1038/ncb0910-831

S. Alers, A. Loffler, S. Wesselborg, and B. Stork, Role of AMPK-mTOR-Ulk1/2 in the Regulation of Autophagy: Cross Talk, Shortcuts, and Feedbacks, Molecular and Cellular Biology, vol.32, issue.1, pp.2-11, 2012.
DOI : 10.1128/MCB.06159-11

S. Alers, A. Loffler, S. Wesselborg, and B. Stork, The incredible ULKs, Cell Communication and Signaling, vol.10, issue.1, p.7, 2012.
DOI : 10.1038/nrm2239

N. Hosokawa, T. Hara, T. Kaizuka, C. Kishi, A. Takamura et al., Nutrient-dependent mTORC1 Association with the ULK1-Atg13-FIP200 Complex Required for Autophagy, Molecular Biology of the Cell, vol.20, issue.7, pp.1981-1991, 2009.
DOI : 10.1091/mbc.E08-12-1248

J. Kim, M. Kundu, B. Viollet, and K. Guan, AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1, Nature Cell Biology, vol.4, issue.2, pp.132-141, 2011.
DOI : 10.1016/j.cub.2010.04.041

C. Jung, C. Jun, S. Ro, Y. Kim, N. Otto et al., ULK-Atg13-FIP200 Complexes Mediate mTOR Signaling to the Autophagy Machinery, Molecular Biology of the Cell, vol.20, issue.7, pp.1992-2003, 2009.
DOI : 10.1091/mbc.E08-12-1249

D. Bartolomeo, S. Corazzari, M. Nazio, F. Oliverio, S. Lisi et al., The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy, The Journal of Cell Biology, vol.61, issue.1, pp.155-168, 2010.
DOI : 10.1083/jcb.201002100.dv

K. Obara, T. Noda, K. Niimi, and Y. Ohsumi, Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in Saccharomyces cerevisiae, Genes to Cells, vol.8, issue.6, pp.537-547, 2008.
DOI : 10.1105/tpc.104.025395

H. Knaevelsrud and A. Simonsen, Lipids in autophagy: Constituents, signaling molecules and cargo with relevance to disease, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1821, issue.8, pp.1133-1145, 2012.
DOI : 10.1016/j.bbalip.2012.01.001

T. Proikas-cezanne, S. Ruckerbauer, Y. Stierhof, C. Berg, and A. Nordheim, Human WIPI-1 puncta-formation: A novel assay to assess mammalian autophagy, FEBS Letters, vol.114, issue.18, pp.3396-3404, 2007.
DOI : 10.1016/j.febslet.2007.06.040

H. Shin, M. Hayashi, S. Christoforidis, S. Lacas-gervais, S. Hoepfner et al., An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway, The Journal of Cell Biology, vol.1179, issue.4, pp.607-618, 2005.
DOI : 10.1073/pnas.92.11.4853

W. Fan, A. Nassiri, and Q. Zhong, Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L), Proceedings of the National Academy of Sciences, vol.108, issue.19, pp.7769-7774, 2011.
DOI : 10.1073/pnas.1016472108

N. Mizushima, H. Sugita, T. Yoshimori, and Y. Ohsumi, A New Protein Conjugation System in Human. THE COUNTERPART OF THE YEAST Apg12p CONJUGATION SYSTEM ESSENTIAL FOR AUTOPHAGY, Journal of Biological Chemistry, vol.273, issue.51, pp.33889-33892, 1998.
DOI : 10.1074/jbc.273.51.33889

N. Mizushima, A. Kuma, Y. Kobayashi, A. Yamamoto, M. Matsubae et al., Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate, Journal of Cell Science, vol.116, issue.9, pp.1679-1688, 2003.
DOI : 10.1242/jcs.00381

N. Mizushima, A. Yamamoto, M. Hatano, Y. Kobayashi, Y. Kabeya et al., Dissection of Autophagosome Formation Using Apg5-Deficient Mouse Embryonic Stem Cells, The Journal of Cell Biology, vol.266, issue.4, pp.657-668, 2001.
DOI : 10.1091/mbc.10.5.1353

K. Suzuki, T. Kirisako, Y. Kamada, N. Mizushima, T. Noda et al., The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation, The EMBO Journal, vol.20, issue.21, pp.5971-5981, 2001.
DOI : 10.1093/emboj/20.21.5971

J. Hemelaar, V. Lelyveld, B. Kessler, and H. Ploegh, A Single Protease, Apg4B, Is Specific for the Autophagy-related Ubiquitin-like Proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L, Journal of Biological Chemistry, vol.278, issue.51, pp.51841-51850, 2003.
DOI : 10.1074/jbc.M308762200

I. Tanida, Y. Sou, J. Ezaki, N. Minematsu-ikeguchi, T. Ueno et al., HsAtg4B/HsApg4B/Autophagin-1 Cleaves the Carboxyl Termini of Three Human Atg8 Homologues and Delipidates Microtubule-associated Protein Light Chain 3- and GABAA Receptor-associated Protein-Phospholipid Conjugates, Journal of Biological Chemistry, vol.279, issue.35, pp.36268-36276, 2004.
DOI : 10.1074/jbc.M401461200

Y. Kabeya, N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako et al., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing, The EMBO Journal, vol.19, issue.21, pp.5720-5728, 2000.
DOI : 10.1093/emboj/19.21.5720

N. Mizushima, T. Noda, T. Yoshimori, Y. Tanaka, T. Ishii et al., A protein conjugation system essential for autophagy, Nature, vol.395, pp.395-398, 1998.

Y. Ohsumi and N. Mizushima, Two ubiquitin-like conjugation systems essential for autophagy, Seminars in Cell & Developmental Biology, vol.15, issue.2, pp.231-236, 2004.
DOI : 10.1016/j.semcdb.2003.12.004

T. Hanada, N. Noda, Y. Satomi, Y. Ichimura, Y. Fujioka et al., The Atg12-Atg5 Conjugate Has a Novel E3-like Activity for Protein Lipidation in Autophagy, Journal of Biological Chemistry, vol.282, issue.52, pp.37298-37302, 2007.
DOI : 10.1074/jbc.C700195200

N. Fujita, T. Itoh, H. Omori, M. Fukuda, T. Noda et al., The Atg16L Complex Specifies the Site of LC3 Lipidation for Membrane Biogenesis in Autophagy, Molecular Biology of the Cell, vol.19, issue.5, pp.2092-2100, 2008.
DOI : 10.1091/mbc.E07-12-1257

N. Mizushima, Autophagy: process and function, Genes & Development, vol.21, issue.22, pp.2861-2873, 2007.
DOI : 10.1101/gad.1599207

URL : http://www.genesdev.org/cgi/content/short/21/22/2861

E. Eskelinen, Maturation of Autophagic Vacuoles in Mammalian Cells, Autophagy, vol.1, issue.1, pp.1-10, 2005.
DOI : 10.4161/auto.1.1.1270

N. Ishihara, M. Hamasaki, S. Yokota, K. Suzuki, Y. Kamada et al., Autophagosome Requires Specific Early Sec Proteins for Its Formation and NSF/SNARE for Vacuolar Fusion, Molecular Biology of the Cell, vol.12, issue.11, pp.3690-3702, 2001.
DOI : 10.1091/mbc.12.11.3690

J. Lee, A. Beigneux, S. Ahmad, S. Young, and F. Gao, ESCRT-III Dysfunction Causes Autophagosome Accumulation and Neurodegeneration, Current Biology, vol.17, issue.18, pp.1561-1567, 2007.
DOI : 10.1016/j.cub.2007.07.029

URL : http://doi.org/10.1016/j.cub.2007.07.029

M. Gutierrez, D. Munafo, W. Beron, and M. Colombo, Rab7 is required for the normal progression of the autophagic pathway in mammalian cells, Journal of Cell Science, vol.117, issue.13, pp.2687-2697, 2004.
DOI : 10.1242/jcs.01114

S. Jager, C. Bucci, I. Tanida, T. Ueno, E. Kominami et al., Role for Rab7 in maturation of late autophagic vacuoles, Journal of Cell Science, vol.117, issue.20, pp.4837-4848, 2004.
DOI : 10.1242/jcs.01370

J. Leu, J. Pimkina, A. Frank, M. Murphy, and D. George, A Small Molecule Inhibitor of Inducible Heat Shock Protein 70, Molecular Cell, vol.36, issue.1, pp.15-27, 2009.
DOI : 10.1016/j.molcel.2009.09.023

J. Leu, J. Pimkina, P. Pandey, M. Murphy, and D. George, HSP70 Inhibition by the Small-Molecule 2-Phenylethynesulfonamide Impairs Protein Clearance Pathways in Tumor Cells, Molecular Cancer Research, vol.9, issue.7, pp.936-947, 2011.
DOI : 10.1158/1541-7786.MCR-11-0019

C. Liang, J. Lee, K. Inn, M. Gack, Q. Li et al., Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking, Nature Cell Biology, vol.69, issue.7, pp.776-787, 2008.
DOI : 10.1074/jbc.271.45.28593

K. Matsunaga, T. Saitoh, K. Tabata, H. Omori, T. Satoh et al., Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages, Nature Cell Biology, vol.19, issue.4, pp.385-396, 2009.
DOI : 10.1038/ncb1846

D. Chen, W. Fan, Y. Lu, X. Ding, S. Chen et al., A Mammalian Autophagosome Maturation Mechanism Mediated by TECPR1 and the Atg12-Atg5 Conjugate, Molecular Cell, vol.45, issue.5, pp.629-641, 2012.
DOI : 10.1016/j.molcel.2011.12.036

Y. Tanaka, G. Guhde, A. Suter, E. Eskelinen, D. Hartmann et al., Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice, Nature, vol.406, pp.902-906, 2000.

A. Yamamoto, Y. Tagawa, T. Yoshimori, Y. Moriyama, R. Masaki et al., Bafilomycin A1 Prevents Maturation of Autophagic Vacuoles by Inhibiting Fusion between Autophagosomes and Lysosomes in Rat Hepatoma Cell Line, H-4-II-E Cells., Cell Structure and Function, vol.23, issue.1, pp.33-42, 1998.
DOI : 10.1247/csf.23.33

D. Rubinsztein, J. Gestwicki, L. Murphy, and D. Klionsky, Potential therapeutic applications of autophagy, Nature Reviews Drug Discovery, vol.45, issue.4, pp.304-312, 2007.
DOI : 10.1038/nrd2272

X. Liang, S. Jackson, M. Seaman, K. Brown, B. Kempkes et al., Induction of autophagy and inhibition of tumorigenesis by beclin 1, Nature, vol.402, pp.672-676, 1999.

X. Qu, J. Yu, G. Bhagat, N. Furuya, H. Hibshoosh et al., Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene, Journal of Clinical Investigation, vol.112, issue.12, pp.1809-1820, 2003.
DOI : 10.1172/JCI20039DS1

Y. Ionov, N. Nowak, M. Perucho, S. Markowitz, and J. Cowell, Manipulation of nonsense mediated decay identifies gene mutations in colon cancer Cells with microsatellite instability, Oncogene, vol.23, issue.3, pp.639-645, 2004.
DOI : 10.1038/sj.onc.1207178

C. Liang, P. Feng, B. Ku, I. Dotan, D. Canaani et al., Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG, Nature Cell Biology, vol.72, issue.7, pp.688-699, 2006.
DOI : 10.1073/pnas.0506925102

B. Levine and G. Kroemer, Autophagy in the Pathogenesis of Disease, Cell, vol.132, issue.1, pp.27-42, 2008.
DOI : 10.1016/j.cell.2007.12.018

I. Nishino, J. Fu, K. Tanji, T. Yamada, S. Shimojo et al., Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease), Nature, vol.406, issue.6798, pp.906-910, 2000.
DOI : 10.1038/35022604

Z. Cheng and Q. Fang, Danon disease: focusing on heart, Journal of Human Genetics, vol.265, issue.7, pp.407-410, 2012.
DOI : 10.1002/ana.10235

G. Lucas, A. Daroszewska, and S. Ralston, Contribution of Genetic Factors to the Pathogenesis of Paget's Disease of Bone and Related Disorders, Journal of Bone and Mineral Research, vol.160, issue.S2, pp.31-37, 2006.
DOI : 10.1359/jbmr.06s206

R. Mathew and E. White, Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night, Current Opinion in Genetics & Development, vol.21, issue.1, pp.113-119, 2011.
DOI : 10.1016/j.gde.2010.12.008

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039840

S. Jin, Autophagy, Mitochondrial Quality Control, and Oncogenesis, Autophagy, vol.2, issue.2, pp.80-84, 2006.
DOI : 10.4161/auto.2.2.2460

V. Karantza-wadsworth, S. Patel, O. Kravchuk, G. Chen, R. Mathew et al., Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis, Genes & Development, vol.21, issue.13, pp.1621-1635, 2007.
DOI : 10.1101/gad.1565707

R. Mathew, S. Kongara, B. Beaudoin, C. Karp, K. Bray et al., Autophagy suppresses tumor progression by limiting chromosomal instability, Genes & Development, vol.21, issue.11, pp.1367-1381, 2007.
DOI : 10.1101/gad.1545107

R. Mathew and E. White, Why Sick Cells Produce Tumors: The Protective Role of Autophagy, Autophagy, vol.3, issue.5, pp.502-505, 2007.
DOI : 10.4161/auto.4605

K. Degenhardt, R. Mathew, B. Beaudoin, K. Bray, D. Anderson et al., Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis, Cancer Cell, vol.10, issue.1, pp.51-64, 2006.
DOI : 10.1016/j.ccr.2006.06.001

R. Mathew, C. Karp, B. Beaudoin, N. Vuong, G. Chen et al., Autophagy Suppresses Tumorigenesis through Elimination of p62, Cell, vol.137, issue.6, pp.1062-1075, 2009.
DOI : 10.1016/j.cell.2009.03.048

S. Shimizu, T. Kanaseki, N. Mizushima, T. Mizuta, S. Arakawa-kobayashi et al., Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes, Nature Cell Biology, vol.12, issue.12, pp.1221-1228, 2004.
DOI : 10.1016/S0092-8674(04)00162-X

S. Chen, S. Rehman, W. Zhang, A. Wen, L. Yao et al., Autophagy is a therapeutic target in anticancer drug resistance, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1806, issue.2, pp.220-229, 2010.
DOI : 10.1016/j.bbcan.2010.07.003

Z. Yue, J. S. Yang, C. Levine, A. Heintz, and N. , Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor, Proceedings of the National Academy of Sciences, vol.100, issue.25, pp.15077-15082, 2003.
DOI : 10.1073/pnas.2436255100

B. Ravikumar, S. Sarkar, J. Davies, M. Futter, M. Garcia-arencibia et al., Regulation of Mammalian Autophagy in Physiology and Pathophysiology, Physiological Reviews, vol.90, issue.4, pp.1383-1435, 2010.
DOI : 10.1152/physrev.00030.2009

P. Boya, R. Gonzalez-polo, N. Casares, J. Perfettini, P. Dessen et al., Inhibition of Macroautophagy Triggers Apoptosis, Molecular and Cellular Biology, vol.25, issue.3, pp.1025-1040, 2005.
DOI : 10.1128/MCB.25.3.1025-1040.2005

Z. Yang, C. Chee, S. Huang, and F. Sinicrope, The Role of Autophagy in Cancer: Therapeutic Implications, Molecular Cancer Therapeutics, vol.10, issue.9, pp.1533-1541, 2011.
DOI : 10.1158/1535-7163.MCT-11-0047

S. Zhou, L. Zhao, M. Kuang, B. Zhang, Z. Liang et al., Autophagy in tumorigenesis and cancer therapy: Dr. Jekyll or Mr. Hyde? Cancer Lett, pp.115-127, 2012.

D. Schmid and C. Munz, Innate and Adaptive Immunity through Autophagy, Immunity, vol.27, issue.1, pp.11-21, 2007.
DOI : 10.1016/j.immuni.2007.07.004

R. Andrade, M. Wessendarp, M. Gubbels, B. Striepen, and C. Subauste, CD40 induces macrophage anti???Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes, Journal of Clinical Investigation, vol.116, issue.9, pp.2366-2377, 2006.
DOI : 10.1172/JCI28796DS1

T. Thurston, G. Ryzhakov, S. Bloor, N. Von-muhlinen, and F. Randow, The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria, Nature Immunology, vol.3, issue.11, pp.1215-1221, 2009.
DOI : 10.1038/ni.1800

R. Watson, P. Manzanillo, and J. Cox, Extracellular M.??tuberculosis DNA Targets Bacteria for Autophagy by Activating the Host DNA-Sensing Pathway, Cell, vol.150, issue.4, pp.803-815, 2012.
DOI : 10.1016/j.cell.2012.06.040

A. Romagnoli, M. Etna, E. Giacomini, M. Pardini, M. Remoli et al., in human dendritic cells, Autophagy, vol.169, issue.9, pp.1357-1370, 2012.
DOI : 10.4161/auto.5.5.8823

S. Shelly, N. Lukinova, S. Bambina, A. Berman, and S. Cherry, Autophagy Is an Essential Component of Drosophila Immunity against Vesicular Stomatitis Virus, Immunity, vol.30, issue.4, pp.588-598, 2009.
DOI : 10.1016/j.immuni.2009.02.009

D. Sir and J. Ou, Autophagy in viral replication and pathogenesis, Molecules and Cells, vol.5, issue.1, pp.1-7, 2010.
DOI : 10.1007/s10059-010-0014-2

Z. Talloczy, H. Virgin, and B. Levine, PKR-Dependent Xenophagic Degradation of Herpes Simplex Virus Type 1, Autophagy, vol.2, issue.1, pp.24-29, 2006.
DOI : 10.4161/auto.2176

A. Orvedahl, D. Alexander, Z. Talloczy, Q. Sun, Y. Wei et al., HSV-1 ICP34.5 Confers Neurovirulence by Targeting the Beclin 1 Autophagy Protein, Cell Host & Microbe, vol.1, issue.1, pp.23-35, 2007.
DOI : 10.1016/j.chom.2006.12.001

H. Jiang, E. White, C. Rios-vicil, J. Xu, C. Gomez-manzano et al., Human Adenovirus Type 5 Induces Cell Lysis through Autophagy and Autophagy-Triggered Caspase Activity, Journal of Virology, vol.85, issue.10, pp.4720-4729, 2011.
DOI : 10.1128/JVI.02032-10

I. Gregoire, C. Richetta, L. Meyniel-schicklin, S. Borel, F. Pradezynski et al., IRGM Is a Common Target of RNA Viruses that Subvert the Autophagy Network, PLoS Pathogens, vol.1, issue.12, p.1002422, 2011.
DOI : 10.1371/journal.ppat.1002422.s015

URL : https://hal.archives-ouvertes.fr/hal-00965402

W. Jackson, T. Giddings, . Jr, M. Taylor, S. Mulinyawe et al., Subversion of Cellular Autophagosomal Machinery by RNA Viruses, PLoS Biology, vol.278, issue.5, p.156, 2005.
DOI : 10.1371/journal.pbio.0030156.g009

D. Sir, W. Chen, J. Choi, T. Wakita, T. Yen et al., Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response, Hepatology, vol.10, issue.4, pp.1054-1061, 2008.
DOI : 10.1002/hep.22464

M. Dreux, P. Gastaminza, S. Wieland, and F. Chisari, The autophagy machinery is required to initiate hepatitis C virus replication, Proceedings of the National Academy of Sciences, vol.106, issue.33, pp.14046-14051, 2009.
DOI : 10.1073/pnas.0907344106

I. Tanida, M. Fukasawa, T. Ueno, E. Kominami, T. Wakita et al., Knockdown of autophagy-related gene decreases the production of infectious Hepatitis C virus particles, Autophagy, vol.5, issue.7, pp.937-945, 2009.
DOI : 10.4161/auto.5.7.9243

M. Gannage, D. Dormann, R. Albrecht, J. Dengjel, T. Torossi et al., Matrix Protein 2 of Influenza A Virus Blocks Autophagosome Fusion with Lysosomes, Cell Host & Microbe, vol.6, issue.4, pp.367-380, 2009.
DOI : 10.1016/j.chom.2009.09.005

C. Neuveut, Y. Wei, and M. Buendia, Mechanisms of HBV-related hepatocarcinogenesis, Journal of Hepatology, vol.52, issue.4, pp.594-604, 2010.
DOI : 10.1016/j.jhep.2009.10.033

J. Li, Y. Liu, Z. Wang, K. Liu, Y. Wang et al., Subversion of Cellular Autophagy Machinery by Hepatitis B Virus for Viral Envelopment, Journal of Virology, vol.85, issue.13, pp.6319-6333, 2011.
DOI : 10.1128/JVI.02627-10

D. Sir, Y. Tian, W. Chen, D. Ann, T. Yen et al., The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication, Proceedings of the National Academy of Sciences, vol.107, issue.9, pp.4383-4388, 2010.
DOI : 10.1073/pnas.0911373107

H. Tang, L. Da, Y. Mao, Y. Li, D. Li et al., Hepatitis B virus X protein sensitizes cells to starvation-induced autophagy via up-regulation of beclin 1 expression, Hepatology, vol.84, issue.1, pp.60-71, 2009.
DOI : 10.1002/hep.22581

Y. Tian, D. Sir, C. Kuo, D. Ann, and J. Ou, Autophagy Required for Hepatitis B Virus Replication in Transgenic Mice, Journal of Virology, vol.85, issue.24, pp.13453-13456, 2011.
DOI : 10.1128/JVI.06064-11

M. Taylor and K. Kirkegaard, Potential subversion of autophagosomal pathway by picornaviruses, Autophagy, vol.4, issue.3, pp.286-289, 2008.
DOI : 10.4161/auto.5377

J. Wong, J. Zhang, X. Si, G. Gao, I. Mao et al., Autophagosome Supports Coxsackievirus B3 Replication in Host Cells, Journal of Virology, vol.82, issue.18
DOI : 10.1128/JVI.00641-08

Z. Xu, G. Jensen, and T. Yen, Activation of hepatitis B virus S promoter by the viral large surface protein via induction of stress in the endoplasmic reticulum, J Virol, vol.71, pp.7387-7392, 1997.

G. Kroemer, G. Marino, and B. Levine, Autophagy and the Integrated Stress Response, Molecular Cell, vol.40, issue.2, pp.280-293, 2010.
DOI : 10.1016/j.molcel.2010.09.023

M. Pehar, M. Jonas, T. Hare, and L. Puglielli, SLC33A1/AT-1 Protein Regulates the Induction of Autophagy Downstream of IRE1/XBP1 Pathway, Journal of Biological Chemistry, vol.287, issue.35, pp.29921-29930, 2012.
DOI : 10.1074/jbc.M112.363911

M. Ogata, S. Hino, A. Saito, K. Morikawa, S. Kondo et al., Autophagy Is Activated for Cell Survival after Endoplasmic Reticulum Stress, Molecular and Cellular Biology, vol.26, issue.24, pp.9220-9231, 2006.
DOI : 10.1128/MCB.01453-06

C. Lazar, A. Macovei, S. Petrescu, and N. Branza-nichita, Activation of ERAD Pathway by Human Hepatitis B Virus Modulates Viral and Subviral Particle Production, PLoS ONE, vol.75, issue.3, p.34169, 2012.
DOI : 10.1371/journal.pone.0034169.s002

M. Wainberg and K. Jeang, 25 years of HIV-1 research ??? progress and perspectives, BMC Medicine, vol.3, issue.1, p.2531, 2008.
DOI : 10.1186/1742-4690-3-87

R. Gallo, A reflection on HIV/AIDS research after 25 years, Retrovirology, vol.3, issue.1, p.72, 2006.
DOI : 10.1186/1742-4690-3-72

G. Herbein and A. Varin, The macrophage in HIV-1 infection: From activation to deactivation?, Retrovirology, vol.7, issue.1, p.33, 2010.
DOI : 10.1186/1742-4690-7-33

URL : https://hal.archives-ouvertes.fr/inserm-00663899

L. Douce, V. Herbein, G. Rohr, O. Schwartz, and C. , Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage, Retrovirology, vol.7, issue.1, p.32, 2010.
DOI : 10.1186/1742-4690-7-32

URL : https://hal.archives-ouvertes.fr/inserm-00663900

C. Dinkins, J. Arko-mensah, and V. Deretic, Autophagy and HIV, Seminars in Cell & Developmental Biology, vol.21, issue.7, pp.712-718, 2010.
DOI : 10.1016/j.semcdb.2010.04.004

A. Lever and K. Jeang, Insights into Cellular Factors That Regulate HIV-1 Replication in Human Cells, Biochemistry, vol.50, issue.6, pp.920-931, 2011.
DOI : 10.1021/bi101805f

K. Strebel, J. Luban, and K. Jeang, Human cellular restriction factors that target HIV-1 replication, BMC Medicine, vol.308, issue.1, p.48, 2009.
DOI : 10.1186/1741-7015-7-48

URL : http://doi.org/10.1186/1741-7015-7-48

L. Liu, N. Oliveira, K. Cheney, C. Pade, H. Dreja et al., A whole genome screen for HIV restriction factors, Retrovirology, vol.8, issue.1, p.94, 2011.
DOI : 10.1371/journal.pone.0013521

R. Goila-gaur and K. Strebel, HIV-1 Vif, APOBEC, and Intrinsic Immunity, Retrovirology, vol.5, issue.1, p.51, 2008.
DOI : 10.1186/1742-4690-5-51

B. Mussil, U. Sauermann, D. Motzkus, C. Stahl-hennig, and S. Sopper, Increased APOBEC3G and APOBEC3F expression is associated with low viral load and prolonged survival in simian immunodeficiency virus infected rhesus monkeys, Retrovirology, vol.81, p.7792, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00631637

S. Neil, T. Zang, and P. Bieniasz, Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu, Nature, vol.2, issue.7177, pp.425-430, 2008.
DOI : 10.1038/nature06553

M. Dube, M. Bego, C. Paquay, and E. Cohen, Modulation of HIV-1-host interaction: role of the Vpu accessory protein, Retrovirology, vol.7, issue.1, p.114, 2010.
DOI : 10.1186/1742-4690-7-114

B. Kuhl, R. Sloan, D. Donahue, T. Bar-magen, C. Liang et al., Tetherin restricts direct cell-to-cell infection of HIV-1, Retrovirology, vol.7, issue.1, p.115, 2010.
DOI : 10.1186/1742-4690-7-115

J. Sastri and E. Campbell, Recent Insights into the Mechanism and Consequences of TRIM5?? Retroviral Restriction, AIDS Research and Human Retroviruses, vol.27, issue.3, pp.231-238, 2011.
DOI : 10.1089/aid.2010.0367

Z. Lukic, S. Hausmann, S. Sebastian, J. Rucci, J. Sastri et al., TRIM5?? associates with proteasomal subunits in cells while in complex with HIV-1 virions, Retrovirology, vol.8, issue.1, p.93, 2011.
DOI : 10.1529/biophysj.103.022087

C. St-gelais and L. Wu, SAMHD1: a new insight into HIV-1 restriction in myeloid cells, Retrovirology, vol.8, issue.1, p.55, 2011.
DOI : 10.1038/ni.1941

H. Baldauf, X. Pan, E. Erikson, S. Schmidt, W. Daddacha et al., SAMHD1 restricts HIV-1 infection in resting CD4+ T cells, Nature Medicine, vol.9, issue.11, 2012.
DOI : 10.1182/blood-2002-07-2224

A. Brandariz-nunez, J. Valle-casuso, T. White, N. Laguette, M. Benkirane et al., Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac, Retrovirology, vol.9, issue.1, p.49
DOI : 10.1186/1742-4690-9-49

URL : https://hal.archives-ouvertes.fr/hal-00722913

N. Laguette, B. Sobhian, N. Casartelli, M. Ringeard, C. Chable-bessia et al., SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx, Nature, vol.38, issue.7353, pp.654-657, 2011.
DOI : 10.1038/nature10117

URL : https://hal.archives-ouvertes.fr/hal-00616451

L. Houzet and K. Jeang, MicroRNAs and human retroviruses, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1809, issue.11-12, pp.686-693, 2011.
DOI : 10.1016/j.bbagrm.2011.05.009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177989

C. Chable-bessia, O. Meziane, D. Latreille, R. Triboulet, A. Zamborlini et al., Suppression of HIV-1 replication by microRNA effectors, Retrovirology, vol.6, issue.1, p.26, 2009.
DOI : 10.1186/1742-4690-6-26

URL : https://hal.archives-ouvertes.fr/hal-00429302

M. Marin, K. Rose, S. Kozak, and D. Kabat, HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation, Nature Medicine, vol.9, issue.11, pp.1398-1403, 2003.
DOI : 10.1038/nm946

H. Tervo, S. Homann, I. Ambiel, J. Fritz, and O. Fackler, ??-TrCP is dispensable for Vpu's ability to overcome the CD317/Tetherin-imposed restriction to HIV-1 release, Retrovirology, vol.8, issue.1, p.9, 2011.
DOI : 10.1016/j.cub.2005.02.058

M. Schindler, D. Rajan, C. Banning, P. Wimmer, H. Koppensteiner et al., Vpu serine 52 dependent counteraction of tetherin is required for HIV-1 replication in macrophages, but not in ex vivo human lymphoid tissue, Retrovirology, vol.7, issue.1, 2010.
DOI : 10.1186/1742-4690-7-1

L. Houzet, M. Yeung, V. De-lame, D. Desai, S. Smith et al., MicroRNA profile changes in human immunodeficiency virus type 1 (HIV-1) seropositive individuals, Retrovirology, vol.5, issue.1, p.118, 2008.
DOI : 10.1186/1742-4690-5-118

A. Hayes, S. Qian, L. Yu, and K. Boris-lawrie, Tat RNA silencing suppressor activity contributes to perturbation of lymphocyte miRNA by HIV-1, Retrovirology, vol.8, issue.1, p.36, 2011.
DOI : 10.1093/nar/gkh023

J. Foster and J. Garcia, HIV-1 Nef: at the crossroads, Retrovirology, vol.5, issue.1, p.84, 2008.
DOI : 10.1186/1742-4690-5-84

K. Olivieri, J. Mukerji, and D. Gabuzda, Nef-mediated enhancement of cellular activation and human immunodeficiency virus type 1 replication in primary T cells is dependent on association with p21-activated kinase 2, Retrovirology, vol.8, issue.1, p.64, 2011.
DOI : 10.1038/nbt0997-871

G. Kyei, C. Dinkins, A. Davis, E. Roberts, S. Singh et al., Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages, pp.255-268, 2009.
DOI : 10.1084/jem2068oia16

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717652

L. Espert, M. Varbanov, V. Robert-hebmann, S. Sagnier, I. Robbins et al., Differential Role of Autophagy in CD4 T Cells and Macrophages during X4 and R5 HIV-1 Infection, PLoS ONE, vol.72, issue.6, p.5787, 2009.
DOI : 10.1371/journal.pone.0005787.g007

URL : https://hal.archives-ouvertes.fr/hal-00420499

G. Campbell and S. Spector, Vitamin D Inhibits Human Immunodeficiency Virus Type 1 and Mycobacterium tuberculosis Infection in Macrophages through the Induction of Autophagy, PLoS Pathogens, vol.285, issue.5, p.1002689, 2012.
DOI : 10.1371/journal.ppat.1002689.g008

D. Zhou and S. Spector, Human immunodeficiency virus type-1 infection inhibits autophagy, AIDS, vol.22, issue.6, pp.695-699, 2008.
DOI : 10.1097/QAD.0b013e3282f4a836

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2764485

S. Borel, L. Espert, and M. Biard-piechaczyk, Macroautophagy Regulation during HIV-1 Infection of CD4+ T Cells and Macrophages, Frontiers in Immunology, vol.3, p.97, 2012.
DOI : 10.3389/fimmu.2012.00097

X. Wang, Y. Gao, J. Tan, K. Devadas, V. Ragupathy et al., HIV-1 and HIV-2 infections induce autophagy in Jurkat and CD4+ T cells, Cellular Signalling, vol.24, issue.7, pp.1414-1419, 2012.
DOI : 10.1016/j.cellsig.2012.02.016

J. Eekels, S. Sagnier, D. Geerts, R. Jeeninga, M. Biard-piechaczyk et al., Inhibition of HIV-1 replication with stable RNAi-mediated knockdown of autophagy factors, Virology Journal, vol.9, issue.1, p.69, 2012.
DOI : 10.1186/1742-4690-3-1

L. Espert, M. Denizot, M. Grimaldi, V. Robert-hebmann, B. Gay et al., Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4, Journal of Clinical Investigation, vol.116, issue.8, pp.2161-2172, 2006.
DOI : 10.1172/JCI26185DS1

URL : https://hal.archives-ouvertes.fr/inserm-00156834

M. Denizot, M. Varbanov, L. Espert, V. Robert-hebmann, S. Sagnier et al., HIV-1 gp41 fusogenic function triggers autophagy in uninfected cells, Autophagy, vol.4, issue.8, pp.998-1008, 2008.
DOI : 10.4161/auto.6880

URL : https://hal.archives-ouvertes.fr/hal-00346445

M. Matsuoka and K. Jeang, Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation, Nature Reviews Cancer, vol.34, issue.4, pp.270-280, 2007.
DOI : 10.1038/nrc2111

K. Takatsuki, Discovery of adult T-cell leukemia, Retrovirology, vol.2, issue.1, p.16, 2005.
DOI : 10.1186/1742-4690-2-16

R. Gallo, The discovery of the first human retrovirus: HTLV-1 and HTLV-2, Retrovirology, vol.2, issue.1, p.17, 2005.
DOI : 10.1186/1742-4690-2-17

F. Proietti, A. Carneiro-proietti, B. Catalan-soares, and E. Murphy, Global epidemiology of HTLV-I infection and associated diseases, Oncogene, vol.81, issue.39, pp.6058-6068, 2005.
DOI : 10.1089/088922201300343735

M. Matsuoka and K. Jeang, Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax, HBZ and therapy, Oncogene, vol.63, issue.12, pp.1379-1389, 2011.
DOI : 10.1182/blood-2008-06-161729

D. Ghez, Y. Lepelletier, K. Jones, C. Pique, and H. O. , Current concepts regarding the HTLV-1 receptor complex, Retrovirology, vol.7, issue.1, p.99, 2010.
DOI : 10.1186/1742-4690-7-99

URL : https://hal.archives-ouvertes.fr/hal-00541809

L. Zane, D. Sibon, L. Jeannin, M. Zandecki, M. Delfau-larue et al., Tax gene expression and cell cycling but not cell death are selected during HTLV-1 infection in vivo, Retrovirology, vol.7, issue.1, p.17, 2010.
DOI : 10.1186/1742-4690-7-17

URL : https://hal.archives-ouvertes.fr/pasteur-00488306

J. Yasunaga, T. Sakai, K. Nosaka, K. Etoh, S. Tamiya et al., Impaired production of naive T lymphocytes in human T-cell leukemia virus type I-infected individuals: its implications in the immunodeficient state, Blood, vol.97, issue.10, pp.3177-3183, 2001.
DOI : 10.1182/blood.V97.10.3177

E. Harhaj and N. Harhaj, Mechanisms of Persistent NF-??B Activation by HTLV-I Tax, IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), vol.57, issue.2, pp.83-91, 2005.
DOI : 10.1080/15216540500078715

J. Peloponese, M. Yeung, and K. Jeang, Modulation of Nuclear Factor-??B by Human T Cell Leukemia Virus Type 1 Tax Protein: Implications for Oncogenesis and Inflammation, Immunologic Research, vol.34, issue.1, pp.1-12, 2006.
DOI : 10.1385/IR:34:1:1

Z. Qu and X. G. , Human T-Cell Lymphotropic Virus: A Model of??NF-??B-Associated Tumorigenesis, Viruses, vol.3, issue.12, pp.714-749, 2011.
DOI : 10.3390/v3060714

H. Cheng, T. Ren, and S. Sun, New insight into the oncogenic mechanism of the retroviral oncoprotein Tax, Protein & Cell, vol.113, issue.8, pp.581-589, 2012.
DOI : 10.1007/s13238-012-2047-0

T. Ren, W. Dong, Y. Takahashi, D. Xiang, Y. Yuan et al., Memory T Lymphocytes by Oncogenic Activation and Dysregulation of Autophagy, Journal of Biological Chemistry, vol.287, issue.41, pp.34683-34693, 2012.
DOI : 10.1074/jbc.M112.377143

G. Qing, P. Yan, and X. G. , Hsp90 inhibition results in autophagy-mediated proteasome-independent degradation of I??B kinase (IKK), Cell Research, vol.114, issue.11, pp.895-901, 2006.
DOI : 10.1172/JCI26390

P. Yan, G. Qing, Z. Qu, C. Wu, A. Rabson et al., Targeting Autophagic Regulation of NF-kappaB in HTLV-I Transformed Cells by Geldanamycin: Implications for Therapeutic Interventions, Autophagy, vol.3, issue.6, pp.600-603, 2007.
DOI : 10.4161/auto.4761

H. Kawakami, M. Tomita, T. Okudaira, C. Ishikawa, T. Matsuda et al., Retracted: Inhibition of heat shock protein-90 modulates multiple functions required for survival of human T-cell leukemia virus type I-infected T-cell lines and adult T-cell leukemia cells, International Journal of Cancer, vol.23, issue.8
DOI : 10.1002/ijc.22403