M. Fransen, I. Vastiau, C. Brees, V. Brys, and G. Mannaerts, Analysis of Human Pex19p's Domain Structure by Pentapeptide Scanning Mutagenesis, Journal of Molecular Biology, vol.346, issue.5, pp.1275-1286, 2005.
DOI : 10.1016/j.jmb.2005.01.013

S. Puttamreddy, N. Cornick, and F. Minion, Genome-Wide Transposon Mutagenesis Reveals a Role for pO157 Genes in Biofilm Development in Escherichia coli O157:H7 EDL933, Infection and Immunity, vol.78, issue.6, pp.2377-2384, 2010.
DOI : 10.1128/IAI.00156-10

T. Xu, N. Bharucha, and A. Kumar, Genome-Wide Transposon Mutagenesis in Saccharomyces cerevisiae and Candida albicans, Methods Mol Biol, vol.765, pp.207-224, 2011.
DOI : 10.1007/978-1-61779-197-0_13

M. Biery, F. Stewart, A. Stellwagen, E. Raleigh, and N. Craig, A simple in vitro Tn7-based transposition system with low target site selectivity for genome and gene analysis, Nucleic Acids Research, vol.28, issue.5, pp.1067-1077, 2000.
DOI : 10.1093/nar/28.5.1067

Y. Butterfield, M. Marra, J. Asano, S. Chan, R. Guin et al., An efficient strategy for large-scale high-throughput transposon-mediated sequencing of cDNA clones, Nucleic Acids Research, vol.30, issue.11, pp.2460-2468, 2002.
DOI : 10.1093/nar/30.11.2460

S. Haapa-paananen, R. H. Savilahti, and H. , DNA Transposition of Bacteriophage Mu: A QUANTITATIVE ANALYSIS OF TARGET SITE SELECTION IN VITRO, Journal of Biological Chemistry, vol.277, issue.4, pp.2843-2851, 2002.
DOI : 10.1074/jbc.M108044200

D. Manna, S. Deng, A. Breier, and N. Higgins, Bacteriophage Mu Targets the Trinucleotide Sequence CGG, Journal of Bacteriology, vol.187, issue.10, pp.3586-3588, 2005.
DOI : 10.1128/JB.187.10.3586-3588.2005

I. Goryshin, J. Miller, Y. Kil, V. Lanzov, and W. Reznikoff, Tn5/IS50 target recognition, Proceedings of the National Academy of Sciences, vol.95, issue.18, pp.10716-10721, 1998.
DOI : 10.1073/pnas.95.18.10716

Y. Shevchenko, G. Bouffard, Y. Butterfield, R. Blakesley, J. Hartley et al., Systematic sequencing of cDNA clones using the transposon Tn5, Nucleic Acids Research, vol.30, issue.11, pp.2469-2477, 2002.
DOI : 10.1093/nar/30.11.2469

M. Seringhaus, A. Kumar, J. Hartigan, M. Snyder, and M. Gerstein, Genomic analysis of insertion behavior and target specificity of mini-Tn7 and Tn3 transposons in Saccharomyces cerevisiae, Nucleic Acids Research, vol.34, issue.8, p.57, 2006.
DOI : 10.1093/nar/gkl184

V. Anthouard, A. Babour, V. Barbe, S. Barnay, S. Blanchin et al., Genome evolution in yeasts, Nature, vol.430, pp.35-44, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00104411

I. Castano, R. Kaur, S. Pan, R. Cregg, P. Ade et al., Tn7-Based Genome-Wide Random Insertional Mutagenesis of Candida glabrata, Genome Research, vol.13, issue.5, pp.905-915, 2003.
DOI : 10.1101/gr.848203

B. Cormack and S. Falkow, Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata, Genetics, vol.151, pp.979-987, 1999.

W. Li, Y. B. Liang, S. Wang, Y. Whiteley, C. Cao et al., BLogo: a tool for visualization of bias in biological sequences, Bioinformatics, vol.24, issue.19, pp.2254-2255, 2008.
DOI : 10.1093/bioinformatics/btn407

J. Herold, S. Kurtz, and R. Giegerich, Efficient computation of absent words in genomic sequences, BMC Bioinformatics, vol.9, issue.1, p.167, 2008.
DOI : 10.1186/1471-2105-9-167