M. Tarrant and P. Cole, The Chemical Biology of Protein Phosphorylation, Annual Review of Biochemistry, vol.78, issue.1, pp.797-825, 2009.
DOI : 10.1146/annurev.biochem.78.070907.103047

M. Parsons, E. Worthey, P. Ward, and J. Mottram, Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi, BMC Genomics, vol.6, issue.1, p.127, 2005.
DOI : 10.1186/1471-2164-6-127

A. Paradela and J. Albar, Advances in the Analysis of Protein Phosphorylation, Journal of Proteome Research, vol.7, issue.5, pp.1809-1827, 2008.
DOI : 10.1021/pr7006544

E. Salih, Phosphoproteomics by mass spectrometry and classical protein chemistry approaches, Mass Spectrometry Reviews, vol.19, issue.6, pp.828-874, 2005.
DOI : 10.1002/mas.20042

I. Nett, D. Martin, D. Miranda-saavedra, D. Lamont, J. Barber et al., The Phosphoproteome of Bloodstream Form Trypanosoma brucei, Causative Agent of African Sleeping Sickness, Molecular & Cellular Proteomics, vol.8, issue.7, pp.1527-1565, 2009.
DOI : 10.1074/mcp.M800556-MCP200

S. Hem, P. Gherardini, J. Osorio-y-fortéa, V. Hourdel, M. Morales et al., Identification of Leishmaniaspecific protein phosphorylation sites by LC-ESI-MS/MS and comparative genomics analyses, Proteomics, issue.21, pp.103868-83, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01433567

M. Morales, R. Watanabe, C. Laurent, P. Lenormand, J. Rousselle et al., Phosphoproteomic analysis ofLeishmania donovani pro- and amastigote stages, PROTEOMICS, vol.38, issue.2, pp.350-63, 2008.
DOI : 10.1002/pmic.200700697

M. Morales, R. Watanabe, M. Dacher, P. Chafey, J. Osorio-y-fortéa et al., Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage, Proceedings of the National Academy of Sciences, vol.107, issue.18, pp.8381-8387, 2010.
DOI : 10.1073/pnas.0914768107

URL : https://hal.archives-ouvertes.fr/pasteur-00476914

D. Rosenzweig, D. Smith, P. Myler, and R. Olafson, Post-translational modification of cellular proteins duringLeishmania donovani differentiation, PROTEOMICS, vol.281, issue.9, pp.1843-50, 2008.
DOI : 10.1002/pmic.200701043

J. Obenauer, L. Cantley, and M. Yaffe, Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs, Nucleic Acids Research, vol.31, issue.13, pp.313635-313676, 2003.
DOI : 10.1093/nar/gkg584

N. Blom, S. Gammeltoft, and S. Brunak, Sequence and structure-based prediction of eukaryotic protein phosphorylation sites, Journal of Molecular Biology, vol.294, issue.5, pp.1351-1362, 1999.
DOI : 10.1006/jmbi.1999.3310

H. Dinkel, C. Chica, A. Via, C. Gould, L. Jensen et al., ELM: a database of phosphorylation sites?update 2011, Database, pp.39-261, 2011.

P. Hornbeck, I. Chabra, J. Kornhauser, E. Skrzypek, and B. Zhang, PhosphoSite: A bioinformatics resource dedicated to physiological protein phosphorylation, PROTEOMICS, vol.4, issue.6, pp.1551-61, 2004.
DOI : 10.1002/pmic.200300772

A. Via, F. Diella, and T. Gibson, From sequence to structural analysis in protein phosphorylation motifs, Frontiers in Bioscience, vol.16, issue.1, pp.1261-75, 2011.
DOI : 10.2741/3787

A. Zanzoni, D. Carbajo, F. Diella, P. Gherardini, and A. Tramontano, Helmer- Citterich M, Via A: Phospho3D 2.0: an enhanced database of threedimensional structures of phosphorylation sites, Nucleic Acids Res, 2010.

L. Iakoucheva, P. Radivojac, C. Brown, O. Connor, T. Sikes et al., The importance of intrinsic disorder for protein phosphorylation, Nucleic Acids Research, vol.32, issue.3, pp.1037-1086, 2004.
DOI : 10.1093/nar/gkh253

F. Gnad, S. Ren, J. Cox, J. Olsen, B. Macek et al., PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites, Genome Biology, vol.8, issue.11, p.250, 2007.
DOI : 10.1186/gb-2007-8-11-r250

N. Blom, T. Sicheritz-pontén, R. Gupta, S. Gammeltoft, and S. Brunak, Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence, PROTEOMICS, vol.4, issue.6, pp.1633-1682, 2004.
DOI : 10.1002/pmic.200300771

H. Huang, T. Lee, S. Tzeng, and J. Horng, KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites, Nucleic Acids Research, vol.33, issue.Web Server, pp.226-235, 2005.
DOI : 10.1093/nar/gki471

J. Kim, J. Lee, B. Oh, K. Kimm, and I. Koh, Prediction of phosphorylation sites using SVMs, Bioinformatics, vol.20, issue.17, pp.3179-3184, 2004.
DOI : 10.1093/bioinformatics/bth382

Y. Xue, J. Ren, X. Gao, J. C. Wen, L. Yao et al., GPS 2.0, a Tool to Predict Kinase-specific Phosphorylation Sites in Hierarchy, Molecular & Cellular Proteomics, vol.7, issue.9, pp.1598-608, 2008.
DOI : 10.1074/mcp.M700574-MCP200

G. Neuberger, G. Schneider, and F. Eisenhaber, pkaPS: prediction of protein kinase A phosphorylation sites with the simplified kinase-substrate binding model, Biol Direct, vol.2, issue.1, 2007.

N. Saunders, R. Brinkworth, T. Huber, B. Kemp, and B. Kobe, Predikin and PredikinDB: a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites, BMC Bioinformatics, vol.9, issue.1, p.245, 2008.
DOI : 10.1186/1471-2105-9-245

M. Miller, B. Soufi, C. Jers, N. Blom, and B. Macek, NetPhosBac - A predictor for Ser/Thr phosphorylation sites in bacterial proteins, PROTEOMICS, vol.1784, issue.1, pp.116-141, 2009.
DOI : 10.1002/pmic.200800285

C. Ingrell, M. Miller, O. Jensen, and N. Blom, NetPhosYeast: prediction of protein phosphorylation sites in yeast, Bioinformatics, vol.23, issue.7, pp.895-902, 2007.
DOI : 10.1093/bioinformatics/btm020

P. Durek, R. Schmidt, J. Heazlewood, A. Jones, D. Maclean et al., PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update, Nucleic Acids Research, vol.38, issue.Database, pp.38-828, 2010.
DOI : 10.1093/nar/gkp810

J. Gao, J. Thelen, A. Dunker, and D. Xu, Musite, a Tool for Global Prediction of General and Kinase-specific Phosphorylation Sites, Molecular & Cellular Proteomics, vol.9, issue.12, 2010.
DOI : 10.1074/mcp.M110.001388

D. Plewczy?ski, A. Tkacz, A. Godzik, and L. Rychlewski, A support vector machine approach to the identification of phosphorylation sites, Cell Mol Biol Lett, vol.10, issue.1, pp.73-89, 2005.

M. Nielsen, C. Lundegaard, P. Worning, S. Lauemøller, K. Lamberth et al., Reliable prediction of T-cell epitopes using neural networks with novel sequence representations, Protein Science, vol.13, issue.5, pp.1007-1024, 2003.
DOI : 10.1110/ps.0239403

M. Miller, L. Jensen, F. Diella, C. Jorgensen, M. Tinti et al., Linear motif atlas for phosphorylationdependent signaling, Sci Signal, vol.1, issue.35, p.2, 2008.

D. Schwartz, M. Chou, and G. Church, Predicting Protein Post-translational Modifications Using Meta-analysis of Proteome Scale Data Sets, Molecular & Cellular Proteomics, vol.8, issue.2, pp.365-79, 2009.
DOI : 10.1074/mcp.M800332-MCP200

E. Nakayasu, M. Gaynor, T. Sobreira, J. Ross, and I. Almeida, at the epimastigote stage, PROTEOMICS, vol.277, issue.13, pp.3489-506, 2009.
DOI : 10.1002/pmic.200800874

F. Chen, A. Mackey, C. Stoeckert, . Jr, and D. Roos, OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups, 34 Database, pp.363-371, 2006.
DOI : 10.1093/nar/gkj123

E. Barak, S. Amin-spector, E. Gerliak, S. Goyard, N. Holland et al., Differentiation of Leishmania donovani in host-free system: analysis of signal perception and response, Molecular and Biochemical Parasitology, vol.141, issue.1, pp.99-108, 2005.
DOI : 10.1016/j.molbiopara.2005.02.004

T. Lahav, D. Sivam, H. Volpin, R. M. Tsigankov, P. Green et al., Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania, The FASEB Journal, vol.25, issue.2, pp.515-540, 2011.
DOI : 10.1096/fj.10-157529

L. Mcguffin, K. Bryson, and D. Jones, The PSIPRED protein structure prediction server, Bioinformatics, vol.16, issue.4, pp.404-409, 2000.
DOI : 10.1093/bioinformatics/16.4.404

R. Linding, L. Jensen, F. Diella, P. Bork, T. Gibson et al., Protein Disorder Prediction, Structure, vol.11, issue.11, pp.1453-1462, 2003.
DOI : 10.1016/j.str.2003.10.002

D. Mattera and S. Haykin, Support vector machines for dynamic reconstruction of a chaotic system Advances in kernel methods: support vector learning, 1999.

. Palmeri, PhosTryp: a phosphorylation site predictor specific for parasitic protozoa of the family trypanosomatidae, BMC Genomics, vol.11, issue.11, p.614, 2011.
DOI : 10.1186/1471-2164-12-614

URL : https://hal.archives-ouvertes.fr/pasteur-00673514