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Abstract

Background: The capacity of Plasmodium falciparum-infected erythrocytes to bind uninfected erythrocytes

(rosetting) is associated with severe malaria in African children. Rosetting is mediated by a subset of the variant

surface antigens PfEMP1 targeted by protective antibody responses. Analysis of the response to rosette-forming

parasites and their PfEMP1 adhesive domains is essential for understanding the acquisition of protection against

severe malaria. To this end, the antibody response to a rosetting variant was analysed in children recruited with

severe or uncomplicated malaria or asymptomatic P. falciparum infection.

Methods: Serum was collected from Beninese children with severe malaria, uncomplicated malaria or P. falciparum

asymptomatic infection (N = 65, 37 and 52, respectively) and from immune adults (N = 30) living in the area.

Infected erythrocyte surface-reactive IgG, rosette disrupting antibodies and IgG to the parasite crude extract were

analysed using the single variant Palo Alto VarO-infected line. IgG, IgG1 and IgG3 to PfEMP1-varO-derived NTS-

DBL1a1, CIDRg and DBL2bC2 recombinant domains were analysed by ELISA. Antibody responses were compared in

the clinical groups. Stability of the response was studied using a blood sampling collected 14 months later from

asymptomatic children.

Results: Seroprevalence of erythrocyte surface-reactive IgG was high in adults (100%) and asymptomatic children

(92.3%) but low in children with severe or uncomplicated malaria (26.1% and 37.8%, respectively). The IgG, IgG1

and IgG3 antibody responses to the varO-derived PfEMP1 domains were significantly higher in asymptomatic

children than in children with clinical malaria in a multivariate analysis correcting for age and parasite density at

enrolment. They were essentially stable, although levels tended to decrease with time. VarO-surface reactivity

correlated positively with IgG reactivity to the rosetting domain varO-NTS-DBL1a1. None of the children sera,

including those with surface-reactive antibodies possessed anti-VarO-rosetting activity, and few adults had

rosette-disrupting antibodies.

Conclusions: Children with severe and uncomplicated malaria had similar responses. The higher prevalence and

level of VarO-reactive antibodies in asymptomatic children compared to children with malaria is consistent with a

protective role for anti-VarO antibodies against clinical falciparum malaria. The mechanism of such protection

seems independent of rosette-disruption, suggesting that the cytophilic properties of antibodies come into play.
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Background
Despite recent scaling-up of control measures, Plasmo-

dium falciparum malaria still claims about one million

deaths each year, mainly young African children [1,2]. A

hallmark of P. falciparum infection is the sequestration

of infected erythrocytes (IE) in the microvasculature of

vital organs [3-8] resulting from cytoadherence of

mature IE to the endothelial cell lining and/or to other

circulating cells or uninfected erythrocytes (rosetting)

[9,10]. The P. falciparum Erythrocyte Membrane Protein

1 (PfEMP1), a variant adhesin displayed to the surface of

the IE and encoded by the var gene family, plays a

major role in IE cytoadherence [11-13].

There is a large body of evidence indicating that var-

iant antigens dominate the response to the IE surface in

children en route to acquiring protective immunity and

that PfEMP1 molecules are major targets of the variant-

specific responses [14-21]. The surface-exposed region

of PfEMP1 has a modular structure with a succession of

adhesion domains of two major types, namely the Duffy

Binding-Like (DBL) domain and the cysteine-rich Inter-

Domain Region (CIDR). Specific sequence signatures

allow the classification of these adhesive domains in dif-

ferent classes (classes a, a1, b, g, δ, ε, X for DBL; classes

a, a1, b and g for CIDR) [22]. Studies in endemic areas

have shown that multiple DBL and CIDR domains elicit

antibodies [19,23-25], but their association with protec-

tion remains unclear.

The rosetting and auto-agglutination cytoadherence

phenotypes are consistently associated with severe

malaria in African children [26,27]. Emerging evidence

indicates that rosetting is mediated by proteins encoded

by a subset of var genes, the exact number of which is

still unknown. Three rosetting lines have been character-

ized, expressing respectively the FCR3S1.2/IT4var21

[28,29], the R29/IT4var9 [30] and the Palo Alto varO

genes [31]. In all three lines the N-terminal DBL1a/a1

was identified as the binding domain for uninfected ery-

throcytes [28,30,31]. Little is known on the acquisition of

antibodies to rosette-forming parasite types. In a pioneer-

ing study, Carlson et al reported that only 8% of children

with cerebral malaria had antibodies disrupting the R

+PAl rosettes (subsequently called FCR3S1.2) [28], com-

pared to 38% in age-matched children with mild malaria

[32], suggesting that rosette-disrupting antibodies contri-

bute to protection against severe malaria. Whether anti-

bodies to other rosetting types contribute to protection

as well is unknown. It is not known either whether the

antibody isotype, in particular cytophilic antibodies tar-

geting the IE surface and promoting its opsonization also

come into play to protect children against clinical malaria

as observed in the Saimiri sciureus monkey [33,34].

Furthermore, how rosette-disrupting antibodies relate to

IE-surface reacting antibodies and to their specificity with

regard to the individual PfEMP1 domains exposed on the

IE surface remains unclear.

Experimental obstacles to such studies have been the

non-homogeneity of IE surface-displayed PfEMP1 mole-

cules in cultivated lines (a consequence of antigenic var-

iation) and the difficulty in producing appropriately

folded recombinant PfEMP1 domains. A recombinant

varO-NTS-DBL1a1 domain was produced in the native

conformation that induced high titres of IE surface-

reacting antibodies and rosette-disrupting antibodies

[31,35]. Panning using a monoclonal antibody (mAb)

raised to the recombinant domain allowed a “single var-

iant” VarO culture to be established, in which all IE

express the single VarO serotype [31]. A study in Sene-

gal with this single variant culture showed that the sero-

prevalence of VarO was very high and strongly age-

dependent, with high levels of VarO-IE surface-reactive

and NTS-DBL1a1-reactive antibodies being reached at

an age when effective protection against clinical malaria

is established [31].

The present study was aimed at investigating seropre-

valence to VarO-IE surface and to varO-PfEMP1 recom-

binant domains in a second, geographically distant

endemic area exposed to different transmission condi-

tions and at analysing its possible association with pro-

tection against severe and/or uncomplicated clinical

malaria. The antibody response to the VarO serotype

was investigated in Benin among immune adults, semi-

immune children with P. falciparum asymptomatic para-

sitaemia and children with mild or severe P. falciparum

malaria disease. The varO-IE surface seroreactivity and

VarO rosette disrupting capacity were analysed. Total

IgG, IgG1 and IgG3 responses to three PfEMP1-varO

recombinant domains (NTS-DBL1a1, CIDR1g and

DBL2bC2), which could be produced as soluble, prop-

erly folded recombinant proteins capable of inducing

high titres of VarO surface-reacting antibodies in the

mouse, were assessed. Data indicate an elevated seropre-

valence to varO-IE surface and recombinant domains in

asymptomatic children and immune adults, contrasting

with a low prevalence and low antibody levels in chil-

dren with clinical malaria. Intriguingly rosette-disrupting

antibodies were rare in immune adults and not detect-

able in all children including in asymptomatic children,

suggesting that mechanisms other than prevention of

rosetting may operate to protect against VarO parasites.

Methods
Study areas and sample collection

Clinical and parasitological characteristics of the

recruited subjects are presented in Table 1. From July

2006 to January 2007, 102 children with symptomatic
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P. falciparum malaria were recruited in three health

centres (Saint-Luc, Béthesda and Cotonou hospitals)

located in the urban area of Cotonou where malaria

transmission is perennial, with two seasonal peaks corre-

sponding to rainy seasons, from April to July and Sep-

tember to November. A survey conducted in 2000

showed heterogeneous malaria transmission in the city

of Cotonou, with transmission varying from 5, 29 and

47 infective bites per person per year near the beach, in

the centre of the city and in the outer-urban lagoon

areas, respectively [36]. The inoculation rates were

undoubtedly lower during the study period, due to the

introduction of effective prevention and therapy.

According to clinical and parasitological features at

admission described elsewhere [37], children were

assigned to the severe malaria (SM, n = 65) or uncom-

plicated malaria (UM, n = 37) group. SM was defined as

the association of fever (axillary temperature ≥ 37.5°C),

presence of circulating P. falciparum ring forms and a

neurologic Blantyre score < 3. Forty-two SM children

presented cerebral malaria (coma duration ≥ 6 h) and

eight had severe malarial anaemia (haemoglobin level

< 5 g/dL). The fifteen remaining SM children combined

a Blantyre coma score < 3, coma duration < 6 h as well

as haemoglobin level ≥ 5 g/dL but clinical signs of anae-

mia. For the UM group, inclusion criteria were fever or

history of fever during the last 24 hours, the presence of

circulating P. falciparum ring forms and a Blantyre

coma score ≥ 3. Blood was withdrawn before the admin-

istration of any drug. An anti-malarial treatment was

administered in accordance with the treatment practices

of each hospital.

In December 2006, 52 children with asymptomatic fal-

ciparum parasitaemia (AP) were enrolled in the primary

schools of Ouidah, a semi-rural town situated 35 km

west from Cotonou. The entomological inoculation rate

averaged 2.05 ± 1.28 infective bites per human per 100

nights in the nearby rural area of Tori Bossito [38]. AP

children were non-febrile at enrolment or during the

preceding 24 hours, but presented circulating P. falci-

parum ring forms. In two out of 52 cases, the appear-

ance of fever in a delay of 3 days after enrolment led to

the administration of antipyretics associated with an

artemisinin-based combination therapy (ACT), as

recommended by the National Malaria Control Pro-

gramme. Another blood sample was collected from the

same children one year later (January 2008).

Plasma samples from 30 healthy adults (HA) living in

the rural area of Tori-Bossito, which is located halfway

of Cotonou and Ouidah were used as controls of the

acquired anti-malarial immunity in this area. These

adults were bled in November 2008.

For each individual, a venous blood sample was col-

lected in EDTA Vacutainer tubes. Plasmas were col-

lected and stored at -20°C for subsequent antibody

testing. Blood smears were prepared to determine

blood-stage infection and parasitaemia by microscopy.

Negative control plasmas were obtained from 20 healthy

Europeans adults who had not been exposed to malaria

(Blood bank, EFS-Rungis, France) and were used either

individually or grouped into a negative control pool

(NC). For a positive control (PC), a pool of plasma

taken from adult donors living in Dielmo, Senegal, was

used, that showed high antibody reactivity to the surface

of VarO-IE [31].

This study has been approved by the ethic committee

of “Faculté des Sciences de la Santé” of the University of

Abomey-Calavi in Benin. For each child, a written

informed consent from parents or legal guardians was

obtained. The study was conducted in accordance with

the Declaration of Helsinki.

Surface immunofluorescence assay (S-IFA) and rosette

disruption

Single variant Palo Alto 89F5 VarO parasites were culti-

vated in human O+ RBC. Weekly enrichment of rosettes,

monthly positive selection by panning on a mouse mono-

clonal antibody raised to the varO-NTS-DBL1a1 domain

were done as described [31]. For surface immunofluores-

cence assay, an aliquot of rosette-enriched 89F5 VarO

parasites was incubated with the plasma sample (final dilu-

tion 1:20). Total IgG binding was detected as described

[31]. Surface reactivity was expressed in arbitrary units

(AU) as follows: [(% IE+
sample - % IE+NC)/(% IE+PC - %

Table 1 Clinical and parasitological characteristics of the children at enrolment (year 2006): P. falciparum

asymptomatic children (AP), children with uncomplicated malaria (UM) and children with severe malaria (SM)

Parameters AP (n = 52) UM (n = 37) SM (n = 65) P

Sex ratio (M/F) 0.9 (24/28) 1.8 (24/13) 0.8 (29/36) 0.11 b

Age (yrs)
mean ± SD

6.5 ± 1.3 4.7 ± 3.4 2.9 ± 1.8 AP > UM > SM
(P < 0.0001) c

Parasite density
(/μl) a

811
(369-1,751)

24,900
(3,606-65,440)

61,920
(1,684-192,000)

AP < UM/SM
(P < 0.001) d

a Median parasite density (interquartile range IQ25-75).
b P value of the cχ2 test.
c P value of the Student’s unpaired-t-test.
d P value of the Mann-Whitney U-test.
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IE+NC)] × 100. The mean surface reactivity plus 3 standard

deviations observed with plasma samples from 20 non-

immune malaria individuals was used to set the positivity

threshold (20 AU).

For the rosette disruption assay, an aliquot of VarO

rosette-enriched parasites (20 μL, 5% parasitaemia,

> 85% rosetting frequency, in complete RPMI culture

medium) was incubated with plasma (final dilution 1/5)

for 30 min at 37°C as described [31]. Each plasma sam-

ple was assayed in duplicate. The rosetting rate was

compared to a control culture in complete RPMI med-

ium in presence of the NC pool. The positive control

was PC, a pool of hyper-immune sera of adults from

Dielmo (Senegal) and able to disrupt VarO rosettes [31].

Recombinant PfEMP1-varO domains

The soluble recombinant NTS-DBL1a1 domain (resi-

dues 1-487 of the predicted varO amino-acid sequence,

GenBank accession number EU908205) was produced in

insect cells [31]. Construction of the recodoned recom-

binant varO-CIDRg (residues 508 to 787) and varO-

DBL2bC2 (residues 831 to 1241) domains and produc-

tion of recombinant proteins will be described in detail

elsewhere (Guillotte et al, in preparation). Briefly, both

domains were produced from a recodoned coding

sequence where all potential N-glycosylation sites were

mutated. VarO-DBL2bC2 was produced in the baculo-

virus/insect cells system whereas varO-CIDRg was pro-

duced in Pichia pastoris. Each domain was produced as

a soluble protein with a C-terminal hexa-histidine-tag.

Protein purity was evaluated by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and

Western blot. The protein sequence was verified by N-

terminal sequencing and mass spectrometry analysis.

Alike the NTS-DBL1a1 domain [31,35] the recombinant

varO-CIDRg and varO-DBL2bC2 induced varO-IE sur-

face reactive antibodies in the mouse (Guillotte et al, in

preparation). The other varO-derived DBL domains

(DBL3, 4 and 5) were not available as recombinant pro-

teins with native folding and were not used in this

study.

Enzyme-linked immunosorbent assay (ELISA)

A crude extract of VarO-IE was prepared as described

[39]. IgG levels were quantified in plasma diluted 1/100

essentially by ELISA as described [31] using i) 100 μL of

the varO-IE crude extract or ii) 0.2 μg of recombinant

protein. For total immunoglobulin-G (IgG) detection,

plates were probed with an horseradish peroxidase

(HRP)-conjugate goat anti-human IgG-F(ab’)2 (Cappel,

France; dilution 1/7,500) [31]. For IgG-subclass (IgG1

and IgG3) analysis, plates were first incubated with a

mouse anti-IgG1 (clone NL16; dilution 1/2,000; Skybio,

England) or anti-IgG3 (clone ZG4; dilution 1/10,000;

Skybio, England) and probed with an HRP-conjugate

goat anti-mouse IgG (Promega, France; dilution 1/

3,000). Each serum was tested in duplicate. Negative

(NC) and positive (PC) controls were included in each

plate. Results were expressed in arbitrary units (AU) cal-

culated with the formula: 100 × [ln(OD tested plasma) - ln

(OD NC)]/[ln(OD PC) - ln(OD NC)] [40]. The threshold

for positivity was determined for each antigen and each

class/subclass from the 95th percentile of the antibody

reactivity of 20 individual plasma samples from non-

immune malaria individuals. For varO-NTS-DBL1a1 it

was 43.2, 14.0 and 17.3 AU for total IgG, IgG1 and

IgG3 respectively; for varO-CIDRg it was 30.6, 47.1 and

40.5 for total IgG, IgG1 and IgG3, respectively and for

varO-DBL2bC2 it was 32.4, 70.3 and 39.6 for total IgG,

IgG1 and IgG3, respectively. The positivity threshold

was set at 9.0 AU for total IgG to VarO-IE crude

extract.

Statistical analysis

Differences in proportions were analysed using the c2

test. Differences in means were tested by the non-para-

metric Mann-Whitney U-test, except for age, where the

Student’s unpaired t-test was employed as age was nor-

mally distributed. Statview 5.0 (SAS Institute Inc., Cary,

NC) was used for these calculations. The associations

between antibody responses and covariates (sex, age, P.

falciparum carriage at blood drawing) found to be sig-

nificant in the univariate analysis were investigated by

multiple linear regression analysis using STATA (Stata-

Corp. Release 8.0). The antibody levels in 2006 and

2008 for children sampled at these 2 time-points (n =

45) were compared using a non-parametric Mann-Whit-

ney U-test. In case of P value less than 0.20 in the uni-

variate analysis, a multiple linear regression was

performed including age as covariate, to take into

account the effect of aging on the evolution of antibody

levels. For all tests, P values of less than 0.05 were con-

sidered significant.

Results
Characteristics of the subjects recruited

Table 1 summarizes the main characteristics of the

three groups of children recruited for this study. P. falci-

parum asymptomatic children (AP, n = 52) were older

than children with uncomplicated malaria (UM, n = 37)

and children with severe malaria (SM, n = 65) (Student’s

t-test, P < 0.0001, for comparison between the groups).

Asymptomatic children presented a lower median para-

site density than children with uncomplicated or severe

malaria (P < 0.001). There was no difference regarding

gender, age and parasite density between SM clinical

sub-groups. The control group of immune adults (HA,

n = 30) comprised 15 men and 15 women, older than
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20 years, who were healthy at the time of blood

drawing.

VarO-IE surface-reactive antibodies: seroprevalence and

levels

Antibodies (total IgG) reacting with the VarO-IE surface

were studied using a single-variant parasite culture with

more than 95% IE at mature stages expressing the

PfEMP1-varO adhesin. All healthy, immune adults

reacted against the VarO-IE surface. Seroprevalence rate

was higher in AP children (92.3%, 95% confidence inter-

val [CI], 85.1 to 99.6) than in UM and SM children

(37.8% [95% CI, 22.2 to 53.5] and 26.2% [95% CI, 15.5

to 37.8], respectively) (Figure 1A). This difference

between AP children and children with clinical malaria

was highly significant (c2 test, P < 0001), but there was

no statistical difference between UM and SM children

as well as between UM and the CM sub-group of SM

children.

The level of VarO-IE surface reactive antibodies dif-

fered in the three groups of children, from nil or very

low in SM (median 11.21 AU, interquartile range IQ25-

75 = 7.57 - 20.25 AU), to low in UM children (median

16.71 AU, IQ25-75 = 10.85 - 33.67 AU) and high in AP

children (median 61.35, IQ25-75 = 35.19 - 97.5 AU).

The highest levels were observed for HA adults (median

97.71, IQ25-75 = 57.54 - 101.76 AU) (Figure 1B). The

surface-reactive antibody levels did not differ between

UM and SM (whole group but also CM sub-group), but

differed significantly between children with clinical

malaria and AP children. Multivariate analysis con-

ducted for children only confirmed the clinical malaria-

dependence of the level of VarO-surface reactive antibo-

dies (-17.07, P < 0.0001) in spite of a small positive

effect of age on antibody levels (1.91, P = 0.052), the

parasite density being without effect on these observa-

tions (P = 0.12).

The VarO-rosette dissociation assay showed that few

HA sera displayed anti-varO rosetting activity. Only 2 of

30 sera disrupted > 50% of the VarO rosettes of the cul-

ture, and 6 disrupted 10-50% of the rosettes. Most sera

had marginal to nil rosette disrupting activity, contrast-

ing with sera from Senegalese adults (Figure 2). None of

the children sera harbouring surface-reactive antibodies

(be they from asymptomatic or symptomatic children)

had detectable antibodies able to disrupt VarO rosettes.
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Seroprevalence to VarO-IE crude extract and varO

recombinant domains

Total IgG, IgG1 and IgG3 responses to the individual varO

recombinant domains were analysed by ELISA. The sand-

wich ELISAs for IgG1 and IgG3 detected specific

responses in some children scored as negative for total

IgG reactivity, likely reflecting their higher sensitivity. To

rule out a technical issue with the quality of the sera, total

IgG reactivity with the VarO-IE crude extract was

determined.

In none of the assays did UM and SM children, as

well as UM and CM children, display a statistically

different response (Figure 3). Total IgG seroprevalence

to the recombinant antigens and the crude extract was

similarly high in HA adults and AP children. Seropre-

valence to the crude extract was lower in UM chil-

dren. Total IgG and IgG1 seroprevalence to the three

recombinant domains was higher in AP children than

in UM and/or SM children. Similar results were

observed for IgG3 except for seroprevalence to

NTS-DBL1a1 which was higher in AP children than

UM children but not different from SM children

(Figure 3).

NTS-DBL1a1 was the most frequently recognized

domain. For total IgG, the prevalence rates among chil-

dren were NTS-DBL1a1 > DBL2bC2 > CIDRg (paired

comparisons analysed by c2, all significant: odds-ratio

(OR) NTS-DBL1a1/DBL2bC2 = 7.7 [95% CI, 3.5 to

17.1]; NTS-DBL1a1/CIDRg = 19.5 [95% CI, 4.5 to 84.7];

DBL2bC2/CIDRg = 8.9 [95% CI, 3.7 to 21.2]; P < 0.0001

for each). Similar results were obtained for IgG1 and

IgG3 seroprevalence rates.

When examining the number of individual varO-

derived recombinant domains recognized in each group,

it was clear that HA adults had a broad reactivity, with

most sera (70%) reacting with each of the three domains

(Figure 4). The response in AP children was narrower,

as about 50% and 30% had antibodies reacting with

three or two domains, respectively. In contrast, the IgG

response of children with clinical malaria (UM or SM)

was quite restricted, with 49% and 42% respectively with

no detected seroreactivity to any of the three antigens

(Figure 4). The more sensitive IgG1 and IgG3 assays

reduced the percentage of seronegative children in each

clinical group, but still outlined a more restricted

response of the UM and SM children compared to AP

children (for each Ig assay, P < 0.0001 for AP vs. UM

and AP vs. SM when comparing reactivity to 0-1 and 2-

3 domains).
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and AP groups.
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Antibody levels to VarO-IE crude extract and varO

recombinant domains

HA adults and AP children presented similar total IgG

levels, except for VarO-IE crude extract (P = 0.0004)

(Table 2). NTS-DBL1a1 was the only recombinant

domain to generate lower total IgG, IgG1 and IgG3

levels in UM than in AP children (P = 0.02, P < 0.0001

and P < 0.0001, respectively). SM children had lower

total IgG, IgG1 and IgG3 levels to NTS-DBL1a1 than

AP children (P = 0.002, P < 0.0001 and P = 0.01, respec-

tively), as well as lower total IgG and IgG1 to CIDRg (P

= 0.04 and P = 0.007, respectively). The antibody levels

did not significantly differ in children with UM and SM,

except total IgG to VarO-IE crude extract (P = 0.03)

and IgG3 to NTS-DBL1a1 (P = 0.007) (Table 2). Similar

differences were observed when considering the CM

sub-group of SM children, except for CIDRg which eli-

cited comparable antibody levels among HA, AP, UM

and CM groups.

Importantly, age and parasite density were not asso-

ciated with any of the antibody level assayed in each of

the three groups of children, although this should be

qualified because of the limited number of responders.

A multivariate analysis taking into account sex, age and

parasite density confirmed higher levels of total IgG and

IgG subclasses in AP compared to symptomatic children

(all antigens P < 0.02, except for total IgG to NTS-

DBL1a1 [P = 0.05] and to DBL2bC2 [P = 0.06]). The

observed differences did not correlate with sex and

parasite density, and in some cases, the presence of an

age-related increase in antibody (IgG to NTS-DBL1a1

[P = 0.001] and to DBL2bC2 [P < 0.0001] as well as

IgG1 to DBL2bC2 [P < 0.0001]) did not counterbalance

the strong impact of the clinical presentation.

In each clinical group, the total IgG and IgG1 levels

reactive to an individual antigen were positively corre-

lated (Table 3). Total IgG and IgG1 were moderately

related to the IgG3 levels for NTS-DBL1a1 (Rho from

0.39 to 0.59, all P < 0.02) and for CIDRg (Rho from 0.38

to 0.49, all P < 0.003), and somewhat stronger with

DBL2bC2 (Rho from 0.42 to 0.72, all P < 0.002) (Table

3). Results were the same when considering the CM

sub-group, except for total IgG levels directed to CIDRg

which were not related to IgG1 and IgG3 levels (Rho =

0.20 and 0.26; P = 0.20 and 0.10, respectively).

Positive correlations between domain-reactive antibo-

dies were observed in the AP group for total IgG (NTS-

DBL1a1 vs. CIDRg: Rho = 0.63, P < 0.0001; NTS-

DBL1a1 vs. DBL2bC2: Rho = 0.49, P = 0.0002 and

CIDRg vs. DBL2bC2: Rho = 0.53, P < 0.0001) and IgG1

(NTS-DBL1a1 vs. CIDRg: Rho = 0.40, P = 0.004; NTS-

DBL1a1 vs. DBL2bC2: Rho = 0.46, P = 0.0006 and
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CIDRg vs. DBL2bC2: Rho = 0.40, P = 0.003). In the UM

and SM groups, a strong correlation was observed

between total IgG levels to NTS-DBL1a1 and DBL2bC2

(Rho = 0.74 and 0.52, P < 0.0001, respectively) but not

between the other domains, whether for total IgG or for

IgG1 and IgG3. The same profile of relationships was

confirmed for the CM sub-group of SM children.

Relationships between surface-reactive, varO-IE extract-

reactive and recombinant domain-reactive antibodies

For all four groups, the strongest correlations involving

VarO-surface reactive antibodies were observed with

total IgG to NTS-DBL1a1 (Rho from 0.38 to 0.67, all P

< 0.006) (Figure 5). A similar observation was valuable

for the CM sub-group (Rho = 0.37, P = 0.02). Less

numerous and strong correlations were observed

between VarO-surface reactive antibodies and IgG1 or

IgG3 levels to varO-domains. Antibodies to the VarO-IE

crude extract correlated to none of the antibody level to

the individual varO-domains in the HA and AP groups

(all Rho < 0.06, all P > 0.18).

Temporal evolution of VarO seroreactivity in

asymptomatic P. falciparum carriers

Forty-five out of the 52 children with asymptomatic P.

falciparum infection in December 2006, were bled again

in January 2008 in order to follow the temporal evolu-

tion of their specific antibody response. Among them,

six were parasitaemic for P. falciparum in 2008, with a

low median parasite density (78 ring forms per microli-

ter of blood, IQ25-75 = 36-158), i.e. were asymptomatic

parasite carriers. The prevalence rate of VarO-IE surface

IgG was lower in 2008 than in 2006 but not that of

VarO-IE crude extract IgG (additional file 1). A similar

decrease between 2006 and 2008 was observed for the

prevalence rates of total IgG, IgG1 and IgG3 to the

three recombinant proteins, except for IgG1 to NTS-

DBL1a1 as well as total IgG and IgG1 to CIDRg, which

remained unchanged (additional file 1). Levels of antibo-

dies to the VarO-IE crude extract dropped in 2008 (P =

0.0007) whereas antibodies reacting with the other anti-

gens remained stable (additional file 1).

Multivariate analysis confirmed the negative effect of

time, consistent with a diminution between 2006 and

Table 2 Median values of antibody responses to varO-IE crude extract and varO recombinant domains, for healthy

adults (HA) and children (AP, UM and SM, in 2006)

Antigens Median values (AU) a

HA (n = 30) AP (n = 52) UM (n = 37) SM (n = 65)

varO-IE
crude extract IgG

95.6 (90.2-97.1) 86.6 (78.4-93.5) b 86.4 (69.7-90.1) c 72.2 (61.1-84.2)
d, f, g

NTS-DBL1a1 :

IgG 93.7 (88.9-99.5) 92.3 (74.0-105.9) 65.7 (61.9-79.9) c, e 64.4 (52.5-83.8) d, f

IgG1 nd 93.3 (82.2-99.3) 34.7 (21.6-50.1) e 37.0 (29.9-60.3) f

IgG3 nd 64.3 (42.9-80.2) 35.7 (27.4-46.8) e 46.3 (36.3-64.6) f, g

CIDRg:

IgG 88.9 (63.6-103.4) 64.2 (49.7-100.9) 74.4 (53.3-107.3) 47.2 (39.3-52.4) d, f

IgG1 nd 83.5 (65.9-97.4) 75.1 (55.4-95.7) 65.1 (51.2-68.9) f

IgG3 nd 65.7 (51.4-81.0) 94.0 (64.2-107.0) 63.9 (45.7-70.0)

DL2bC2:

IgG 73.2 (59.4-90.4) 68.7 (47.0-82.2) 54.8 (43.4-70.8) 47.8 (37.6-68.3) d

IgG1 nd 93.3 (78.8-101.0) 82.8 (75.6-93.0) 81.9 (76.9-93.2)

IgG3 nd 64.2 (47.6-77.0) 48.2 (44.0-53.8) 69.8 (50.7-88.6)

nd: not done
a Median values (25th-75th percentiles), including responders only, and expressed in arbitrary units (AU).

Significant differences (Mann-Whitney U-test, P < 0.05) between median values of HA and AP responders (b), HA and UM responders (c), HA and SM responders

(d), AP and UM responders (e), AP and SM responders (f), and UM and SM responders (g).

Table 3 Correlations between IgG, IgG1 and IgG3 levels

to varO recombinant domains, in children from AP, UM

and SM groups (in 2006)

Correlations NTS-DBL1a1 CIDRg DL2bC2

IgG vs. IgG1:

AP (n = 52) 0.64; P < 0.0001 a 0.87; P < 0.0001 0.79; P < 0.0001

UM (n = 37) 0.42; P = 0.01 0.72; P < 0.0001 0.81; P < 0.0001

SM (n = 65) 0.68; P < 0.0001 0.49; P < 0.0001 0.83; P < 0.0001

IgG vs. IgG3:

AP 0.45; P = 0.0008 0.45; P = 0.0008 0.42; P = 0.002

UM 0.39; P = 0.02 0.49; P = 0.002 0.72; P < 0.0001

SM 0.55; P < 0.0001 0.38; P = 0.002 0.64; P < 0.0001

IgG1 vs. IgG3:

AP 0.44; P = 0.0009 0.44; P = 0.001 0.56; P < 0.0001

UM 0.59; P = 0.0001 0.48; P = 0.003 0.71; P < 0.0001

SM 0.44; P = 0.0002 0.44; P = 0.0002 0.57; P < 0.0001

a Spearman’s rank correlation test (Rho; P)
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2008 of VarO-IE crude extract antibodies (-18.0, P <

0.0001) independently of a positive effect of age (3.4,

P = 0.04) reflecting the ongoing acquisition if immunity.

A similar observation was made for IgG1 to NTS-

DBL1a1 with a negative effect of time (-10.0, P = 0.04)

dominating the positive effect of age (4.2, P = 0.03).

Discussion
Although rosetting is the best-documented cytoadher-

ence phenotype associated with severe malaria in Afri-

can children, little is known on the response acquired to

rosetting parasites in endemic areas. The present study

in Benin confirms the elevated seroprevalence of VarO

in semi-immune children and immune adults observed

in a Senegalese population [31]. Children with severe or

uncomplicated malaria had a much lower anti-varO

response than semi-immune asymptomatic children,

consistent with the conclusion that these antibodies are

associated with protection against clinical malaria in the

age group that progressively mounts a protective

response.

A very high prevalence of the antibodies reacting with

the VarO-IE surface was observed in AP children. The

mean age of the AP children was 6.5 ± 1.3 y, an age at

which children living under such transmission condi-

tions are semi-immune but are still at risk in developing

clinical malaria. As such, and with the caveats of com-

parisons between different studies, the seroprevalence to

VarO-IE in AP children from Ouidah seems higher than

the response to other parasite lines, including the

rosette-forming FCR3S1.2 parasites [41] or a single var-

iant A4var line observed in semi-immune Kenyan chil-

dren living under similar transmission conditions [20],

or to the response to local isolates reported in Tanza-

nian children living in low and moderate transmission

conditions [25]. It is also higher than the response
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observed against a panel of local isolates in Ghanaian

children living in more intense transmission conditions

who had supposedly acquired earlier in life an expanded

antibody repertoire [21]. While these data require

further confirmation, they are consistent with VarO

being a so-called “frequent” or “prevalent” serotype

[42,43] usually associated with severe malaria, which

seems to be a feature of group A var genes [23,44-47]

to which the varO gene belongs. It is not known at pre-

sent whether the reaction observed with the VarO-IE

surface and/or the various -varO-derived recombinant

domains is strictly varO-specific or reflects a broad

cross-reactivity to other “rosetting variants” some of

which also belong to group A var genes [46,48].

Prevalence rates and levels in all VarO-related assays

(IE surface, total IgG, IgG1 and IgG3 to the three

recombinant domains) were much lower in the children

with clinical malaria than in AP children. This difference

remained significant in the multivariate analysis, i.e.

after correcting for age and parasite density at enrol-

ment. It may be possible that the different exposure of

children partly contribute to these findings. However,

AP children were recruited in an area where transmis-

sion intensity was estimated to be lower than in the

Cotonou area where symptomatic children recruited at

hospital lived, although transmission in Cotonou is quite

heterogeneous. Be that as it may, this difference would

translate into a delayed acquisition of antibodies in Oui-

dah compared to Cotonou, as higher transmission inten-

sity is clearly associated with a more rapid acquisition of

an expanded antibody repertoire [23-25]. To further

document the association of VarO-reacting antibodies

with protection against clinical malaria, a longitudinal

follow-up of children is needed to show that the pre-

sence of such antibodies prevents disease caused by

P. falciparum parasites expressing this serotype or

cross-reacting serotypes.

Of the three recombinant domains studied here, NTS-

DBL1a1 had the highest seroprevalence and the highest

antibody levels. In view of the known mosaic structure

of the var genes, this probably indicates that parasites

expressing the varO-NTS-DBL1a1 domain or a related

cross-reacting domain may not co-express varO-CIDRg-

like or varO-DBL2bC2-like domains. Each domain elicits

antibody in the context of where it is presented, i.e., not

necessarily associated with the same domains as those

in the varO gene. This might account for the limited

correlation of the response against the individual

domains in the children with clinical malaria. Although

it is tempting to speculate that the higher seroreactivity

to varO-NTS-DBL1a1 may reflect the generally high

conservation of DBL1a1 sequences across the var reper-

toire and between isolates compared to CIDRg, for

example, which are quite diverse, further study is

needed to test this hypothesis. Furthermore, comparison

of reactivity between different antigens must be inter-

preted with caution because detection depends on the

sensitivity of the assay, which may vary from one to the

other, and because it is difficult to compare arbitrary

units. Notwithstanding these reservations, the observa-

tion of a higher response to NTS-DBL1a1 is consistent

with recent reports on the related R29-DBL1a1 [49] and

the responses to individual domains of the A4var gene

[20], although this was not observed in serological sur-

veys using an array of domains from a number of var

genes [23,24].

VarO-IE surface reactivity correlated best with the

anti-NTS-DBL1a1 IgG, and less strongly with the other

domains. The recombinant NTS-DBL1a1 domain med-

iates rosetting, but a very small percentage of adults

from Benin disrupted more than 50% of the VarO

rosettes, differing in this regard from immune Senega-

lese adults who consistently displayed high VarO

rosettes disrupting capacity [31]. None of the children

sera disrupted VarO rosettes, including sera from AP

children. This confirms previous observations with

Senegalese asymptomatic children of the same age

range, although most had VarO-IE surface-reactive anti-

bodies [31]. The disconnection of rosette-disrupting

antibodies with surface-reacting antibodies observed

here in Benin has been reported in studies conducted in

Kenya and Gabon with other rosette-forming parasites

[50]. This suggests that if recognition of the IE-surface

participates in protection against clinical malaria like

anti-PfEMP1var2csa antibodies against placental malaria

[8,16], other mechanisms than prevention/reversion of

cytoadherence are brought about against rosette-forming

parasites, including possibly complement-mediated lysis

or phagocytosis of the IE. In the Saimiri sciureus mon-

key model, cytophilic antibodies targeting the IE surface

and promoting IE phagocytosis of Palo Alto varO para-

sites were associated with protection against experimen-

tal blood stage challenge and protect animals when

passively administered [33,34]. In this context, it is

interesting to note that indeed a significant IgG1 and

IgG3 response to each of the three recombinant varO

domains could be documented in the Beninese children.

It is thus possible that cytophilic antibodies to the IE

surface contribute to parasite clearance in individuals

that have not (yet) acquired rosette-disrupting antibo-

dies. Both likely contribute to protection, but their

acquisition may be sequential and/or depend on ende-

micity and transmission intensity.

SM and UM children presented similar responses in

all serological assays used here. No changes in the con-

clusions of the analysis were brought when considering

the sub-group of CM children. Based on previous stu-

dies in Gambian [32] or Gabonese children [51] such a
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difference might have been anticipated. The intensity of

surface reaction with VarO-IE tended to be lower in the

SM than in UM Beninese children studied here, but this

difference did not reach significance. The high parasite

density in SM children may be associated with capture

of antibodies onto the parasite antigens and could

account for the observed lack of differences between

SM and UM children. Because of the small volume of

plasma available, the isotype of surface reacting antibo-

dies and the IgG2 and IgG4 antibodies to the recombi-

nant domains were not measured. Therefore, the

possibility exist that SM and UM children differ with

regard of these isotypes. IgG3 antibodies to surface var-

iant antigens have been reported [52], although other

isotypes are produced as well [53]. In one study, IgG4

responses were reported as contributing to protection

[54]. Further studies are needed to clarify this issue and

evaluate the respective role of anti-surface, anti-rosetting

and antibody isotype in the anti-varO response and their

potential contribution to protection against severe or

uncomplicated malaria.

In asymptomatic carriers, the frequency of some anti-

body responses decreased between 2006 and 2008, while

anti-NTS-DBL1a1 IgG1 and anti-CIDRg IgG did not.

The level of antibodies to the recombinant antigens did

not drop. This might reflect the short-lived response

and/or the need of sustained asymptomatic infection

documented in other settings [52,55]. The children iden-

tified as P. falciparum asymptomatic carriers in 2006,

were parasite-free when recruited in January 2008,

except for six children. It is unknown whether these

parasite-free children had been and for how long,

asymptomatic carriers during the 13 months elapsed

between the blood samplings. The 2006-2008 period

matched precisely with a large-scale distribution of long

lasting insecticidal nets [56] to vulnerable populations

(pregnant women and children under 5 years old) in

most towns and villages in the south of Benin. This scal-

ing-up of control measures has very likely reduced

transmission - a sign of this impact might be the very

low rate of asymptomatic infections in the children

recruited in 2008. A reduced circulation of P. falci-

parum parasites in the field, including VarO or VarO-

related parasites, resulting in reducing asymptomatic

carriage and its consequences on maintenance of

immune responses during this period is therefore

plausible.

Conclusions
This study confirms the elevated seroprevalence of VarO

in semi-immune children and immune adults previously

observed in a Senegalese population [31]. It provides

evidence for the production of cytophilic antibodies to

individual PfEMP1 domains. Surface reacting antibodies

correlated with presence of antibodies reacting with the

N-terminal NTS-DBL1a1 domain, consistent with the

stronger response detected to NTS-DBL1a1 compared

to the other domains. The observation of much lower

anti-varO responses in children with clinical malaria

compared to semi-immune asymptomatic children is

consistent with an association of anti-VarO antibodies

with protection against clinical malaria. Interestingly

semi-immune children did not have detectable levels of

antibodies capable of disrupting varO rosettes. This

raises the intriguing possibility that cytophilic antibodies

contribute to protection against clinical malaria by pro-

moting opsonization of the IE, thereby reducing overall

the parasite load.

Additional material

Additional file 1: Comparison between 2006 and 2008 of

prevalence rates and median values of surface-reactive, varO-IE

extract-reactive and recombinant domain-reactive antibodies,

among 45 children classified as asymptomatic (AP) in 2006. a

Median values (interquartile range IQ25-75), including responders only, and

expressed in arbitrary units (AU). b P value of the paired χ
2 test. c P value of

the Mann-Whitney U-test, applied to values of responders.
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