M. M. Lederman, Biology of CCR5 and Its Role in HIV Infection and Treatment, JAMA, vol.296, issue.7, pp.815-826, 2006.
DOI : 10.1001/jama.296.7.815

R. Liu, Homozygous Defect in HIV-1 Coreceptor Accounts for Resistance of Some Multiply-Exposed Individuals to HIV-1 Infection, Cell, vol.86, issue.3, pp.367-377, 1996.
DOI : 10.1016/S0092-8674(00)80110-5

J. K. Lim, CCR5: no longer a ???good for nothing??? gene ??? chemokine control of West Nile virus infection, Trends in Immunology, vol.27, issue.7, pp.308-312, 2006.
DOI : 10.1016/j.it.2006.05.007

A. Telenti, Safety concerns about CCR5 as an antiviral target, Current Opinion in HIV and AIDS, vol.4, issue.2, pp.131-135, 2009.
DOI : 10.1097/COH.0b013e3283223d76

J. Garcia-perez, Allosteric Model of Maraviroc Binding to CC Chemokine Receptor 5 (CCR5), Journal of Biological Chemistry, vol.286, issue.38, pp.33409-33421, 2011.
DOI : 10.1074/jbc.M111.279596

P. Cannon, J. , and C. , Chemokine receptor 5 knockout strategies, Current Opinion in HIV and AIDS, vol.6, issue.1, pp.74-79, 2011.
DOI : 10.1097/COH.0b013e32834122d7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066441

J. M. Jacobson, Antiviral Activity of Single???Dose PRO 140, a CCR5 Monoclonal Antibody, in HIV???Infected Adults, The Journal of Infectious Diseases, vol.198, issue.9, pp.1345-1352, 2008.
DOI : 10.1086/592169

H. Gaertner, Highly potent, fully recombinant anti-HIV chemokines: Reengineering a low-cost microbicide, Proceedings of the National Academy of Sciences, vol.105, issue.46, 2008.
DOI : 10.1073/pnas.0805098105

J. M. Escola, CC Chemokine Receptor 5 (CCR5) Desensitization: CYCLING RECEPTORS ACCUMULATE IN THE TRANS-GOLGI NETWORK, Journal of Biological Chemistry, vol.285, issue.53, pp.41772-41780, 2010.
DOI : 10.1074/jbc.M110.153460

M. Mack, Aminooxypentane-RANTES Induces CCR5 Internalization but Inhibits Recycling: A Novel Inhibitory Mechanism of HIV Infectivity, The Journal of Experimental Medicine, vol.349, issue.8, pp.1215-1224, 1998.
DOI : 10.1038/nm0496-412

M. Baba, A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity, Proceedings of the National Academy of Sciences, vol.96, issue.10, pp.5698-5703, 1999.
DOI : 10.1073/pnas.96.10.5698

M. Baba, TAK-652 Inhibits CCR5-Mediated Human Immunodeficiency Virus Type 1 Infection In Vitro and Has Favorable Pharmacokinetics in Humans, Antimicrobial Agents and Chemotherapy, vol.49, issue.11, pp.4584-4591, 2005.
DOI : 10.1128/AAC.49.11.4584-4591.2005

K. Maeda, Spirodiketopiperazine-Based CCR5 Inhibitor Which Preserves CC-Chemokine/CCR5 Interactions and Exerts Potent Activity against R5 Human Immunodeficiency Virus Type 1 In Vitro, Journal of Virology, vol.78, issue.16, pp.8654-8662, 2004.
DOI : 10.1128/JVI.78.16.8654-8662.2004

F. Maltez, Recent advances in antiretroviral treatment and prevention in HIV-infected patients, Current Opinion in HIV and AIDS, vol.6, pp.21-30, 2011.
DOI : 10.1097/01.COH.0000410238.80894.81

W. Kromdijk, Treatment of HIV infection with the CCR5 antagonist maraviroc, Expert Opinion on Pharmacotherapy, vol.9, issue.1, pp.1215-1223, 2010.
DOI : 10.1097/QAI.0b013e3181ae69c5

A. Grunbeck, Genetically Encoded Photo-cross-linkers Map the Binding Site of an Allosteric Drug on a G Protein-Coupled Receptor. ACS Chemical Biology DOI:10.1021/cb300059z (http://pubs.acs.org) The authors confirmed the position of the maraviroc binding site in the transmembrane cavity of CCR5 by covalent bridging the ligand to artificial amino acids introduced in the receptor, the supplementary material was presented an interesting approach to conformational sampling of the receptor three dimensional structure, starting from a low resolution model, p.35

E. Kellenberger, Identification of Nonpeptide CCR5 Receptor Agonists by Structure-based Virtual Screening, Journal of Medicinal Chemistry, vol.50, issue.6, pp.1294-1303, 2007.
DOI : 10.1021/jm061389p

URL : https://hal.archives-ouvertes.fr/hal-00195195

P. A. Stupple, An Imidazopiperidine Series of CCR5 Antagonists for the Treatment of HIV: The Discovery of N-{(1S)-1-(3-Fluorophenyl)-3-[(3-endo)- 3-(5-isobutyryl-2-methyl-4,5,6,7-tetrahydro-1H-imidazo232798), J Med Chem, vol.4, issue.541, 2011.

H. Tang, Do crystal structures obviate the need for theoretical models of GPCRs for structure-based virtual screening?, Proteins: Structure, Function, and Bioinformatics, vol.26, issue.6, pp.1503-1521, 2012.
DOI : 10.1002/prot.24035

R. Kondru, Molecular Interactions of CCR5 with Major Classes of Small-Molecule Anti-HIV CCR5 Antagonists, Molecular Pharmacology, vol.73, issue.3, pp.789-800, 2008.
DOI : 10.1124/mol.107.042101

R. Berro, Multiple CCR5 Conformations on the Cell Surface Are Used Differentially by Human Immunodeficiency Viruses Resistant or Sensitive to CCR5 Inhibitors, Journal of Virology, vol.85, issue.16, pp.8227-8240, 2011.
DOI : 10.1128/JVI.00767-11

C. Blanpain, Multiple Active States and Oligomerization of CCR5 Revealed by Functional Properties of Monoclonal Antibodies, Molecular Biology of the Cell, vol.13, issue.2, pp.723-737, 2002.
DOI : 10.1091/mbc.01-03-0129

J. Y. Springael, Allosteric Modulation of Binding Properties between Units of Chemokine Receptor Homo- and Hetero-Oligomers, Molecular Pharmacology, vol.69, issue.5, pp.1652-1661, 2006.
DOI : 10.1124/mol.105.019414

J. Y. Springael, Allosteric properties of G protein-coupled receptor oligomers, Pharmacology & Therapeutics, vol.115, issue.3, pp.410-418, 2007.
DOI : 10.1016/j.pharmthera.2007.06.004

C. G. Anastassopoulou, Resistance to CCR5 inhibitors caused by sequence changes in the fusion peptide of HIV-1 gp41, Proceedings of the National Academy of Sciences, vol.106, issue.13, pp.5318-5323, 2009.
DOI : 10.1073/pnas.0811713106

L. T. Da and Y. D. Wu, Theoretical Studies on the Interactions and Interferences of HIV-1 Glycoprotein gp120 and Its Coreceptor CCR5, Journal of Chemical Information and Modeling, vol.51, issue.2, pp.359-369, 2011.
DOI : 10.1021/ci1003448