S. Abounit and C. Zurzolo, Wiring through tunneling nanotubes - from electrical signals to organelle transfer, Journal of Cell Science, vol.125, issue.5, 2012.
DOI : 10.1242/jcs.083279

URL : https://hal.archives-ouvertes.fr/pasteur-00716392

P. D. Arkwright, F. Luchetti, J. Tour, C. Roberts, R. Ayub et al., Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via membrane nanotubes, Cell Research, vol.167, issue.1, pp.72-88, 2010.
DOI : 10.1038/ni1024

G. S. Baron, K. Wehrly, D. W. Dorward, B. Chesebro, C. et al., Conversion of raft associated prion protein to the protease-resistant state requires insertion of PrP-res (PrPSc) into contiguous membranes, The EMBO Journal, vol.21, issue.5, pp.1031-1040, 2002.
DOI : 10.1093/emboj/21.5.1031

M. Bonazzi, C. , and P. , Bacterial entry into cells: A role for the endocytic machinery, FEBS Letters, vol.166, issue.12, pp.2962-2967, 2006.
DOI : 10.1016/j.febslet.2006.04.010

P. Brundin, R. Melki, and R. Kopito, Prion-like transmission of protein aggregates in neurodegenerative diseases, Nature Reviews Molecular Cell Biology, vol.4, issue.4, pp.301-307, 2010.
DOI : 10.1038/nrm2873

URL : https://hal.archives-ouvertes.fr/hal-01183206

N. V. Bukoreshtliev, X. Wang, E. Hodneland, S. Gurke, J. F. Barroso et al., Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells, FEBS Letters, vol.42, issue.9, pp.1481-1488, 2009.
DOI : 10.1016/j.febslet.2009.03.065

F. Carlsson and E. J. Brown, CELL BIOLOGY: The Art of Making an Exit, Science, vol.323, issue.5922, pp.1678-1679, 2009.
DOI : 10.1126/science.1172254

H. R. Chinnery, E. Pearlman, and P. G. Mcmenamin, Cells in the Mouse Cornea, The Journal of Immunology, vol.180, issue.9, pp.5779-5783, 2008.
DOI : 10.4049/jimmunol.180.9.5779

B. W. Connors and M. A. Long, Electrical synapses in the mammalian brain. A n n u .R e v .N e u r o s c i, pp.393-418, 2004.

P. Cossart and P. J. Sansonetti, Bacterial Invasion: The Paradigms of Enteroinvasive Pathogens, Science, vol.304, issue.5668, pp.242-248, 2004.
DOI : 10.1126/science.1090124

B. Cselenyák, A. Pankotai, E. Horváth, E. M. Kiss, L. Lacza et al., Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections, Frontiers in Physiology | Membrane Physiology, pp.10-1186, 2010.
DOI : 10.1186/1471-2121-11-29

K. M. Danzer, D. Haasen, A. R. Karow, S. Moussaud, M. Habeck et al., Different Species of ??-Synuclein Oligomers Induce Calcium Influx and Seeding, Journal of Neuroscience, vol.27, issue.34, pp.9220-9232, 2007.
DOI : 10.1523/JNEUROSCI.2617-07.2007

K. M. Danzer, S. K. Krebs, M. Wolff, G. Birk, and B. Hengerer, Seeding induced by ??-synuclein oligomers provides evidence for spreading of ??-synuclein pathology, Journal of Neurochemistry, vol.9, issue.Suppl. 2, pp.192-203, 2009.
DOI : 10.1111/j.1471-4159.2009.06324.x

P. Desplats, H. Lee, E. Bae, C. Patrick, E. Rockenstein et al., Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein, Proc. Natl. Acad, 2009.

S. Domhan, L. Ma, A. Tai, Z. Anaya, A. Beheshti et al., Intercellular Communication by Exchange of Cytoplasmic Material via Tunneling Nano-Tube Like Structures in Primary Human Renal Epithelial Cells, PLoS ONE, vol.45, issue.6, 2011.
DOI : 10.1371/journal.pone.0021283.g004

G. P. Dubey and S. Ben-yehuda, Intercellular Nanotubes Mediate Bacterial Communication, Cell, vol.144, issue.4, pp.590-600, 2011.
DOI : 10.1016/j.cell.2011.01.015

URL : http://doi.org/10.1016/j.cell.2011.01.015

M. L. Dustin, A. K. Chakraborty, and A. S. Shaw, Understanding the Structure and Function of the Immunological Synapse, Cold Spring Harbor Perspectives in Biology, vol.2, issue.10, 2010.
DOI : 10.1101/cshperspect.a002311

E. A. Eugenin, P. J. Gaskill, and J. W. Berman, Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: A potential mechanism for intercellular HIV trafficking, Cellular Immunology, vol.254, issue.2, pp.142-148, 2009.
DOI : 10.1016/j.cellimm.2008.08.005

H. W. Favoreel, G. Van-minnebruggen, D. Adriaensen, and H. J. Nauwynck, Cytoskeletal rearrangements and cell extensions induced by the US3 kinase of an alphaherpesvirus are associated with enhanced spread, Proceedings of the National Academy of Sciences, vol.102, issue.25, pp.8990-8995, 2005.
DOI : 10.1073/pnas.0409099102

B. Fevrier, D. Vilette, F. Archer, D. Loew, W. Faigle et al., Cells release prions in association with exosomes, Proceedings of the National Academy of Sciences, vol.101, issue.26, pp.9683-9688, 2004.
DOI : 10.1073/pnas.0308413101

B. Frost, D. , and M. I. , The expanding realm of prion phenomena in neurodegenerative disease, Prion, vol.43, issue.2, pp.74-77, 2009.
DOI : 10.1038/nm1746

B. Frost, R. L. Jacks, D. , and M. I. , Propagation of Tau Misfolding from the Outside to the Inside of a Cell, Journal of Biological Chemistry, vol.284, issue.19, pp.12845-12852, 2009.
DOI : 10.1074/jbc.M808759200

H. Gerdes, N. V. Bukoreshtliev, and J. F. Barroso, Tunneling nanotubes: A new route for the exchange of components between animal cells, FEBS Letters, vol.18, issue.11, pp.2194-2201, 2007.
DOI : 10.1016/j.febslet.2007.03.071

K. Gousset, E. Schiff, C. Langevin, Z. Marijanovic, A. Caputo et al., Prions hijack tunnelling nanotubes for intercellular spread, Nature Cell Biology, vol.177, issue.3, pp.328-336, 2009.
DOI : 10.1038/nprot.2006.356

URL : https://hal.archives-ouvertes.fr/pasteur-00368712

K. Gousset and C. Zurzolo, Tunnelling nanotubes, Prion, vol.121, issue.2, pp.94-98, 2009.
DOI : 10.1371/journal.ppat.1000426

URL : https://hal.archives-ouvertes.fr/pasteur-00406148

D. R. Green, N. Droin, and M. Pinkoski, Activation-induced cell death in T cells, Immunological Reviews, vol.166, issue.1, pp.70-81, 2003.
DOI : 10.1128/MCB.22.2.680-691.2002

S. Gurke, J. F. Barroso, and H. Gerdes, The art of cellular communication: tunneling nanotubes bridge the divide, Histochemistry and Cell Biology, vol.118, issue.5, pp.539-550, 2008.
DOI : 10.1007/s00418-008-0412-0

M. Hagedorn, K. H. Rohde, D. G. Russell, and T. Soldati, Infection by Tubercular Mycobacteria Is Spread by Nonlytic Ejection from Their Amoeba Hosts, Science, vol.323, issue.5922, pp.1729-1733, 2009.
DOI : 10.1126/science.1169381

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770343

H. Ham, A. Sreelatha, and K. Orth, Manipulation of host membranes by bacterial effectors, Nature Reviews Microbiology, vol.91, issue.9, pp.635-646, 2011.
DOI : 10.1038/nrmicro2602

K. Hase, S. Kimura, H. Takatsu, M. Ohmae, S. Kawano et al., M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex, Nature Cell Biology, vol.281, issue.12, pp.1427-1432, 2009.
DOI : 10.1016/j.cell.2006.08.034

K. He, W. Luo, Y. Zhang, F. Liu, D. Liu et al., Intercellular Transportation of Quantum Dots Mediated by Membrane Nanotubes, ACS Nano, vol.4, issue.6, pp.3015-3022, 2010.
DOI : 10.1021/nn1002198

R. B. Herberman and J. R. Ortaldo, Natural killer cells: their roles in defenses against disease, Science, vol.214, issue.4516, pp.24-30, 1981.
DOI : 10.1126/science.7025208

J. Hurtig, D. T. Chiu, and B. Onfelt, Intercellular nanotubes: insights from imaging studies and beyond, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol.178, issue.3, pp.260-276, 2010.
DOI : 10.1002/wnan.80

C. Jolly and Q. J. Sattentau, Retroviral Spread by Induction of Virological Synapses, Traffic, vol.114, issue.19, pp.643-650, 2004.
DOI : 10.1111/j.1600-0854.2004.00209.x

I. Kadiu and H. E. Gendelman, Macrophage Bridging Conduit Trafficking of HIV-1 Through the Endoplasmic Reticulum and Golgi Network, Journal of Proteome Research, vol.10, issue.7, pp.3225-3238, 2011.
DOI : 10.1021/pr200262q

I. Kadiu and H. E. Gendelman, Human Immunodeficiency Virus type 1 Endocytic Trafficking Through Macrophage Bridging Conduits Facilitates Spread of Infection, Journal of Neuroimmune Pharmacology, vol.2, issue.Pt 24, pp.658-675, 2011.
DOI : 10.1007/s11481-011-9298-z

N. Kanu, Y. Imokawa, D. N. Drechsel, R. A. Williamson, C. R. Birkett et al., Transfer of Scrapie Prion Infectivity by Cell Contact in Culture, Current Biology, vol.12, issue.7, pp.523-530, 2002.
DOI : 10.1016/S0960-9822(02)00722-4

K. B. Kegel, E. Sapp, J. Yoder, B. Cuiffo, L. Sobin et al., Huntingtin Associates with Acidic Phospholipids at the Plasma Membrane, Journal of Biological Chemistry, vol.280, issue.43, pp.36464-36473, 2005.
DOI : 10.1074/jbc.M503672200

M. Koyanagi, R. P. Brandes, J. Haendeler, A. M. Zeiher, and S. Dimmeler, Cell-to-Cell Connection of Endothelial Progenitor Cells With Cardiac Myocytes by Nanotubes: A Novel Mechanism for Cell Fate Changes?, Circulation Research, vol.96, issue.10, pp.1039-1041, 2005.
DOI : 10.1161/01.RES.0000168650.23479.0c

C. Krammer, H. M. Schätzl, and I. Vorberg, Prion-like propagation of cytosolic protein aggregates, Prion, vol.1, issue.4, pp.206-212, 2009.
DOI : 10.1038/ncb1843

L. Boissière, S. Izeta, A. Malcomber, S. , O. Hare et al., Compartmentalization of VP16 in Cells Infected with Recombinant Herpes Simplex Virus Expressing VP16-Green Fluorescent Protein Fusion Proteins, Journal of Virology, vol.78, issue.15, pp.8002-8014, 2004.
DOI : 10.1128/JVI.78.15.8002-8014.2004

C. Langevin, K. Gousset, M. Costanzo, O. Richard-le-goff, and C. Zurzolo, Characterization of the role of dendritic cells in prion transfer to primary neurons, Biochemical Journal, vol.71, issue.2, pp.189-198, 2010.
DOI : 10.1016/j.febslet.2009.03.065

URL : https://hal.archives-ouvertes.fr/hal-00521557

S. Lee, H. Lim, E. Masliah, L. , and H. , Protein aggregate spreading in neurodegenerative diseases: Problems and perspectives, Neuroscience Research, vol.70, issue.4, pp.339-348, 2011.
DOI : 10.1016/j.neures.2011.05.008

M. J. Lehmann, N. M. Sherer, C. B. Marks, M. Pypaert, and W. Mothes, Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells, The Journal of Cell Biology, vol.109, issue.2, pp.317-325, 2005.
DOI : 10.1128/JVI.78.1.473-481.2004

W. J. Lucas, B. Ham, K. , and J. , Plasmodesmata ??? bridging the gap between neighboring plant cells, Trends in Cell Biology, vol.19, issue.10, pp.495-503, 2009.
DOI : 10.1016/j.tcb.2009.07.003

H. Ma, J. E. Croudace, D. A. Lammas, M. , and R. C. , Direct cell-to-cell spread of a pathogenic yeast, BMC Immunology, vol.8, issue.1, pp.15-25, 2007.
DOI : 10.1186/1471-2172-8-15

S. Maeda and T. Tsukihara, Structure of the gap junction channel and its implications for its biological functions, Cellular and Molecular Life Sciences, vol.15, issue.Pt 8, pp.1115-1129, 2011.
DOI : 10.1007/s00018-010-0551-z

D. A. Martin, L. Zheng, R. M. Siegel, B. Huang, G. H. Fisher et al., Defective CD95/APO-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia, Proc. Natl. Acad. Sci. U.S.A. 96, pp.4552-4557, 1999.
DOI : 10.1073/pnas.96.8.4552

J. Miller, S. E. Fraser, and D. Mcclay, Dynamics of thin filopodia during sea urchin gastrulation, Development, vol.121, pp.2501-2511, 1995.

W. Mothes, N. M. Sherer, J. Jin, and P. Zhong, Virus Cell-to-Cell Transmission, Journal of Virology, vol.84, issue.17, pp.8360-8368, 2010.
DOI : 10.1128/JVI.00443-10

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918988

C. Münch, J. O-'brien, and A. Bertolotti, Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells, Proceedings of the National Academy of Sciences, vol.108, issue.9, pp.3548-3553, 2011.
DOI : 10.1073/pnas.1017275108

Y. Nishikawa, M. Hikida, M. Magari, N. Kanayama, M. Mori et al., Establishment of Lymphotoxin ?? Receptor Signaling-Dependent Cell Lines with Follicular Dendritic Cell Phenotypes from Mouse Lymph Nodes, The Journal of Immunology, vol.177, issue.8, pp.5204-5214, 2006.
DOI : 10.4049/jimmunol.177.8.5204

O. Connell, J. O-'sullivan, G. C. Collins, J. K. Shanahan, and F. , The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand, Journal of Experimental Medicine, vol.184, issue.3, pp.1075-1082, 1996.
DOI : 10.1084/jem.184.3.1075

B. Onfelt, S. Nedvetzki, R. K. Benninger, M. A. Purbhoo, S. Sowinski et al., Structurally Distinct Membrane Nanotubes between Human Macrophages Support Long-Distance Vesicular Traffic or Surfing of Bacteria, The Journal of Immunology, vol.177, issue.12, pp.8476-8483, 2006.
DOI : 10.4049/jimmunol.177.12.8476

B. Onfelt, S. Nedvetzki, K. Yanagi, D. , and D. M. , Cutting Edge: Membrane Nanotubes Connect Immune Cells, The Journal of Immunology, vol.173, issue.3, pp.1511-1513, 2004.
DOI : 10.4049/jimmunol.173.3.1511

E. Y. Plotnikov, T. G. Khryapenkova, S. I. Galkina, G. T. Sukhikh, and D. B. Zorov, Cytoplasm and organelle transfer between mesenchymal multipotent stromal cells and renal tubular cells in co-culture, Experimental Cell Research, vol.316, issue.15, 2010.
DOI : 10.1016/j.yexcr.2010.06.009

F. A. Ramírez-weber and T. B. Kornberg, Cytonemes, Cell, vol.97, issue.5, pp.599-607, 1999.
DOI : 10.1016/S0092-8674(00)80771-0

O. Rechavi, I. Goldstein, H. Vernitsky, B. Rotblat, and Y. Kloog, Intercellular Transfer of Oncogenic H-Ras at the Immunological Synapse, PLoS ONE, vol.267, issue.11, 2007.
DOI : 10.1371/journal.pone.0001204.s010

I. Rupp, L. Sologub, K. C. Williamson, M. Scheuermayer, L. Reininger et al., Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut, Cell Research, vol.28, issue.4, pp.683-696, 2011.
DOI : 10.1017/S0031182000013202

A. Rustom, Hen or egg? Some thoughts on tunneling nanotubes, 2009.

A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H. Gerdes, Nanotubular Highways for Intercellular Organelle Transport, Science, vol.303, issue.5660, pp.1007-1010, 2004.
DOI : 10.1126/science.1093133

T. Schwann and M. J. Schleyden, Microscopical Researches into the Accordance in the Structure and Growth of Animals and Plants, 1847.

N. M. Sherer, M. J. Lehmann, L. F. Jimenez-soto, C. Horensavitz, P. Mothes et al., Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission, Nature Cell Biology, vol.177, issue.3, pp.310-315, 2007.
DOI : 10.1073/pnas.63.3.753

R. Singh and H. S. Nalwa, Medical Applications of Nanoparticles in Biological Imaging, Cell Labeling, Antimicrobial Agents, and Anticancer Nanodrugs, Journal of Biomedical Nanotechnology, vol.7, issue.4, pp.489-503, 2011.
DOI : 10.1166/jbn.2011.1324

I. F. Smith, J. Shuai, P. , and I. , Active Generation and Propagation of Ca2+ Signals within Tunneling Membrane Nanotubes, Biophysical Journal, vol.100, issue.8, pp.37-39, 2011.
DOI : 10.1016/j.bpj.2011.03.007

S. Sowinski, C. Jolly, O. Berninghausen, M. A. Purbhoo, A. Chauveau et al., Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission, Nature Cell Biology, vol.8, issue.2, pp.211-219, 2008.
DOI : 10.1074/jbc.C400046200

J. L. Spees, S. D. Olson, M. J. Whitney, and D. J. Prockop, Mitochondrial transfer between cells can rescue aerobic respiration, Proceedings of the National Academy of Sciences, vol.103, issue.5, pp.1283-1288, 2006.
DOI : 10.1073/pnas.0510511103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1345715

T. C. Süudhof, Neurotransmitter Release, Handb. Exp. Pharmacol, vol.184, pp.1-21, 2008.
DOI : 10.1007/978-3-540-74805-2_1

A. O. Tarakanov and L. B. Goncharova, Cell-cell nanotubes, Communicative & Integrative Biology, vol.7, issue.4, pp.359-361, 2009.
DOI : 10.1128/JVI.01469-06

S. Thomas, V. L. Popov, and D. H. Walker, Exit Mechanisms of the Intracellular Bacterium Ehrlichia, PLoS ONE, vol.74, issue.12, 2010.
DOI : 10.1371/journal.pone.0015775.g009

B. D. Van-rooijen, M. M. Claessens, and V. Subramaniam, Membrane binding of oligomeric ??-synuclein depends on bilayer charge and packing, FEBS Letters, vol.279, issue.27, pp.3788-3792, 2008.
DOI : 10.1016/j.febslet.2008.10.009

P. Veranic, M. Lokar, G. J. Schütz, J. Weghuber, S. Wieser et al., Different Types of Cell-to-Cell Connections Mediated by Nanotubular Structures, Biophysical Journal, vol.95, issue.9, pp.4416-4425, 2008.
DOI : 10.1529/biophysj.108.131375

X. Wang, M. L. Veruki, N. V. Bukoreshtliev, E. Hartveit, and H. Gerdes, Animal cells connected by nanotubes can be electrically coupled through interposed gapjunction channels, Proc. Natl. Acad, 2010.
DOI : 10.1073/pnas.1006785107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951457

Y. Wang, J. Cui, X. Sun, and Y. Zhang, Tunneling-nanotube development in astrocytes depends on p53 activation, Cell Death and Differentiation, vol.23, issue.4, pp.732-742, 2011.
DOI : 10.1038/cdd.2010.147

S. C. Watkins and R. D. Salter, Functional Connectivity between Immune Cells Mediated by Tunneling Nanotubules, Immunity, vol.23, issue.3, pp.309-318, 2005.
DOI : 10.1016/j.immuni.2005.08.009

URL : http://doi.org/10.1016/j.immuni.2005.08.009

L. Wolpert and T. Gustafson, Studies on the cellular basis of morphogenesis of the sea urchin embryo, Experimental Cell Research, vol.25, issue.2, pp.374-382, 1961.
DOI : 10.1016/0014-4827(61)90287-7

M. Youns, J. D. Hoheisel, and T. Efferth, Therapeutic and Diagnostic Applications of Nanoparticles, Current Drug Targets, vol.12, issue.3, pp.357-365, 2011.
DOI : 10.2174/138945011794815257

B. G. Zani and E. R. Edelman, Cellular bridges, Communicative & Integrative Biology, vol.2005, issue.3, pp.215-220, 2010.
DOI : 10.1046/j.1440-1843.2003.00493.x

B. G. Zani, L. Indolfi, and E. R. Edelman, Tubular Bridges for Bronchial Epithelial Cell Migration and Communication, PLoS ONE, vol.5, issue.1, 2010.
DOI : 10.1371/journal.pone.0008930.s019

URL : http://doi.org/10.1371/journal.pone.0008930