B. R. Blazar, Successful donor cell engraftment in a recipient of bone marrow from a cadaveric donor, Blood, vol.67, pp.1655-1660, 1986.

L. Erker, Therapeutic Liver Reconstitution With Murine Cells Isolated Long After Death, Gastroenterology, vol.139, issue.3, pp.1019-1029, 2010.
DOI : 10.1053/j.gastro.2010.05.082

J. Kapelushnik, M. Aker, T. Pugatsch, S. Samuel, and S. Slavin, Bone marrow transplantation from a cadaveric donor, Bone Marrow Transplantation, vol.21, issue.8, pp.857-858, 1998.
DOI : 10.1038/sj.bmt.1701165

X. Liu, Y. Zhu, and W. Gao, Isolation of neural stem cells from the spinal cords of low temperature preserved abortuses, Journal of Neuroscience Methods, vol.157, issue.1, pp.64-70, 2006.
DOI : 10.1016/j.jneumeth.2006.03.025

B. Machalinski, M. Paczkowski, M. Kawa, E. Paczkowska, and M. Ostrowski, An optimization of isolation of early hematopoietic cells from heparinized cadaveric organ donors, Transplantation Proceedings, vol.35, issue.8, pp.3096-3100, 2003.
DOI : 10.1016/j.transproceed.2003.10.082

T. D. Palmer, Cell culture. Progenitor cells from human brain after death, Nature, vol.411, issue.6833, pp.42-43, 2001.
DOI : 10.1038/35075141

Y. Xu, K. Kimura, N. Matsumoto, and C. Ide, Isolation of neural stem cells from the forebrain of deceased early postnatal and adult rats with protracted post-mortem intervals, Journal of Neuroscience Research, vol.72, issue.4, pp.533-540, 2003.
DOI : 10.1002/jnr.10769

C. Christov, Muscle Satellite Cells and Endothelial Cells: Close Neighbors and Privileged Partners, Molecular Biology of the Cell, vol.18, issue.4, pp.1397-1409, 2007.
DOI : 10.1091/mbc.E06-08-0693

URL : https://hal.archives-ouvertes.fr/inserm-00128985

B. Gayraud-morel, F. Chretien, and S. Tajbakhsh, Skeletal muscle as a paradigm for regenerative biology and medicine, Regenerative Medicine, vol.4, issue.2, pp.293-319, 2009.
DOI : 10.2217/17460751.4.2.293

R. Sambasivan, Distinct Regulatory Cascades Govern Extraocular and Pharyngeal Arch Muscle Progenitor Cell Fates, Developmental Cell, vol.16, issue.6, pp.810-821, 2009.
DOI : 10.1016/j.devcel.2009.05.008

URL : https://hal.archives-ouvertes.fr/hal-00428975

S. Kuang, M. A. Gillespie, and M. A. Rudnicki, Niche Regulation of Muscle Satellite Cell Self-Renewal and Differentiation, Cell Stem Cell, vol.2, issue.1, pp.22-31, 2008.
DOI : 10.1016/j.stem.2007.12.012

P. Seale, Pax7 Is Required for the Specification of Myogenic Satellite Cells, Cell, vol.102, issue.6, pp.777-786, 2000.
DOI : 10.1016/S0092-8674(00)00066-0

P. S. Zammit, Muscle satellite cells adopt divergent fates, The Journal of Cell Biology, vol.111, issue.3, pp.347-357, 2004.
DOI : 10.1006/excr.2002.5653

R. Sambasivan, Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration, Development, vol.138, issue.17, pp.3647-3656, 2011.
DOI : 10.1242/dev.067587

URL : https://hal.archives-ouvertes.fr/hal-00667781

D. Bosnakovski, Prospective Isolation of Skeletal Muscle Stem Cells with a Pax7 Reporter, STEM CELLS, vol.142, issue.12, pp.3194-3204, 2008.
DOI : 10.1634/stemcells.2007-1017

R. I. Sherwood, Isolation of Adult Mouse Myogenic Progenitors, Cell, vol.119, issue.4, pp.543-554, 2004.
DOI : 10.1016/j.cell.2004.10.021

C. Lepper, T. A. Partridge, and C. M. Fan, An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration, Development, vol.138, issue.17, pp.3639-3646, 2011.
DOI : 10.1242/dev.067595

M. M. Murphy, J. A. Lawson, S. J. Mathew, D. A. Hutcheson, and G. Kardon, Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration, Development, vol.138, issue.17, pp.3625-3637, 2011.
DOI : 10.1242/dev.064162

Z. Yablonka-reuveni and J. Anderson, Satellite cells from dystrophic (Mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers, Developmental Dynamics, vol.104, issue.1, pp.203-212, 2006.
DOI : 10.1002/dvdy.20602

T. Enver, M. Greaves, and . Loops, Loops, Lineage, and Leukemia, Cell, vol.94, issue.1, pp.9-12, 1998.
DOI : 10.1016/S0092-8674(00)81215-5

URL : http://doi.org/10.1016/s0092-8674(00)81215-5

J. R. Beauchamp, Expression of Cd34 and Myf5 Defines the Majority of Quiescent Adult Skeletal Muscle Satellite Cells, The Journal of Cell Biology, vol.85, issue.6, pp.1221-1234, 2000.
DOI : 10.1093/nar/19.23.6433

B. Gayraud-morel, A role for the myogenic determination gene Myf5 in adult regenerative myogenesis, Developmental Biology, vol.312, issue.1, pp.13-28, 2007.
DOI : 10.1016/j.ydbio.2007.08.059

P. Rocheteau, B. Gayraud-morel, I. Siegl-cachedenier, M. A. Blasco, and S. Tajbakhsh, A Subpopulation of Adult Skeletal Muscle Stem Cells Retains All Template DNA Strands after Cell Division, Cell, vol.148, issue.1-2, pp.112-125, 2012.
DOI : 10.1016/j.cell.2011.11.049

S. Pervaiz, R. Taneja, and S. Ghaffari, Oxidative Stress Regulation of Stem and Progenitor Cells, Antioxidants & Redox Signaling, vol.11, issue.11, pp.2777-2789, 2009.
DOI : 10.1089/ars.2009.2804

Y. Z. Wang, J. M. Plane, P. Jiang, C. J. Zhou, and W. Deng, Concise Review: Quiescent and Active States of Endogenous Adult Neural Stem Cells: Identification and Characterization, STEM CELLS, vol.38, issue.6, pp.907-912, 2011.
DOI : 10.1002/stem.644

M. Diehn, Association of reactive oxygen species levels and radioresistance in cancer stem cells, Nature, vol.67, issue.7239, pp.780-783, 2009.
DOI : 10.1038/nature07733

A. J. Majmundar, W. J. Wong, and M. C. Simon, Hypoxia-Inducible Factors and the Response to Hypoxic Stress, Molecular Cell, vol.40, issue.2, pp.294-309, 2010.
DOI : 10.1016/j.molcel.2010.09.022

R. Abou-khalil, Autocrine and Paracrine Angiopoietin 1/Tie-2 Signaling Promotes Muscle Satellite Cell Self-Renewal, Cell Stem Cell, vol.5, issue.3, pp.298-309, 2009.
DOI : 10.1016/j.stem.2009.06.001

URL : http://doi.org/10.1016/j.stem.2009.06.001

J. P. Kruse and W. Gu, Modes of p53 Regulation, Cell, vol.137, issue.4, pp.609-622, 2009.
DOI : 10.1016/j.cell.2009.04.050

C. Garlanda, B. Bottazzi, A. Bastone, and A. Mantovani, PENTRAXINS AT THE CROSSROADS BETWEEN INNATE IMMUNITY, INFLAMMATION, MATRIX DEPOSITION, AND FEMALE FERTILITY, Annual Review of Immunology, vol.23, issue.1, pp.337-366, 2005.
DOI : 10.1146/annurev.immunol.23.021704.115756

A. Oeckinghaus, M. S. Hayden, and S. Ghosh, Crosstalk in NF-??B signaling pathways, Nature Immunology, vol.13, issue.8, pp.695-708, 2011.
DOI : 10.1016/j.cell.2007.07.009

T. Wang, X. Zhang, and J. J. Li, The role of NF-??B in the regulation of cell stress responses, International Immunopharmacology, vol.2, issue.11, pp.1509-1520, 2002.
DOI : 10.1016/S1567-5769(02)00058-9

R. Schmidt-ullrich, NF-kappaB activity in transgenic mice: developmental regulation and tissue specificity, Development, vol.122, pp.2117-2128, 1996.

W. Ying, . Nad+, and N. Nadh, /NADPH in Cellular Functions and Cell Death: Regulation and Biological Consequences, Antioxidants & Redox Signaling, vol.10, issue.2, pp.179-206, 2008.
DOI : 10.1089/ars.2007.1672

M. Bourraindeloup, N-Acetylcysteine Treatment Normalizes Serum Tumor Necrosis Factor-?? Level and Hinders the Progression of Cardiac Injury in Hypertensive Rats, Circulation, vol.110, issue.14, pp.2003-2009, 2004.
DOI : 10.1161/01.CIR.0000143630.14515.7C

T. Watanabe, A NOVEL MODEL OF CONTINUOUS DEPLETION OF GLUTATHIONE IN MICE TREATED WITH L-BUTHIONINE(S,R)-SULFOXIMINE., The Journal of Toxicological Sciences, vol.28, issue.5, pp.455-469, 2003.
DOI : 10.2131/jts.28.455

M. Yano, N. Hoogenraad, K. Terada, and M. Mori, Identification and Functional Analysis of Human Tom22 for Protein Import into Mitochondria, Molecular and Cellular Biology, vol.20, issue.19, pp.7205-7213, 2000.
DOI : 10.1128/MCB.20.19.7205-7213.2000

D. Son, Chronic hypoxia aggravates renal injury via suppression of Cu/Zn-SOD: a proteomic analysis, AJP: Renal Physiology, vol.294, issue.1, pp.62-72, 2008.
DOI : 10.1152/ajprenal.00113.2007

C. M. Van-itallie, S. Van-why, G. Thulin, M. Kashgarian, and N. J. Siegel, Alterations in mitochondrial RNA expression after renal ischemia, Am. J. Physiol, vol.265, pp.712-719, 1993.

H. F. Burgers, D. W. Schelshorn, W. Wagner, W. Kuschinsky, and M. H. Maurer, Acute anoxia stimulates proliferation in adult neural stem cells from the rat brain, Experimental Brain Research, vol.31, issue.1, pp.33-43, 2008.
DOI : 10.1007/s00221-008-1336-6

M. M. Klosinska, C. A. Crutchfield, P. H. Bradley, J. D. Rabinowitz, and J. Broach, Yeast cells can access distinct quiescent states, Yeast cells can access distinct quiescent states, pp.336-349, 2011.
DOI : 10.1101/gad.2011311

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042157

A. Wilson, Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair, Journal of End-to-End-testing, vol.138, issue.1, pp.1118-1129, 2008.
DOI : 10.1016/S9999-9994(09)20369-2

URL : http://doi.org/10.1016/j.cell.2008.10.048

H. Hoppeler, M. Vogt, E. R. Weibel, and M. Fluck, Response of Skeletal Muscle Mitochondria to Hypoxia, Experimental Physiology, vol.88, issue.1, pp.109-119, 2003.
DOI : 10.1113/eph8802513

H. M. Lee, G. H. Greeley, . Jr, and E. W. Englander, Sustained hypoxia modulates mitochondrial DNA content in the neonatal rat brain. Free Radic, Biol. Med, vol.44, pp.807-814, 2008.

A. Aly, K. Peterson, A. Lerman, L. Lerman, and M. Rodriguez-porcel, Role of oxidative stress in hypoxia preconditioning of cells transplanted to the myocardium: a molecular imaging study, J. Cardiovasc. Surg, vol.52, pp.579-585, 2011.

X. Shi and D. J. Garry, Muscle stem cells in development, regeneration, and disease, Genes & Development, vol.20, issue.13, pp.1692-1708, 2006.
DOI : 10.1101/gad.1419406

A. Mohyeldin, T. Garzón-muvdi, and A. Quiñones-hinojosa, Oxygen in Stem Cell Biology: A Critical Component of the Stem Cell Niche, Cell Stem Cell, vol.7, issue.2, pp.150-161, 2010.
DOI : 10.1016/j.stem.2010.07.007

E. Owusu-ansah and U. Banerjee, Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation, Nature, vol.422, issue.7263, pp.537-541, 2009.
DOI : 10.1038/nature08313

J. Gruber, Mitochondrial Changes in Ageing Caenorhabditis elegans ??? What Do We Learn from Superoxide Dismutase Knockouts?, PLoS ONE, vol.21, issue.5, p.19444, 2011.
DOI : 10.1371/journal.pone.0019444.s002

G. Gloire, S. Legrand-poels, and J. Piette, NF-??B activation by reactive oxygen species: Fifteen years later, Biochemical Pharmacology, vol.72, issue.11, pp.1493-1505, 2006.
DOI : 10.1016/j.bcp.2006.04.011

F. M. Moodie, Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-kappaB activation and proinflammatory cytokine release in alveolar epithelial cells, FASEB J, vol.18, pp.1897-189, 2004.

A. V. Guitart, M. Hammoud, D. Sbarba, P. Ivanovic, Z. Praloran et al., Slow-cycling/quiescence balance of hematopoietic stem cells is related to physiological gradient of oxygen, Experimental Hematology, vol.38, issue.10, pp.847-851, 2010.
DOI : 10.1016/j.exphem.2010.06.002

A. Nature-communications and |. Doi, All rights reserved

S. Gurumurthy, The Lkb1 metabolic sensor maintains haematopoietic stem cell survival, Nature, vol.11, issue.7324, pp.659-663, 2010.
DOI : 10.1038/nature09572

J. St-pierre, M. D. Brand, and R. G. Boutilier, Mitochondria as ATP consumers: Cellular treason in anoxia, Proc. Natl Acad. Sci. USA 97, pp.8670-86744, 2000.
DOI : 10.1073/pnas.140093597

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC27006

C. Rocher, Influence of mitochondrial DNA level on cellular energy metabolism: implications for mitochondrial diseases, Journal of Bioenergetics and Biomembranes, vol.261, issue.Pt 1, pp.59-67, 2008.
DOI : 10.1007/s10863-008-9130-5

R. Freter, M. Osawa, and S. Nishikawa, Adult Stem Cells Exhibit Global Suppression of RNA Polymerase II Serine-2 Phosphorylation, STEM CELLS, vol.27, issue.9, pp.1571-1580, 2010.
DOI : 10.1002/stem.476

B. Gan, Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells, Nature, vol.105, issue.7324, pp.701-704, 2010.
DOI : 10.1038/nature09595

R. Gelfand and G. Attardi, Synthesis and turnover of mitochondrial ribonucleic acid in HeLa cells: the mature ribosomal and messenger ribonucleic acid species are metabolically unstable., Molecular and Cellular Biology, vol.1, issue.6, pp.497-511, 1981.
DOI : 10.1128/MCB.1.6.497

T. R. Mercer, The Human Mitochondrial Transcriptome, Cell, vol.146, issue.4, pp.645-658, 2011.
DOI : 10.1016/j.cell.2011.06.051

A. K. Hadjantonakis, M. Gertsenstein, M. Ikawa, M. Okabe, and A. Nagy, Generating green fluorescent mice by germline transmission of green fluorescent ES cells, Mechanisms of Development, vol.76, issue.1-2, pp.79-90, 1998.
DOI : 10.1016/S0925-4773(98)00093-8