R. Schofield, The relationship between the spleen colony-forming cell and the haemopoietic stem cell, Blood Cells, vol.4, pp.7-25, 1978.

J. Kimble and J. White, On the control of germ cell development in Caenorhabditis elegans, Developmental Biology, vol.81, issue.2, pp.208-219, 1981.
DOI : 10.1016/0012-1606(81)90284-0

S. Crittenden, K. Leonhard, D. Byrd, and J. Kimble, Cellular Analyses of the Mitotic Region in the Caenorhabditis elegans Adult Germ Line, Molecular Biology of the Cell, vol.17, issue.7, pp.3051-3061, 2006.
DOI : 10.1091/mbc.E06-03-0170

D. Morgan, S. Crittenden, and J. Kimble, The C. elegans adult male germline: Stem cells and sexual dimorphism, Developmental Biology, vol.346, issue.2, pp.204-214, 2010.
DOI : 10.1016/j.ydbio.2010.07.022

URL : https://hal.archives-ouvertes.fr/in2p3-00025516

O. Cinquin, S. Crittenden, D. Morgan, and J. Kimble, Progression from a stem cell-like state to early differentiation in the C. elegans germ line, Proceedings of the National Academy of Sciences, vol.107, issue.5, pp.2048-2053, 2010.
DOI : 10.1073/pnas.0912704107

G. Angelo and M. Van-gilst, Starvation Protects Germline Stem Cells and Extends Reproductive Longevity in C. elegans, Science, vol.326, issue.5955, pp.954-958, 2009.
DOI : 10.1126/science.1178343

H. Seidel and J. Kimble, The Oogenic Germline Starvation Response in C. elegans, PLoS ONE, vol.51, issue.12, p.28074, 2011.
DOI : 10.1371/journal.pone.0028074.s005

D. Byrd and J. Kimble, Scratching the niche that controls Caenorhabditis elegans germline stem cells, Seminars in Cell & Developmental Biology, vol.20, issue.9, pp.1107-1113, 2009.
DOI : 10.1016/j.semcdb.2009.09.005

J. Jeong, J. Verheyden, and J. Kimble, Cyclin E and Cdk2 Control GLD-1, the Mitosis/Meiosis Decision, and Germline Stem Cells in Caenorhabditis elegans, PLoS Genetics, vol.15, issue.3, p.1001348, 2011.
DOI : 10.1371/journal.pgen.1001348.s009

A. Kershner and J. Kimble, Genome-wide analysis of mRNA targets for Caenorhabditis elegans FBF, a conserved stem cell regulator, Proceedings of the National Academy of Sciences, vol.107, issue.8, pp.3936-3941, 2010.
DOI : 10.1073/pnas.1000495107

C. Merritt and G. Seydoux, The Puf RNA-binding proteins FBF-1 and FBF-2 inhibit the expression of synaptonemal complex proteins in germline stem cells, Development, vol.137, issue.11, pp.1787-1798, 2010.
DOI : 10.1242/dev.050799

J. Austin and J. Kimble, glp-1 Is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans, Cell, vol.51, issue.4, pp.589-599, 1987.
DOI : 10.1016/0092-8674(87)90128-0

S. Nadarajan, J. Govindan, M. Mcgovern, E. Hubbard, and D. Greenstein, MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. elegans, Development, vol.136, issue.13, pp.2223-2234, 2009.
DOI : 10.1242/dev.034603

J. Kimble and D. Hirsh, The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans, Developmental Biology, vol.70, issue.2, pp.396-417, 1979.
DOI : 10.1016/0012-1606(79)90035-6

A. Kidd, I. Miskowski, J. Siegfried, K. Sawa, H. Kimble et al., A ??-Catenin Identified by Functional Rather Than Sequence Criteria and Its Role in Wnt/MAPK Signaling, Cell, vol.121, issue.5, pp.761-772, 2005.
DOI : 10.1016/j.cell.2005.03.029

N. Lam, M. Chesney, and J. Kimble, Wnt Signaling and CEH-22/tinman/Nkx2.5 Specify a Stem Cell Niche in C. elegans, Current Biology, vol.16, issue.3, pp.287-295, 2006.
DOI : 10.1016/j.cub.2005.12.015

URL : http://doi.org/10.1016/j.cub.2005.12.015

M. Mcgovern, R. Voutev, J. Maciejowski, A. Corsi, and E. Hubbard, A ???latent niche??? mechanism for tumor initiation, Proceedings of the National Academy of Sciences, vol.106, issue.28, pp.11617-11622, 2009.
DOI : 10.1073/pnas.0903768106

D. Hall, V. Winfrey, G. Blaeuer, L. Hoffman, T. Furuta et al., Ultrastructural Features of the Adult Hermaphrodite Gonad of Caenorhabditis elegans: Relations between the Germ Line and Soma, Developmental Biology, vol.212, issue.1, pp.101-123, 1999.
DOI : 10.1006/dbio.1999.9356

S. Morrison and A. Spradling, Stem Cells and Niches: Mechanisms That Promote Stem Cell Maintenance throughout Life, Cell, vol.132, issue.4, pp.598-611, 2008.
DOI : 10.1016/j.cell.2008.01.038

URL : http://doi.org/10.1016/j.cell.2008.01.038

L. Van-der-flier, M. Van-gijn, P. Hatzis, P. Kujala, A. Haegebarth et al., Transcription Factor Achaete Scute-Like 2 Controls Intestinal Stem Cell Fate, Cell, vol.136, issue.5, pp.903-912, 2009.
DOI : 10.1016/j.cell.2009.01.031

H. Cheng and C. Leblond, Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine I. Columnar cell, American Journal of Anatomy, vol.248, issue.3, pp.461-479, 1974.
DOI : 10.1002/aja.1001410403

H. Cheng and C. Leblond, Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine V. Unitarian theory of the origin of the four epithelial cell types, American Journal of Anatomy, vol.41, issue.3, pp.537-561, 1974.
DOI : 10.1002/aja.1001410407

N. Barker, J. Van-es, J. Kuipers, P. Kujala, M. Van-den-born et al., Identification of stem cells in small intestine and colon by marker gene Lgr5, Nature, vol.93, issue.7165, pp.1003-1007, 2007.
DOI : 10.1038/nature06196

L. Zhu, P. Gibson, D. Currle, Y. Tong, R. Richardson et al., Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation, Nature, vol.36, issue.7229, pp.603-607, 2009.
DOI : 10.1038/nature07589

T. Sato, R. Vries, H. Snippert, M. Van-de-wetering, N. Barker et al., Single Lgr5 stem cells build crypt??villus structures in vitro without a mesenchymal niche, Nature, vol.21, issue.7244, pp.262-265, 2009.
DOI : 10.1038/nature07935

M. Bjerknes and H. Cheng, The stem-cell zone of the small intestinal epithelium. I. Evidence from paneth cells in the adult mouse, American Journal of Anatomy, vol.52, issue.1, pp.51-63, 1981.
DOI : 10.1002/aja.1001600105

R. Schofield, The relationship between the spleen colony-forming cell and the haemopoietic stem cell, Blood Cells, vol.4, pp.7-25, 1978.

E. Fuchs, The Tortoise and the Hair: Slow-Cycling Cells in the Stem Cell Race, Cell, vol.137, issue.5, pp.811-819, 2009.
DOI : 10.1016/j.cell.2009.05.002

G. Cotsarelis, T. Sun, and R. Lavker, Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis, Cell, vol.61, issue.7, pp.1329-1337, 1990.
DOI : 10.1016/0092-8674(90)90696-C

H. Oshima, A. Rochat, C. Kedzia, K. Kobayashi, and Y. Barrandon, Morphogenesis and Renewal of Hair Follicles from Adult Multipotent Stem Cells, Cell, vol.104, issue.2, pp.233-245, 2001.
DOI : 10.1016/S0092-8674(01)00208-2

E. Nishimura, S. Jordan, H. Oshima, H. Yoshida, M. Osawa et al., Dominant role of the niche in melanocyte stem-cell fate determination, Nature, vol.416, issue.6883, pp.854-860, 2002.
DOI : 10.1038/416854a

S. Tanimura, Y. Tadokoro, K. Inomata, N. Binh, W. Nishie et al., Hair Follicle Stem Cells Provide a Functional Niche for Melanocyte Stem Cells, Cell Stem Cell, vol.8, issue.2, pp.177-187, 2011.
DOI : 10.1016/j.stem.2010.11.029

H. Fujiwara, M. Ferreira, G. Donati, D. Marciano, J. Linton et al., The Basement Membrane of Hair Follicle Stem Cells Is a Muscle Cell Niche, Cell, vol.144, issue.4, pp.577-589, 2011.
DOI : 10.1016/j.cell.2011.01.014

U. Gat, R. Dasgupta, L. Degenstein, and E. Fuchs, De Novo Hair Follicle Morphogenesis and Hair Tumors in Mice Expressing a Truncated ??-Catenin in Skin, Cell, vol.95, issue.5, pp.605-614, 1998.
DOI : 10.1016/S0092-8674(00)81631-1

D. Van-mater, F. Kolligs, A. Dlugosz, and E. Fearon, Transient activation of beta -catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice, Genes & Development, vol.17, issue.10, pp.1219-1224, 2003.
DOI : 10.1101/gad.1076103

L. Celso, C. Prowse, D. Watt, and F. , Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours, pp.1787-1799, 2004.

N. Oshimori and E. Fuchs, Paracrine TGF-?? Signaling Counterbalances BMP-Mediated Repression in Hair Follicle Stem Cell Activation, Cell Stem Cell, vol.10, issue.1, pp.63-75, 2012.
DOI : 10.1016/j.stem.2011.11.005

K. Kobielak, N. Stokes, J. De-la-cruz, L. Polak, and E. Fuchs, Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling, Proceedings of the National Academy of Sciences, vol.104, issue.24, pp.10063-10068, 2007.
DOI : 10.1073/pnas.0703004104

T. Andl, K. Ahn, A. Kairo, E. Chu, L. Wine-lee et al., Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development, Development, vol.131, issue.10, pp.2257-2268, 2004.
DOI : 10.1242/dev.01125

V. Greco, T. Chen, M. Rendl, M. Schober, H. Pasolli et al., A Two-Step Mechanism for Stem Cell Activation during Hair Regeneration, Cell Stem Cell, vol.4, issue.2, pp.155-169, 2009.
DOI : 10.1016/j.stem.2008.12.009

P. Rabbani, M. Takeo, W. Chou, P. Myung, M. Bosenberg et al., Coordinated Activation of Wnt in Epithelial and Melanocyte Stem Cells Initiates Pigmented Hair Regeneration, Cell, vol.145, issue.6, pp.941-955, 2011.
DOI : 10.1016/j.cell.2011.05.004

J. Zhang, X. He, W. Tong, T. Johnson, L. Wiedemann et al., Bone Morphogenetic Protein Signaling Inhibits Hair Follicle Anagen Induction by Restricting Epithelial Stem/Progenitor Cell Activation and Expansion, Stem Cells, vol.95, issue.1, pp.2826-2839, 2006.
DOI : 10.1634/stemcells.2005-0544

Y. Zhang, J. Cheong, N. Ciapurin, D. Mcdermitt, and T. Tumbar, Distinct Self-Renewal and Differentiation Phases in the Niche of Infrequently Dividing Hair Follicle Stem Cells, Cell Stem Cell, vol.5, issue.3, pp.267-278, 2009.
DOI : 10.1016/j.stem.2009.06.004

Y. Hsu, H. Pasolli, and E. Fuchs, Dynamics between Stem Cells, Niche, and Progeny in the Hair Follicle, Cell, vol.144, issue.1, pp.92-105, 2011.
DOI : 10.1016/j.cell.2010.11.049

M. Plikus, J. Mayer, D. De-la-cruz, R. Baker, P. Maini et al., Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration, Nature, vol.124, issue.7176, pp.340-344, 2008.
DOI : 10.1038/nature06457

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696201

M. Plikus, R. Baker, C. Chen, C. Fare, D. De-la-cruz et al., Self-Organizing and Stochastic Behaviors During the Regeneration of Hair Stem Cells, Science, vol.332, issue.6029, pp.586-589, 2011.
DOI : 10.1126/science.1201647

E. Festa, J. Fretz, R. Berry, B. Schmidt, M. Rodeheffer et al., Adipocyte Lineage Cells Contribute to the Skin Stem Cell Niche to Drive Hair Cycling, Cell, vol.146, issue.5, pp.761-771, 2011.
DOI : 10.1016/j.cell.2011.07.019

M. Buckingham and D. Montarras, Skeletal muscle stem cells, Current Opinion in Genetics & Development, vol.18, issue.4, pp.330-336, 2008.
DOI : 10.1016/j.gde.2008.06.005

A. Mauro, SATELLITE CELL OF SKELETAL MUSCLE FIBERS, The Journal of Cell Biology, vol.9, issue.2, pp.493-495, 1961.
DOI : 10.1083/jcb.9.2.493

J. Wokke, C. Van-den-oord, G. Leppink, and F. Jennekens, Perisynaptic satellite cells in human external intercostal muscle: A quantitative and qualitative study, The Anatomical Record, vol.87, issue.2, pp.174-180, 1989.
DOI : 10.1002/ar.1092230209

R. Mounier, F. Chrétien, and B. Chazaud, Blood Vessels and the Satellite Cell Niche, Curr Top Dev Biol, vol.96, pp.121-138, 2011.
DOI : 10.1016/B978-0-12-385940-2.00005-X

C. Bjornson, T. Cheung, L. Liu, P. Tripathi, K. Steeper et al., Notch Signaling Is Necessary to Maintain Quiescence in Adult Muscle Stem Cells, STEM CELLS, vol.193, issue.2, pp.232-242, 2011.
DOI : 10.1002/stem.773

P. Mourikis, R. Sambasivan, D. Castel, P. Rocheteau, V. Bizarro et al., A Critical Requirement for Notch Signaling in Maintenance of the Quiescent Skeletal Muscle Stem Cell State, STEM CELLS, vol.8, issue.2, pp.243-252, 2011.
DOI : 10.1002/stem.775

I. Conboy, M. Conboy, G. Smythe, and T. Rando, Notch-Mediated Restoration of Regenerative Potential to Aged Muscle, Science, vol.302, issue.5650, pp.1575-1577, 2003.
DOI : 10.1126/science.1087573

G. Pallafacchina, S. François, B. Regnault, B. Czarny, V. Dive et al., An adult tissue-specific stem cell in its niche: A gene profiling analysis of in vivo quiescent and activated muscle satellite cells, Stem Cell Research, vol.4, issue.2, pp.77-91, 2010.
DOI : 10.1016/j.scr.2009.10.003

URL : https://hal.archives-ouvertes.fr/pasteur-00508865

A. Langsdorf, A. Do, M. Kusche-gullberg, C. Emerson, and A. X. , Sulfs are regulators of growth factor signaling for satellite cell differentiation and muscle regeneration, Developmental Biology, vol.311, issue.2, pp.464-477, 2007.
DOI : 10.1016/j.ydbio.2007.08.053

J. Altman, Autoradiographic study of degenerative and regenerative proliferation of neuroglia cells with tritiated thymidine, Experimental Neurology, vol.5, issue.4, pp.302-318, 1962.
DOI : 10.1016/0014-4886(62)90040-7

J. Altman, Are new neurons formed in the brains of adult mammals? Science, pp.1127-1128, 1962.

J. Altman and G. Das, Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats, The Journal of Comparative Neurology, vol.43, issue.3, pp.319-335, 1965.
DOI : 10.1002/cne.901240303

A. Alvarez-buylla and D. Lim, For the Long Run, Neuron, vol.41, issue.5, pp.683-686, 2004.
DOI : 10.1016/S0896-6273(04)00111-4

K. Moore and I. Lemischka, Stem Cells and Their Niches, Science, vol.311, issue.5769, pp.1880-1885, 2006.
DOI : 10.1126/science.1110542

P. Riquelme, E. Drapeau, and F. Doetsch, Brain micro-ecologies: neural stem cell niches in the adult mammalian brain, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.26, issue.2-4, pp.123-137, 2008.
DOI : 10.1159/000082136

S. Ferrón, M. Charalambous, E. Radford, K. Mcewen, H. Wildner et al., Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis, Nature, vol.16, issue.7356, pp.381-385, 2011.
DOI : 10.1038/nature10229

M. Gomez-gaviro, C. Scott, A. Sesay, A. Matheu, S. Booth et al., Betacellulin promotes cell proliferation in the neural stem cell niche and stimulates neurogenesis, Proceedings of the National Academy of Sciences, vol.109, issue.4, pp.1317-1322
DOI : 10.1073/pnas.1016199109

R. Ihrie and A. Alvarez-buylla, Lake-Front Property: A Unique Germinal Niche by the Lateral Ventricles of the Adult Brain, Neuron, vol.70, issue.4, pp.674-686, 2011.
DOI : 10.1016/j.neuron.2011.05.004

K. Gokoffski, S. Kawauchi, H. Wu, R. Santos, P. Hollenbeck et al., Feedback Regulation of Neurogenesis in the Mammalian Olfactory Epithelium, The Neurobiology of Olfaction, pp.241-266
DOI : 10.1201/9781420071993-c10

S. Kawauchi, C. Beites, C. Crocker, H. Wu, A. Bonnin et al., Molecular Signals Regulating Proliferation of Stem and Progenitor Cells in Mouse Olfactory Epithelium, Developmental Neuroscience, vol.26, issue.2-4, pp.166-180, 2004.
DOI : 10.1159/000082135

C. Beites, S. Kawauchi, C. Crocker, and A. Calof, Identification and molecular regulation of neural stem cells in the olfactory epithelium, Experimental Cell Research, vol.306, issue.2, pp.309-316, 2005.
DOI : 10.1016/j.yexcr.2005.03.027

J. Mumm, J. Shou, and A. Calof, Colony-forming progenitors from mouse olfactory epithelium: evidence for feedback regulation of neuron production., Proceedings of the National Academy of Sciences, vol.93, issue.20, pp.11167-11172, 1996.
DOI : 10.1073/pnas.93.20.11167

H. Wu, S. Ivkovic, R. Murray, S. Jaramillo, K. Lyons et al., Autoregulation of Neurogenesis by GDF11, Neuron, vol.37, issue.2, pp.197-207, 2003.
DOI : 10.1016/S0896-6273(02)01172-8

A. Lander, K. Gokoffski, F. Wan, Q. Nie, and A. Calof, Cell Lineages and the Logic of Proliferative Control, PLoS Biology, vol.266, issue.1, p.15, 2009.
DOI : 10.1371/journal.pbio.1000015.st001

K. Gokoffski, H. Wu, C. Beites, J. Kim, E. Kim et al., Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate, Development, vol.138, issue.19, pp.4131-4142, 2011.
DOI : 10.1242/dev.065870

W. Lo, C. Chou, K. Gokoffski, F. Wan, A. Lander et al., Feedback regulation in multistage cell lineages, Mathematical Biosciences and Engineering, vol.6, issue.1, pp.59-82, 2009.
DOI : 10.3934/mbe.2009.6.59

A. Wilson and A. Trumpp, Bone-marrow haematopoietic-stem-cell niches, Nature Reviews Immunology, vol.89, issue.2, pp.93-106, 2006.
DOI : 10.1038/nri1779

A. Ehninger and A. Trumpp, The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in, The Journal of Experimental Medicine, vol.208, issue.3, pp.421-428
DOI : 10.1182/blood-2006-08-041384

A. Trumpp, M. Essers, and A. Wilson, Awakening dormant haematopoietic stem cells, Nature Reviews Immunology, vol.241, issue.3, pp.201-209, 2010.
DOI : 10.1038/nri2726

L. Purton and D. Scadden, Limiting Factors in Murine Hematopoietic Stem Cell Assays, Cell Stem Cell, vol.1, issue.3, pp.263-270, 2007.
DOI : 10.1016/j.stem.2007.08.016

A. Wilson, E. Laurenti, G. Oser, R. Van-der-wath, W. Blanco-bose et al., Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair, Journal of End-to-End-testing, vol.138, issue.1, pp.1118-1129, 2008.
DOI : 10.1016/S9999-9994(09)20369-2

M. Essers, S. Offner, W. Blanco-bose, Z. Waibler, U. Kalinke et al., IFN?? activates dormant haematopoietic stem cells in vivo, Nature, vol.6, issue.7240, pp.904-908, 2009.
DOI : 10.1038/nature07815

H. Takizawa, R. Regoes, C. Boddupalli, S. Bonhoeffer, and M. Manz, Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation, The Journal of Experimental Medicine, vol.156, issue.2, pp.273-284, 2011.
DOI : 10.1016/j.stem.2007.10.020

K. King and M. Goodell, Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response, Nature Reviews Immunology, vol.111, issue.10, pp.685-692
DOI : 10.1038/nri3062

M. Kiel and S. Morrison, Uncertainty in the niches that maintain haematopoietic stem cells, Nature Reviews Immunology, vol.10, issue.4, pp.290-301, 2008.
DOI : 10.1038/nri2279

D. Park, D. Sykes, and D. Scadden, The hematopoietic stem cell niche, Frontiers in Bioscience, vol.17, issue.1, pp.30-39
DOI : 10.2741/3913

Y. Omatsu, T. Sugiyama, H. Kohara, G. Kondoh, N. Fujii et al., The Essential Functions of Adipo-osteogenic Progenitors as the Hematopoietic Stem and Progenitor Cell Niche, Immunity, vol.33, issue.3, pp.387-399, 2010.
DOI : 10.1016/j.immuni.2010.08.017

S. Mendez-ferrer, T. Michurina, F. Ferraro, A. Mazloom, B. Macarthur et al., Mesenchymal and haematopoietic stem cells form a unique bone marrow niche, Nature, vol.8, issue.7308, pp.829-834, 2010.
DOI : 10.1038/nature09262

S. Yamazaki, H. Ema, G. Karlsson, T. Yamaguchi, H. Miyoshi et al., Nonmyelinating Schwann Cells Maintain Hematopoietic Stem Cell Hibernation in the Bone Marrow Niche, Cell, vol.147, issue.5, pp.1146-1158
DOI : 10.1016/j.cell.2011.09.053

L. Ding, T. Saunders, G. Enikolopov, and S. Morrison, Endothelial and perivascular cells maintain haematopoietic stem cells, Nature, vol.4, issue.7382, pp.457-462
DOI : 10.1038/nature10783

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270376

T. Nagasawa, Y. Omatsu, and T. Sugiyama, Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells, Trends in Immunology, vol.32, issue.7, pp.315-320
DOI : 10.1016/j.it.2011.03.009

F. Arai, A. Hirao, M. Ohmura, H. Sato, S. Matsuoka et al., Tie2/Angiopoietin-1 Signaling Regulates Hematopoietic Stem Cell Quiescence in the Bone Marrow Niche, Cell, vol.118, issue.2, pp.149-161, 2004.
DOI : 10.1016/j.cell.2004.07.004

H. Yoshihara, F. Arai, K. Hosokawa, T. Hagiwara, K. Takubo et al., Thrombopoietin/MPL Signaling Regulates Hematopoietic Stem Cell Quiescence and Interaction with the Osteoblastic Niche, MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche, pp.685-697, 2007.
DOI : 10.1016/j.stem.2007.10.020

S. Yamazaki, A. Iwama, S. Takayanagi, K. Eto, H. Ema et al., TGF-?? as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation, Blood, vol.113, issue.6, pp.1250-1256, 2009.
DOI : 10.1182/blood-2008-04-146480

K. Pantel, C. Alix-panabieres, and S. Riethdorf, Cancer micrometastases, Nature Reviews Clinical Oncology, vol.155, issue.6, pp.339-351, 2009.
DOI : 10.1038/nrclinonc.2009.44

S. Cabarcas, L. Mathews, and W. Farrar, The cancer stem cell niche-there goes the neighborhood?, International Journal of Cancer, vol.116, issue.Suppl 2, pp.2315-2327, 2011.
DOI : 10.1002/ijc.26312

J. Joyce and J. Pollard, Microenvironmental regulation of metastasis, Nature Reviews Cancer, vol.19, issue.4, pp.239-252, 2009.
DOI : 10.1038/nrc2618

H. Korkaya, S. Liu, and M. Wicha, Breast cancer stem cells, cytokine networks, and the tumor microenvironment, Journal of Clinical Investigation, vol.121, issue.10, pp.3804-3809, 2011.
DOI : 10.1172/JCI57099

N. Takebe, P. Harris, R. Warren, and S. Ivy, Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways, Nature Reviews Clinical Oncology, vol.100, issue.2, pp.97-106, 2011.
DOI : 10.1038/nrclinonc.2010.196

O. Dreesen and A. Brivanlou, Signaling Pathways in Cancer and Embryonic Stem Cells, Stem Cell Reviews, vol.444, issue.1, pp.7-17, 2007.
DOI : 10.1007/s12015-007-0004-8

L. Vermeulen, M. Todaro, F. De-sousa-mello, M. Sprick, K. Kemper et al., Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity, Proceedings of the National Academy of Sciences, vol.105, issue.36, pp.13427-13432, 2008.
DOI : 10.1073/pnas.0805706105

C. Scheel, E. Eaton, S. Li, C. Chaffer, F. Reinhardt et al., Paracrine and Autocrine Signals Induce and Maintain Mesenchymal and Stem Cell States in the Breast, Cell, vol.145, issue.6, pp.926-940, 2011.
DOI : 10.1016/j.cell.2011.04.029

C. Chaffer, I. Brueckmann, C. Scheel, A. Kaestli, P. Wiggins et al., Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state, Proceedings of the National Academy of Sciences, vol.108, issue.19, pp.7950-7955, 2011.
DOI : 10.1073/pnas.1102454108

D. Iliopoulos, H. Hirsch, G. Wang, and K. Struhl, Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion, Proceedings of the National Academy of Sciences, vol.108, issue.4, pp.1397-1402, 2011.
DOI : 10.1073/pnas.1018898108

C. Wong, A. Lee, L. Shientag, Y. J. Dong, Y. Kao et al., Apoptosis: an early event in metastatic inefficiency, Cancer Res, vol.61, pp.333-338, 2001.

M. Cameron, E. Schmidt, N. Kerkvliet, K. Nadkarni, V. Morris et al., Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency, Cancer Res, vol.60, pp.2541-2546, 2000.

R. Kaplan, R. Riba, S. Zacharoulis, A. Bramley, L. Vincent et al., VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche, Nature, vol.174, issue.7069, pp.820-827, 2005.
DOI : 10.1038/nature04186

B. Psaila and D. Lyden, The metastatic niche: adapting the foreign soil, Nature Reviews Cancer, vol.3, issue.4, pp.285-293, 2009.
DOI : 10.1038/nrc2621

Y. Shiozawa, E. Pedersen, A. Havens, Y. Jung, A. Mishra et al., Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow, Journal of Clinical Investigation, vol.121, issue.4, pp.1298-1312, 2011.
DOI : 10.1172/JCI43414DS1

T. Ara, K. Tokoyoda, T. Sugiyama, T. Egawa, K. Kawabata et al., Long-Term Hematopoietic Stem Cells Require Stromal Cell-Derived Factor-1 for Colonizing Bone Marrow during Ontogeny, Immunity, vol.19, issue.2, pp.257-267, 2003.
DOI : 10.1016/S1074-7613(03)00201-2

Y. Sun, A. Schneider, Y. Jung, J. Wang, J. Dai et al., Skeletal Localization and Neutralization of the SDF-1(CXCL12)/CXCR4 Axis Blocks Prostate Cancer Metastasis and Growth in Osseous Sites In Vivo, Journal of Bone and Mineral Research, vol.274, issue.2, pp.318-329, 2005.
DOI : 10.1359/JBMR.041109

X. Zhang, Q. Wang, W. Gerald, C. Hudis, L. Norton et al., Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer cell, pp.67-78, 2009.

A. Zlotnik, A. Burkhardt, and B. Homey, Homeostatic chemokine receptors and organ-specific metastasis, Nature Reviews Immunology, vol.30, issue.9, pp.597-606, 2011.
DOI : 10.1038/nri3049

A. Orimo, P. Gupta, D. Sgroi, F. Arenzana-seisdedos, T. Delaunay et al., Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion, Cell, vol.121, issue.3, pp.335-348, 2005.
DOI : 10.1016/j.cell.2005.02.034

D. Ceradini, A. Kulkarni, M. Callaghan, O. Tepper, N. Bastidas et al., Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1, Nature Medicine, vol.103, issue.8, pp.858-864, 2004.
DOI : 10.1172/JCI200113152

R. Hynes, The Extracellular Matrix: Not Just Pretty Fibrils, Science, vol.326, issue.5957, pp.1216-1219, 2009.
DOI : 10.1126/science.1176009

T. Tumbar, G. Guasch, V. Greco, C. Blanpain, W. Lowry et al., Defining the Epithelial Stem Cell Niche in Skin, Science, vol.303, issue.5656, pp.359-363, 2004.
DOI : 10.1126/science.1092436

E. Garcion, A. Halilagic, A. Faissner, and C. Ffrench-constant, Generation of an environmental niche for neural stem cell development bythe extracellular matrix molecule tenascin C, Development, vol.131, issue.14, pp.3423-3432, 2004.
DOI : 10.1242/dev.01202

T. Oskarsson, S. Acharyya, X. Zhang, S. Vanharanta, S. Tavazoie et al., Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs, Nature Medicine, vol.112, issue.7, pp.867-874, 2011.
DOI : 10.1016/j.ccr.2009.05.017

O. Connell, J. Sugimoto, H. Cooke, V. Macdonald, B. Mehta et al., VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization, Proceedings of the National Academy of Sciences, vol.108, issue.38, pp.16002-16007, 2011.
DOI : 10.1073/pnas.1109493108

I. Malanchi, A. Santamaria-martinez, E. Susanto, H. Peng, H. Lehr et al., Interactions between cancer stem cells and their niche govern metastatic colonization, Nature, vol.111, issue.7379, pp.85-89, 2012.
DOI : 10.1038/nature10694

URL : http://infoscience.epfl.ch/record/174426

T. Oskarsson and J. Massague, Extracellular matrix players in metastatic niches, The EMBO Journal, vol.6, issue.2, pp.254-256, 2011.
DOI : 10.1038/emboj.2011.469

. Author, D. Arthur, . Lander-center-for-complex-biological-systems, and . Email, Department of Biochemistry, 433 Babcock Drive, Madison, WI 53706-1544, USA Email: jekimble@wisc.edu Hans Clevers Hubrecht Institute The Netherlands Email: h.clevers@hubrecht.eu Elaine Fuchs Howard Hughes Medical Institute, The Rockefeller University, Email: Elaine.Fuchs@rockefeller.edu Didier Montarras Institut Pasteur, CNRS URA2578, Département de Biologie du Développement, 28 rue du Dr Roux Email: didier.montarras@pasteur.fr Margaret Buckingham Institut Pasteur, CNRS URA2578, p.75015, 2638.

H. Heidelberg, Institute for Stem Cell Technology and Experimental Medicine, gGmbH, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany Email: a.trumpp@dkfz.de Thordur Oskarsson Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Im Neuenheimer Feld

A. Lander, What does the concept of the stem cell niche really mean today?, BMC Biology, vol.10, issue.1, p.19, 2012.
DOI : 10.1186/1741-7007-10-19

URL : https://hal.archives-ouvertes.fr/pasteur-00677814