J. Herreros, G. Lalli, C. Montecucco, and G. Schiavo, Pathophysiological properties of clostridial neurotoxins, The Comprehensive Sourcebook of Bacterial Protein Toxins, pp.202-228, 1999.

Y. Humeau, F. Doussau, N. Grant, and B. Poulain, How botulinum and tetanus neurotoxins block neurotransmitter release**This paper is dedicated to the memory of Heiner Niemann., Biochimie, vol.82, issue.5, pp.427-446, 2000.
DOI : 10.1016/S0300-9084(00)00216-9

B. Poulain, B. Stiles, M. Popoff, and J. Molgó, Attack of the nervous system by clostridial toxins: physical findings, cellular and molecular actions, The Sourcebook of Bacterial Protein Toxins, pp.348-389, 2006.
DOI : 10.1016/B978-012088445-2/50024-X

G. Schiavo, M. Matteoli, and C. Montecucco, Neurotoxins affecting neuroexocytosis, Physiol Rev, vol.80, pp.717-766, 2000.

C. Montecucco, O. Rossetto, and G. Schiavo, Presynaptic receptor arrays for clostridial neurotoxins, Trends in Microbiology, vol.12, issue.10, pp.442-446, 2004.
DOI : 10.1016/j.tim.2004.08.002

M. Kitamura, K. Takamiya, S. Aizawa, and K. Furukawa, Gangliosides are the binding substances in neural cells for tetanus and botulinum toxins in mice, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1441, issue.1, pp.1-3, 1999.
DOI : 10.1016/S1388-1981(99)00140-7

A. Rummel, S. Mahrhold, H. Bigalke, and T. Binz, The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction, Molecular Microbiology, vol.277, issue.3, pp.631-643, 2004.
DOI : 10.1046/j.1365-2958.2003.03872.x

S. Kozaki, Y. Kamata, S. Watarai, T. Nishiki, and S. Mochida, Ganglioside GT1b as a complementary receptor component forClostridium botulinumneurotoxins, Microbial Pathogenesis, vol.25, issue.2, pp.91-99, 1998.
DOI : 10.1006/mpat.1998.0214

M. Dong, D. Richards, M. Goodnough, W. Tepp, and E. Johnson, Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells, The Journal of Cell Biology, vol.263, issue.7, pp.1293-1303, 2003.
DOI : 10.1016/S0896-6273(02)00671-2

M. Dong, F. Yeh, W. Tepp, C. Dean, and E. Johnson, SV2 Is the Protein Receptor for Botulinum Neurotoxin A, Science, vol.312, issue.5773, pp.592-596, 2006.
DOI : 10.1126/science.1123654

T. Nishiki, Y. Kamata, Y. Nemoto, A. Omori, and T. Ito, Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes, J Biol Chem, vol.269, pp.10498-10503, 1994.

A. Rummel, T. Karnath, T. Henke, H. Bigalke, and T. Binz, Synaptotagmins I and II Act as Nerve Cell Receptors for Botulinum Neurotoxin G, Journal of Biological Chemistry, vol.279, issue.29, pp.30865-30870, 2004.
DOI : 10.1074/jbc.M403945200

S. Mahrhold, A. Rummel, H. Bigalke, B. Davletov, and T. Binz, The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves, FEBS Letters, vol.279, issue.8, pp.2011-2014, 2006.
DOI : 10.1016/j.febslet.2006.02.074

M. Dong, H. Liu, W. Tepp, E. Johnson, and R. Janz, Glycosylated SV2A and SV2B Mediate the Entry of Botulinum Neurotoxin E into Neurons, Molecular Biology of the Cell, vol.19, issue.12, pp.5226-5237, 2008.
DOI : 10.1091/mbc.E08-07-0765

Z. Fu, C. Chen, J. Barbieri, J. Kim, and M. Baldwin, Glycosylated SV2 and Gangliosides as Dual Receptors for Botulinum Neurotoxin Serotype F, Biochemistry, vol.48, issue.24, pp.5631-5641, 2009.
DOI : 10.1021/bi9002138

A. Rummel, K. Hafner, S. Mahrhold, N. Darashchonak, and M. Holt, Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor, Journal of Neurochemistry, vol.21, issue.6, pp.1942-1954, 2009.
DOI : 10.1111/j.1471-4159.2009.06298.x

L. Peng, W. Tepp, E. Johnson, and M. Dong, Botulinum Neurotoxin D Uses Synaptic Vesicle Protein SV2 and Gangliosides as Receptors, PLoS Pathogens, vol.276, issue.3, p.1002008, 2011.
DOI : 10.1371/journal.ppat.1002008.s003

F. Yeh, M. Dong, J. Yao, W. Tepp, and G. Lin, SV2 Mediates Entry of Tetanus Neurotoxin into Central Neurons, PLoS Pathogens, vol.284, issue.Pt 16, p.1001207, 2011.
DOI : 10.1371/journal.ppat.1001207.g006

A. Maksymowych, M. Rienhard, C. Malizio, M. Goodnough, and E. Johnson, Pure botulinum neurotoxin is absorbed from the stomach and small intestine and produces peripheral neuromuscular blockade, Infect Immun, vol.67, pp.4708-4712, 1999.

S. Sugii, I. Ohishi, and G. Sakaguchi, Intestinal absorption of botulinum toxins of different molecular sizes in rats, Infect Immun, vol.17, pp.491-496, 1977.

P. Bonventre, Absorption of Botulinal Toxin from the Gastrointestinal Tract, Clinical Infectious Diseases, vol.1, issue.4, pp.663-667, 1979.
DOI : 10.1093/clinids/1.4.663

Y. Fujinaga, K. Inoue, S. Watanabe, K. Yokota, and Y. Hirai, The haemagglutinin of Clostridium botulinum type C progenitor toxin plays an essential role in binding of toxin to the epithelial cells of guinea pig small intestine, leading to the efficient absorption of the toxin, Microbiology, vol.143, issue.12, pp.3841-3847, 1997.
DOI : 10.1099/00221287-143-12-3841

M. Kitamura, S. Sakaguchi, and G. Sakaguchi, Significance of 12S toxin of Clostridium botulinum type E, J Bacteriol, vol.98, pp.1173-1178, 1969.

A. Maksymowych and L. Simpson, Structural Features of the Botulinum Neurotoxin Molecule That Govern Binding and Transcytosis across Polarized Human Intestinal Epithelial Cells, Journal of Pharmacology and Experimental Therapeutics, vol.310, issue.2, pp.633-641, 2004.
DOI : 10.1124/jpet.104.066845

A. Maksymowych and L. Simpson, Binding and Transcytosis of Botulinum Neurotoxin by Polarized Human Colon Carcinoma Cells, Journal of Biological Chemistry, vol.273, issue.34, pp.21950-21957, 1998.
DOI : 10.1074/jbc.273.34.21950

J. Park and L. Simpson, Inhalational Poisoning by Botulinum Toxin and Inhalation Vaccination with Its Heavy-Chain Component, Infection and Immunity, vol.71, issue.3, pp.1147-1154, 2003.
DOI : 10.1128/IAI.71.3.1147-1154.2003

A. Nishikawa, N. Uotsu, H. Arimitsu, J. Lee, and Y. Miura, The receptor and transporter for internalization of Clostridium botulinum type C progenitor toxin into HT-29 cells, Biochemical and Biophysical Research Communications, vol.319, issue.2, pp.327-333, 2004.
DOI : 10.1016/j.bbrc.2004.04.183

A. Couesnon, Y. Pereira, and M. Popoff, Receptor-mediated transcytosis of botulinum neurotoxin A through intestinal cell monolayers, Cellular Microbiology, vol.263, issue.0, pp.375-387, 2008.
DOI : 10.1074/jbc.M205258200

R. Goyal and I. Hirano, The enteric nervous system, N Engl J Med, vol.334, pp.1106-1115, 1996.

D. Grundy and M. Schermann, Enteric nervous system, Current Opinion in Gastroenterology, vol.22, issue.2, pp.102-110, 2006.
DOI : 10.1097/01.mog.0000208459.46395.16

P. Mclean, R. Borman, and K. Lee, 5-HT in the enteric nervous system: gut function and neuropharmacology, Trends in Neurosciences, vol.30, issue.1, pp.9-13, 2006.
DOI : 10.1016/j.tins.2006.11.002

S. Bohnert and G. Schiavo, Tetanus Toxin Is Transported in a Novel Neuronal Compartment Characterized by a Specialized pH Regulation, Journal of Biological Chemistry, vol.280, issue.51, pp.42336-42344, 2005.
DOI : 10.1074/jbc.M506750200

S. Roux, S. Cloment, C. Curie, T. Girard, E. Mena et al., internalization of tetanus neurotoxin C-terminal fragment fusion proteins in mature mouse motor nerve terminals, European Journal of Neuroscience, vol.24, issue.6, pp.1546-1554, 2006.
DOI : 10.1111/j.1460-9568.2006.05030.x

URL : https://hal.archives-ouvertes.fr/hal-00105586

G. Lalli, S. Gschmeissner, and G. Schiavo, Myosin Va and microtubule-based motors are required for fast axonal retrograde transport of tetanus toxin in motor neurons, Journal of Cell Science, vol.116, issue.22, pp.4639-4650, 2003.
DOI : 10.1242/jcs.00727

C. Harper, S. Martin, T. Nguyen, S. Daniels, and N. Lavidis, Dynamin Inhibition Blocks Botulinum Neurotoxin Type A Endocytosis in Neurons and Delays Botulism, Journal of Biological Chemistry, vol.286, issue.41, pp.35966-35976, 2011.
DOI : 10.1074/jbc.M111.283879

C. Ahsan, G. Hajnoczky, A. Maksymowych, and L. Simpson, Visualization of Binding and Transcytosis of Botulinum Toxin by Human Intestinal Epithelial Cells, Journal of Pharmacology and Experimental Therapeutics, vol.315, issue.3, pp.1028-1035, 2005.
DOI : 10.1124/jpet.105.092213

H. Bigalke and E. Habermann, Blockade by tetanus and botulinum A toxin of postganglionic cholinergic nerve endings in the myenteric plexus, Naunyn-Schmiedeberg's Archives of Pharmacology, vol.156, issue.3, pp.255-263, 1980.
DOI : 10.1007/BF00499155

J. Sand, I. Nordback, P. Arvola, I. Porsti, and A. Kalloo, Effects of botulinum toxin A on the sphincter of Oddi: an in vivo and in vitro study, Gut, vol.42, issue.4, pp.507-510, 1998.
DOI : 10.1136/gut.42.4.507

E. Garabedian, L. Roberts, M. Mcnevin, and J. Gordon, Examining the Role of Paneth Cells in the Small Intestine by Lineage Ablation in Transgenic Mice, Journal of Biological Chemistry, vol.272, issue.38, pp.23729-23740, 1997.
DOI : 10.1074/jbc.272.38.23729

H. Kandori, K. Hirayama, M. Takeda, and K. Doi, Histochemical, Lectin-Histochemical and Morphometrical Characteristics of Intestinal Goblet Cells of Germfree and Conventional Mice., Experimental Animals, vol.45, issue.2, pp.155-160, 1996.
DOI : 10.1538/expanim.45.155

G. Portela-gomes, M. Stridsberg, H. Johansson, and L. Grimelius, Complex Co-localization of Chromogranins and Neurohormones in the Human Gastrointestinal Tract, Journal of Histochemistry & Cytochemistry, vol.49, issue.6, pp.815-822, 1997.
DOI : 10.1177/40.4.1552186

G. Rindi, S. Grant, Y. Yiangou, M. Ghatei, and S. Bloom, Development of neuroendocrine tumors in the gastrointestinal tract of transgenic mice. Heterogeneity of hormone expression, Am J Pathol, vol.136, pp.1349-1363, 1990.

J. Wang, M. Lee, I. Tseng, F. Chou, and Y. Chen, Polarized epithelial cells secrete matriptase as a consequence of zymogen activation and HAI-1-mediated inhibition, AJP: Cell Physiology, vol.297, issue.2, pp.459-470, 2009.
DOI : 10.1152/ajpcell.00201.2009

S. Howell, A. Kenny, and A. Turner, A survey of membrane peptidases in two human colonic cell lines, Caco-2 and HT-29, Biochemical Journal, vol.284, issue.2, pp.595-601, 1992.
DOI : 10.1042/bj2840595

D. Lottaz, C. Maurer, D. Hahn, M. Buchler, and E. Sterchi, Nonpolarized secretion of human meprin alpha in colorectal cancer generates an increased proteolytic potential in the stroma, Cancer Res, vol.59, pp.1127-1133, 1999.

F. Meunier, J. Herreros, G. Schiavo, B. Poulain, and J. Molgó, Molecular Mechanism of Action of Botulinal Neurotoxins and the Synaptic Remodeling They Induce In Vivo at the Skeletal Neuromuscular Junction, Handbook of Neurotoxicology. Totowa, pp.305-347, 2002.
DOI : 10.1385/1-59259-132-9:305

URL : https://hal.archives-ouvertes.fr/hal-00194091

C. Verderio, S. Coco, O. Rossetto, C. Montecucco, and M. Matteoli, Internalization and Proteolytic Action of Botulinum Toxins in CNS Neurons and Astrocytes, Journal of Neurochemistry, vol.271, issue.1, pp.372-379, 1999.
DOI : 10.1046/j.1471-4159.1999.0730372.x

C. Verderio, C. Grumelli, L. Raiteri, S. Coco, and S. Paluzzi, Traffic of Botulinum Toxins A and E in Excitatory and Inhibitory Neurons, Traffic, vol.113, issue.Suppl. 8, pp.142-153, 2007.
DOI : 10.1111/j.1600-0854.2006.00520.x

A. Kulkarni-narta, A. Beltz, and D. Brown, Catecholaminergic, cholinergic and peptidergic innervation of gut-associated lymphoid tissue in porcine jejunum and ileum, Cell and Tissue Research, vol.298, issue.2, pp.275-286, 1999.
DOI : 10.1007/s004419900096

J. Furness, C. Jones, K. Nurgali, and N. Clerc, Intrinsic primary afferent neurons and nerve circuits within the intestine, Progress in Neurobiology, vol.72, issue.2, pp.143-164, 2004.
DOI : 10.1016/j.pneurobio.2003.12.004

L. Hernandes, P. Gama, and E. Alvares, Ileal VIP submucous neurons: confocal study of the area enlargement induced by myenteric denervation in weanling rats, Regulatory Peptides, vol.117, issue.1, pp.69-72, 2004.
DOI : 10.1016/j.regpep.2003.10.006

S. Brookes, Classes of enteric nerve cells in the guinea-pig small intestine, The Anatomical Record, vol.71, issue.1, pp.58-70, 2001.
DOI : 10.1002/1097-0185(20010101)262:1<58::AID-AR1011>3.0.CO;2-V

M. Liu, J. Rothstein, M. Gershon, and A. Kirchgessner, Glutamanergic enteric neurons, J Neurosci, vol.17, pp.4764-4784, 1987.

M. Baldwin and J. Barbieri, Association of botulinum neurotoxins with synaptic vesicle protein complexes, Toxicon, vol.54, issue.5, pp.570-574, 2009.
DOI : 10.1016/j.toxicon.2009.01.040

S. Bajjalieh, G. Frantz, J. Weimann, S. Mcconnell, and R. Scheller, Differential expression of synaptic vesicle protein 2 (SV2) isoforms, J Neurosci, vol.14, pp.5223-5235, 1994.

G. Portela-gomes, A. Lukinius, and L. Grimelius, Synaptic Vesicle Protein 2, A New Neuroendocrine Cell Marker, The American Journal of Pathology, vol.157, issue.4, pp.1299-1309, 2000.
DOI : 10.1016/S0002-9440(10)64645-7

Y. Fujinaga, K. Inoue, T. Nomura, J. Sasaki, and J. Marvaud, type A progenitor toxin involved in binding to intestinal microvilli and erythrocytes, FEBS Letters, vol.17, issue.2-3, pp.179-183, 2000.
DOI : 10.1016/S0014-5793(00)01147-9

I. Mackenzie, G. Burnstock, and J. Dolly, The effects of purified botulinum neurotoxin type A on cholinergic, adrenergic and non-adrenergic, atropine-resistant autonomic neuromuscular transmission, Neuroscience, vol.7, issue.4, pp.997-1006, 1982.
DOI : 10.1016/0306-4522(82)90056-2

P. Pasricha, W. Ravich, and A. Kalloo, Effects of intrasphincteric botulinum toxin on the lower esophageal sphincter in piglets, Gastroenterology, vol.105, issue.4, pp.1045-1049, 1993.
DOI : 10.1016/0016-5085(93)90947-B

A. James, J. Ryan, and H. Parkman, Inhibitory effects of botulinum toxin on pyloric and antral smooth muscle, American Journal of Physiology - Gastrointestinal and Liver Physiology, vol.285, issue.2, pp.291-297, 2003.
DOI : 10.1152/ajpgi.00296.2002

S. Arnon, R. Schechter, T. Inglesby, D. Henderson, and J. Bartlett, Botulinum Toxin as a Biological Weapon, JAMA, vol.285, issue.8, pp.1059-1070, 2001.
DOI : 10.1001/jama.285.8.1059

J. Sobel, Botulism, Clinical Infectious Diseases, vol.41, issue.8, pp.1167-1173, 2005.
DOI : 10.1086/444507

I. Brook, Infant botulism, Journal of Perinatology, vol.28, issue.3, pp.175-180, 2007.
DOI : 10.1128/CMR.19.2.298-314.2006

W. Mitchell and L. Tseng-ong, Reviews of Infant Botulism at Childrens Hospital Los Angeles, Journal of Child Neurology, vol.23, issue.8, p.968, 2008.
DOI : 10.1177/0883073808320531

A. Couesnon, S. Raffestin, and M. Popoff, Expression of botulinum neurotoxins A and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR, Microbiology, vol.152, issue.3, pp.759-770, 2006.
DOI : 10.1099/mic.0.28561-0

Y. Fujinaga, K. Inoue, S. Watarai, G. Sakaguchi, and H. Arimitsu, Molecular characterization of binding subcomponents of Clostridium botulinum type C progenitor toxin for intestinal epithelial cells and erythrocytes, Microbiology, vol.150, issue.5, pp.1529-1538, 2004.
DOI : 10.1099/mic.0.26805-0

N. Uotsu, A. Nishikawa, T. Watanabe, T. Ohyama, and T. Tonozuka, Cell internalization and traffic pathway of Clostridium botulinum type C neurotoxin in HT-29 cells, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1763, issue.1, pp.120-128, 2005.
DOI : 10.1016/j.bbamcr.2005.11.014

T. Matsumura, Y. Jin, Y. Kabumoto, Y. Takegahara, and K. Oguma, The HA proteins of botulinum toxin disrupt intestinal epithelial intercellular junctions to increase toxin absorption, Cellular Microbiology, vol.248, issue.0, pp.355-364, 2008.
DOI : 10.1046/j.1462-5822.2000.00025.x

Y. Jin, Y. Takegahara, Y. Sugawara, T. Matsumura, and Y. Fujinaga, Disruption of the epithelial barrier by botulinum haemagglutinin (HA) proteins - differences in cell tropism and the mechanism of action between HA proteins of types A or B, and HA proteins of type C, Microbiology, vol.155, issue.1, pp.35-45, 2009.
DOI : 10.1099/mic.0.021246-0

Y. Fujinaga, T. Matsumura, Y. Jin, Y. Takegahara, and Y. Sugawara, A novel function of botulinum toxin-associated proteins: HA proteins disrupt intestinal epithelial barrier to increase toxin absorption, Toxicon, vol.54, issue.5, pp.583-586, 2009.
DOI : 10.1016/j.toxicon.2008.11.014

Y. Sugawara, T. Matsumura, Y. Takegahara, Y. Jin, and Y. Tsukasaki, Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin, The Journal of Cell Biology, vol.16, issue.4, pp.691-700, 2010.
DOI : 10.1083/jcb.200910119.dv

F. Chen, G. Kuziemko, and R. Stevens, Biophysical characterization of the stability of the 150-kilodalton botulinum toxin, the nontoxic component, and the 900-kilodalton botulinum toxin complex species, Infect Immun, vol.66, pp.2420-2425, 1998.

P. Simon-assmann, N. Turk, M. Siddhoum-jenny, G. Gradwohl, and M. Kedinger, In vitro models of intestinal epithelial cell differentiation, Cell Biology and Toxicology, vol.22, issue.4, pp.241-256, 2007.
DOI : 10.1007/s10565-006-0175-0

M. Bens, A. Bogdanova, F. Cluzeaud, L. Miquerol, and S. Kerneis, Transimmortalized mouse intestinal cells (m-ICc12) that maintain a crypt phenotype, Am J Physiol, vol.270, pp.1666-1674, 1996.

S. Ku, H. Lee, and J. Lee, An Immunohistochemical Study of the Gastrointestinal Endocrine Cells in the C57BL/6 Mice, Anatomia, Histologia, Embryologia: Journal of Veterinary Medicine Series C, vol.42, issue.1, pp.21-28, 2003.
DOI : 10.1292/jvms.61.761

J. Black and J. Dolly, Selective location of acceptors for botulinum neurotoxin a in the central and peripheral nervous systems, Neuroscience, vol.23, issue.2, pp.767-779, 1987.
DOI : 10.1016/0306-4522(87)90094-7

D. Rapp, K. Turk, G. Bales, and S. Cook, Botulinum Toxin Type A Inhibits Calcitonin Gene-Related Peptide Release From Isolated Rat Bladder, The Journal of Urology, vol.175, issue.3, pp.1138-1142, 2006.
DOI : 10.1016/S0022-5347(05)00322-8

A. Lucioni, G. Bales, T. Lotan, D. Mcgehee, and S. Cook, Botulinum toxin type A inhibits sensory neuropeptide release in rat bladder models of acute injury and chronic inflammation, BJU International, vol.27, issue.3, pp.366-370, 2008.
DOI : 10.1111/j.1464-410X.2007.07312.x

Y. Hou, Y. Zhang, Y. Song, C. Zhu, and Y. Wang, Botulinum toxin type A inhibits rat pyloric myoelectrical activity and substance P release in vivo, Canadian Journal of Physiology and Pharmacology, vol.85, issue.2, pp.209-214, 2007.
DOI : 10.1139/Y07-018

A. Najib, P. Pelliccioni, C. Gil, and J. Aguilera, Clostridium Neurotoxins Influence Serotonin Uptake and Release Differently in Rat Brain Synaptosomes, Journal of Neurochemistry, vol.269, issue.5, pp.1991-1998, 1999.
DOI : 10.1046/j.1471-4159.1999.0721991.x

J. Sanchez-prieto, T. Sihra, D. Evans, A. Ashton, and J. Dolly, Botulinum toxin A blocks glutamate exocytosis from guinea-pig cerebral cortical synaptosomes, European Journal of Biochemistry, vol.30, issue.3, pp.675-681, 1987.
DOI : 10.1016/0304-4173(82)90013-1

H. Mcmahon, P. Foran, J. Dolly, M. Verhage, and V. Wiegant, Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gammaaminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action, J Biol Chem, vol.267, pp.21338-21343, 1992.

Z. Li, J. Fox-threlkeld, and J. Furness, Innervation of intestinal arteries by axons with immunoreactivity for the vesicular acetylcholine transporter (VAChT), Journal of Anatomy, vol.192, issue.1, pp.107-117, 1998.
DOI : 10.1046/j.1469-7580.1998.19210107.x

F. Antonucci, C. Rossi, L. Gianfranceschi, O. Rossetto, and M. Caleo, Long-Distance Retrograde Effects of Botulinum Neurotoxin A, Journal of Neuroscience, vol.28, issue.14, pp.3689-3696, 2008.
DOI : 10.1523/JNEUROSCI.0375-08.2008

L. Restani, F. Antonucci, L. Gianfranceschi, C. Rossi, and O. Rossetto, Evidence for Anterograde Transport and Transcytosis of Botulinum Neurotoxin A (BoNT/A), Journal of Neuroscience, vol.31, issue.44, pp.15650-15659, 2011.
DOI : 10.1523/JNEUROSCI.2618-11.2011

H. Poras, T. Ouimet, S. Orng, M. Fournie-zaluski, and M. Popoff, Detection and Quantification of Botulinum Neurotoxin Type A by a Novel Rapid In Vitro Fluorimetric Assay, Applied and Environmental Microbiology, vol.75, issue.13, pp.4382-4390, 2009.
DOI : 10.1128/AEM.00091-09

M. Tavallaie, A. Chenal, D. Gillet, Y. Pereira, and M. Manich, Interaction between the two subdomains of the C-terminal part of the botulinum neurotoxin A is essential for the generation of protective antibodies, FEBS Letters, vol.23, issue.1-3, pp.299-306, 2004.
DOI : 10.1016/j.febslet.2004.06.094