P. Mogayzel, J. Flume, and P. , Update in Cystic Fibrosis 2009, American Journal of Respiratory and Critical Care Medicine, vol.181, issue.6, pp.539-544, 2010.
DOI : 10.1164/rccm.200912-1943UP

S. Gordon, The macrophage: Past, present and future, European Journal of Immunology, vol.18, issue.S1, pp.9-17, 2007.
DOI : 10.1002/eji.200737638

A. Di, CFTR regulates phagosome acidification in macrophages and alters bactericidal activity, Nature Cell Biology, vol.167, issue.9, pp.933-944, 2006.
DOI : 10.1074/jbc.M400688200

L. Deriy, Disease-causing Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator Determine the Functional Responses of Alveolar Macrophages, Journal of Biological Chemistry, vol.284, issue.51, pp.35926-35938, 2009.
DOI : 10.1074/jbc.M109.057372

T. Kawai and S. Akira, The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors, Nature Immunology, vol.1799, issue.5, pp.373-384, 2010.
DOI : 10.1126/science.1179050

R. Medzhitov, Recognition of microorganisms and activation of the immune response, Nature, vol.158, issue.7164, pp.819-826, 2007.
DOI : 10.1038/nature06246

D. Underhill, The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens, Nature, vol.401, pp.811-815, 1999.

A. Ozinsky, The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors, Proceedings of the National Academy of Sciences, vol.97, issue.25, pp.13766-13771, 2000.
DOI : 10.1073/pnas.250476497

J. Blander and R. Medzhitov, Regulation of Phagosome Maturation by Signals from Toll-Like Receptors, Science, vol.304, issue.5673, pp.1014-1018, 2004.
DOI : 10.1126/science.1096158

J. Blander and R. Medzhitov, On regulation of phagosome maturation and antigen presentation, Nature Immunology, vol.173, issue.10, pp.1029-1035, 2006.
DOI : 10.1084/jem.20052433

S. Doyle, Toll-like Receptors Induce a Phagocytic Gene Program through p38, The Journal of Experimental Medicine, vol.72, issue.1, pp.81-90, 2004.
DOI : 10.1111/j.1574-695X.2001.tb01586.x

E. Mahenthiralingam and D. Speert, Nonopsonic phagocytosis of Pseudomonas aeruginosa by macrophages and polymorphonuclear leukocytes requires the presence of the bacterial agellum, Infect Immun, vol.63, pp.4519-4523, 1995.

E. Miao, R. Ernst, M. Dors, D. Mao, and A. Aderem, Pseudomonas aeruginosa activates caspase 1 through Ipaf, Proceedings of the National Academy of Sciences, vol.105, issue.7, pp.2562-2567, 2008.
DOI : 10.1073/pnas.0712183105

L. Franchi, Critical role for Ipaf inPseudomonas aeruginosa-induced caspase-1 activation, European Journal of Immunology, vol.135, issue.11, pp.3030-3039, 2007.
DOI : 10.1002/eji.200737532

J. Jyot, Type II Secretion System of Pseudomonas aeruginosa: In Vivo Evidence of a Significant Role in Death Due to Lung Infection, Journal of Infectious Diseases, vol.203, issue.10, pp.1369-1377, 2011.
DOI : 10.1093/infdis/jir045

A. Verma, S. Arora, S. Kuravi, and R. Ramphal, Roles of Specific Amino Acids in the N Terminus of Pseudomonas aeruginosa Flagellin and of Flagellin Glycosylation in the Innate Immune Response, Infection and Immunity, vol.73, issue.12, pp.8237-8246, 2005.
DOI : 10.1128/IAI.73.12.8237-8246.2005

K. Smith, Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility, Nature Immunology, vol.4, issue.12, pp.1247-1253, 2003.
DOI : 10.1038/ni1011

E. Amiel, R. Lovewell, O. Toole, G. Hogan, D. Berwin et al., Pseudomonas aeruginosa Evasion of Phagocytosis Is Mediated by Loss of Swimming Motility and Is Independent of Flagellum Expression, Infection and Immunity, vol.78, issue.7, pp.2937-2945, 2010.
DOI : 10.1128/IAI.00144-10

E. Miao, Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome, Proceedings of the National Academy of Sciences, vol.107, issue.7, pp.3076-3080, 2010.
DOI : 10.1073/pnas.0913087107

K. Lighteld, Differential Requirements for NAIP5 in Activation of the NLRC4 Inflammasome, Infection and Immunity, vol.79, issue.4, pp.1606-1614, 2011.
DOI : 10.1128/IAI.01187-10

L. Franchi, Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1?? in salmonella-infected macrophages, Nature Immunology, vol.160, issue.6, pp.576-582, 2006.
DOI : 10.1038/ni1346

A. Amer, Regulation of Legionella Phagosome Maturation and Infection through Flagellin and Host Ipaf, Journal of Biological Chemistry, vol.281, issue.46, pp.35217-35223, 2006.
DOI : 10.1074/jbc.M604933200

T. Suzuki, Differential Regulation of Caspase-1 Activation, Pyroptosis, and Autophagy via Ipaf and ASC in Shigella-Infected Macrophages, PLoS Pathogens, vol.202, issue.8, p.111, 2007.
DOI : 0022-1007(2005)202[1235:IOCWCP]2.0.CO;2

C. Andrei, From The Cover: Phospholipases C and A2 control lysosome-mediated IL-1?? secretion: Implications for inflammatory processes, Proceedings of the National Academy of Sciences, vol.101, issue.26, pp.9745-9750, 2004.
DOI : 10.1073/pnas.0308558101

M. Wewers, IL-1??: An endosomal exit, Proceedings of the National Academy of Sciences, vol.101, issue.28, pp.10241-10242, 2004.
DOI : 10.1073/pnas.0403971101

F. Carvalho, J. Aitken, A. Gewirtz, and M. Vijay-kumar, TLR5 activation induces secretory interleukin-1 receptor antagonist (sIL-1Ra) and reduces inflammasome-associated tissue damage, Mucosal Immunology, vol.67, issue.1, pp.102-111, 2011.
DOI : 10.1053/j.gastro.2005.09.017

P. Bird, J. Trapani, and J. Villadangos, Endolysosomal proteases and their inhibitors in immunity, Nature Reviews Immunology, vol.135, issue.12, pp.871-882, 2009.
DOI : 10.1038/nri2671

F. Sepulveda, Critical Role for Asparagine Endopeptidase in??Endocytic Toll-like Receptor Signaling in Dendritic Cells, Immunity, vol.31, issue.5, pp.737-748, 2009.
DOI : 10.1016/j.immuni.2009.09.013

V. Feuillet, Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria, Proceedings of the National Academy of Sciences, vol.103, issue.33, pp.12487-12492, 2006.
DOI : 10.1073/pnas.0605200103

URL : https://hal.archives-ouvertes.fr/hal-00165595

R. Ramphal, V. Balloy, M. Huerre, M. Si-tahar, and M. Chignard, TLRs 2 and 4 Are Not Involved in Hypersusceptibility to Acute Pseudomonas aeruginosa Lung Infections, The Journal of Immunology, vol.175, issue.6, pp.3927-3934, 2005.
DOI : 10.4049/jimmunol.175.6.3927

F. Sutterwala, mediated by the IPAF/NLRC4 inflammasome, The Journal of Experimental Medicine, vol.67, issue.13, pp.3235-3245, 2007.
DOI : 10.1016/S0378-1119(98)00130-9