S. Schrag and P. Wiener, Emerging infectious disease: what are the relative roles of ecology and evolution?, Trends in Ecology & Evolution, vol.10, issue.8, pp.319-324, 1995.
DOI : 10.1016/S0169-5347(00)89118-1

T. Chen and K. Meyer, Susceptibility of the Langur Monkey (Semnopithecus entellus) to Experimental Plague: Pathology and Immunity, Journal of Infectious Diseases, vol.115, issue.5, pp.456-464, 1965.
DOI : 10.1093/infdis/115.5.456

F. Guinet, A. P. Jones, L. Huerre, M. Carniel, and E. , Defective Innate Cell Response and Lymph Node Infiltration Specify Yersinia pestis Infection, PLoS ONE, vol.4, issue.2, p.1688, 2008.
DOI : 10.1371/journal.pone.0001688.t001

G. Bizanov and N. Dobrokhotova, Experimental infection of ground squirrels (Citellus pygmaeus Pallas) with Yersinia pestis during hibernation, Journal of Infection, vol.54, issue.2, pp.198-203, 2007.
DOI : 10.1016/j.jinf.2006.02.012

G. Hoessly, D. Walker, A. Larson, and K. Meyer, Experimental Bubonic Plague in Monkeys. I. Study of the Development of the Disease and the Peripheral Circulatory Failure, Acta Trop, vol.12, pp.240-251, 1955.

F. Sebbane, D. Gardner, D. Long, B. Gowen, and B. Hinnebusch, Kinetics of Disease Progression and Host Response in a Rat Model of Bubonic Plague, The American Journal of Pathology, vol.166, issue.5, 2005.
DOI : 10.1016/S0002-9440(10)62360-7

B. Brubaker, S. Falkow, E. Rosenberg, K. Schleifer, and E. Stackebrandt, Yersinia pestis and Bubonic Plague. A Handbook on the Biology of Bacteria Proteobacteria, Gamma Subclass Dworkin M, pp.399-442, 2006.

K. Francis, J. Yu, C. Bellinger-kawahara, D. Joh, and M. Hawkinson, Visualizing Pneumococcal Infections in the Lungs of Live Mice Using Bioluminescent Streptococcus pneumoniae Transformed with a Novel Gram-Positive lux Transposon, Infection and Immunity, vol.69, issue.5, pp.3350-3358, 2001.
DOI : 10.1128/IAI.69.5.3350-3358.2001

M. Lane, C. Alteri, S. Smith, and H. Mobley, Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract, Proceedings of the National Academy of Sciences, vol.104, issue.42, pp.16669-16674, 2007.
DOI : 10.1073/pnas.0607898104

M. Brock, G. Jouvion, S. Droin-bergere, O. Dussurget, and M. Nicola, Bioluminescent Aspergillus fumigatus, a New Tool for Drug Efficiency Testing and In Vivo Monitoring of Invasive Aspergillosis, Applied and Environmental Microbiology, vol.74, issue.22, pp.7023-7035, 2008.
DOI : 10.1128/AEM.01288-08

S. Cook and D. Griffin, Luciferase Imaging of a Neurotropic Viral Infection in Intact Animals, Journal of Virology, vol.77, issue.9, pp.5333-5338, 2003.
DOI : 10.1128/JVI.77.9.5333-5338.2003

I. Glomski, A. Piris-gimenez, M. Huerre, M. Mock, and P. Goossens, Primary Involvement of Pharynx and Peyer's Patch in Inhalational and Intestinal Anthrax, PLoS Pathogens, vol.2, issue.6, p.76, 2007.
DOI : 10.1371/journal.ppat.0030076.sg001

X. Bina, M. Miller, and J. Bina, Construction of a bioluminescence reporter plasmid for Francisella tularensis, Plasmid, vol.64, issue.3, pp.156-161, 2010.
DOI : 10.1016/j.plasmid.2010.07.001

E. Isaksson, M. Aili, A. Fahlgren, S. Carlsson, and R. Rosqvist, The Membrane Localization Domain Is Required for Intracellular Localization and Autoregulation of YopE in Yersinia pseudotuberculosis, Infection and Immunity, vol.77, issue.11, pp.4740-4749, 2009.
DOI : 10.1128/IAI.00333-09

F. Uliczka, F. Pisano, A. Kochut, W. Opitz, and K. Herbst, Monitoring of Gene Expression in Bacteria during Infections Using an Adaptable Set of Bioluminescent, Fluorescent and Colorigenic Fusion Vectors, PLoS ONE, vol.260, issue.6, p.20425, 2011.
DOI : 10.1371/journal.pone.0020425.s005

J. Tr?ek, K. Berschl, and K. Trülzsch, In vivo analysis of Yersinia enterocolitica infection using luxCDABE, FEMS Microbiology Letters, vol.307, issue.2, pp.201-206, 2010.
DOI : 10.1111/j.1574-6968.2010.01983.x

W. Russell and R. Burch, The Principles of Humane Experimental Technique, 1959.

Y. Du, E. Galyov, and A. Forsberg, Genetic analysis of virulence determinants unique to Yersinia pestis, Yersiniosis: Present and Future. Basel: Karger. pp, pp.321-324, 1995.

D. Bland, N. Eisele, L. Keleher, P. Anderson, and D. Anderson, Novel Genetic Tools for Diaminopimelic Acid Selection in Virulence Studies of Yersinia pestis, PLoS ONE, vol.6, issue.3, p.17352, 2011.
DOI : 10.1371/journal.pone.0017352.s003

N. Andreu, A. Zelmer, T. Fletcher, P. Elkington, and T. Ward, Optimisation of Bioluminescent Reporters for Use with Mycobacteria, PLoS ONE, vol.189, issue.1, p.10777, 2010.
DOI : 10.1371/journal.pone.0010777.t005

H. Rocchetta, C. Boylan, J. Foley, P. Iversen, and D. Letourneau, Validation of a Noninvasive, Real-Time Imaging Technology Using Bioluminescent Escherichia coli in the Neutropenic Mouse Thigh Model of Infection, Antimicrobial Agents and Chemotherapy, vol.45, issue.1, pp.129-137, 2001.
DOI : 10.1128/AAC.45.1.129-137.2001

S. Henken, J. Bohling, A. Ogunniyi, J. Paton, and V. Salisbury, Evaluation of Biophotonic Imaging To Estimate Bacterial Burden in Mice Infected with Highly Virulent Compared to Less Virulent Streptococcus pneumoniae Serotypes, Antimicrobial Agents and Chemotherapy, vol.54, issue.8, pp.3155-3160, 2010.
DOI : 10.1128/AAC.00310-10

Y. Xiong, J. Willard, J. Kadurugamuwa, Y. J. Francis, and K. , Real-Time In Vivo Bioluminescent Imaging for Evaluating the Efficacy of Antibiotics in a Rat Staphylococcus aureus Endocarditis Model, Antimicrobial Agents and Chemotherapy, vol.49, issue.1, pp.380-387, 2005.
DOI : 10.1128/AAC.49.1.380-387.2005

S. Flexner, The pathology of bubonic plague, Am J Med Sci, vol.122, pp.396-416, 1901.

M. Harrell, B. Iritani, and A. Ruddell, Lymph node mapping in the mouse, Journal of Immunological Methods, vol.332, issue.1-2, pp.170-174, 2008.
DOI : 10.1016/j.jim.2007.11.012

E. Jawetz and K. Meyer, The Behaviour of Virulent and Avirulent P. Pestis in Normal and Immune Experimental Animals, Journal of Infectious Diseases, vol.74, issue.1, pp.1-13, 1944.
DOI : 10.1093/infdis/74.1.1

K. Frank, O. Schneewind, and W. Shieh, Investigation of a Researcher's Death Due to Septicemic Plague, New England Journal of Medicine, vol.364, issue.26, pp.2563-2564, 2011.
DOI : 10.1056/NEJMc1010939

J. Guarner, W. Shieh, M. Chu, D. Perlman, and J. Kool, Persistent Yersinia pestis antigens in ischemic tissues of a patient with septicemic plague, Human Pathology, vol.36, issue.7, pp.850-853, 2005.
DOI : 10.1016/j.humpath.2005.05.016

C. Demeure, C. Blanchet, C. Fitting, C. Fayolle, and H. Khun, Early Systemic Bacterial Dissemination and a Rapid Innate Immune Response Characterize Genetic Resistance to Plague of SEG Mice, Journal of Infectious Diseases, vol.205, issue.1, pp.134-143, 2012.
DOI : 10.1093/infdis/jir696

Y. Flashner, M. Fisher, A. Tidhar, A. Mechaly, and D. Gur, LcrV in bubonic and pneumonic mouse models of disease, FEMS Immunology & Medical Microbiology, vol.59, issue.2, pp.197-206, 2010.
DOI : 10.1111/j.1574-695X.2010.00687.x

J. Parkhill, B. Wren, N. Thomson, R. Titball, and M. Holden, Genome sequence of Yersinia pestis, the causative agent of plague, Nature, vol.404, issue.6855, pp.523-527, 2001.
DOI : 10.1038/35097083

R. Conchas and E. Carniel, A highly efficient electroporation system for transformation of Yersinia, Gene, vol.87, issue.1, pp.133-137, 1990.
DOI : 10.1016/0378-1119(90)90505-L

L. Reed and H. Muench, A simple method of estimating fifty per cent endpoints, Am J Hyg, vol.27, pp.493-497, 1938.