R. Ben-yair and C. Kalcheim, Notch and bone morphogenetic protein differentially act on dermomyotome cells to generate endothelium, smooth, and striated muscle, The Journal of Cell Biology, vol.211, issue.3, pp.607-618, 2008.
DOI : 10.1038/35040568

H. M. Blau and B. T. Blakely, Plasticity of cell fate: Insights from heterokaryons, Seminars in Cell & Developmental Biology, vol.10, issue.3, pp.267-272, 1999.
DOI : 10.1006/scdb.1999.0311

S. Brunelli and G. Cossu, A Role for Msx2 and Necdin in Smooth Muscle Differentiation of Mesoangioblasts and Other Mesoderm Progenitor Cells, Trends in Cardiovascular Medicine, vol.15, issue.3, pp.96-100, 2005.
DOI : 10.1016/j.tcm.2005.04.004

S. Brunelli, E. Tagliafico, F. G. De-angelis, R. Tonlorenzi, S. Baesso et al., Msx2 and Necdin Combined Activities Are Required for Smooth Muscle Differentiation in Mesoangioblast Stem Cells, Circulation Research, vol.94, issue.12, pp.1571-1578, 2004.
DOI : 10.1161/01.RES.0000132747.12860.10

M. Buckingham and F. Relaix, Regulate Muscle Progenitor Cell Functions, Annual Review of Cell and Developmental Biology, vol.23, issue.1, pp.645-673, 2007.
DOI : 10.1146/annurev.cellbio.23.090506.123438

M. Buckingham and D. Montarras, Skeletal muscle stem cells, Current Opinion in Genetics & Development, vol.18, issue.4, pp.330-336, 2008.
DOI : 10.1016/j.gde.2008.06.005

J. Chen, C. M. Kitchen, J. W. Streb, and J. M. Miano, Myocardin: A Component of a Molecular Switch for Smooth Muscle Differentiation, Journal of Molecular and Cellular Cardiology, vol.34, issue.10, pp.1345-1356, 2002.
DOI : 10.1006/jmcc.2002.2086

S. J. Conway, D. J. Henderson, and A. J. Copp, Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant, Development, vol.124, pp.505-514, 1997.

C. G. Crist, D. Montarras, G. Pallafacchina, D. Rocancourt, A. Cumano et al., Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression, Proc. Natl. Acad. Sci. USA, pp.13383-13387, 2009.
DOI : 10.1073/pnas.0900210106

URL : https://hal.archives-ouvertes.fr/pasteur-00429032

D. Angelis, L. Berghella, L. Coletta, M. Lattanzi, L. Zanchi et al., Skeletal Myogenic Progenitors Originating from Embryonic Dorsal Aorta Coexpress Endothelial and Myogenic Markers and Contribute to Postnatal Muscle Growth and Regeneration, The Journal of Cell Biology, vol.108, issue.4, pp.869-878, 1999.
DOI : 10.1016/S0092-8674(00)80189-0

A. Dellavalle, M. Sampaolesi, R. Tonlorenzi, E. Tagliafico, B. Sacchetti et al., Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells, Nature Cell Biology, vol.101, issue.3, pp.255-267, 2007.
DOI : 10.1073/pnas.091062498

M. Esner, S. M. Meilhac, F. Relaix, J. F. Nicolas, G. Cossu et al., Smooth muscle of the dorsal aorta shares a common clonal origin with skeletal muscle of the myotome, Development, vol.133, issue.4, pp.737-749, 2006.
DOI : 10.1242/dev.02226

URL : https://hal.archives-ouvertes.fr/pasteur-00181358

H. C. Etchevers, C. Vincent, N. M. Le-douarin, and G. F. Couly, The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain, Development, vol.128, pp.1059-1068, 2001.

C. Journal, A. C. Science-gittenberger-de-groot, M. C. Deruiter, M. Bergwerff, and R. E. Poelmann, Smooth muscle cell origin and its relation to heterogeneity in development and disease, Arterioscler. Thromb. Vasc. Biol, vol.19, pp.1589-1594, 1999.

O. Goupille, C. Saint-cloment, M. Lopes, D. Montarras, and B. Robert, are expressed in sub-populations of vascular smooth muscle cells, Developmental Dynamics, vol.68, issue.8, pp.2187-2194, 2008.
DOI : 10.1002/dvdy.21619

D. C. Graves and Z. Yablonka-reuveni, Myogenic Program, Journal of Histochemistry & Cytochemistry, vol.8, issue.9, pp.1173-1193, 2000.
DOI : 10.1038/270725a0

D. Hameyer, A. Loonstra, L. Eshkind, S. Schmitt, C. Antunes et al., Toxicity of ligand-dependent Cre recombinases and generation of a conditional Cre deleter mouse allowing mosaic recombination in peripheral tissues, Physiological Genomics, vol.31, issue.1, pp.32-41, 2007.
DOI : 10.1152/physiolgenomics.00019.2007

URL : https://hal.archives-ouvertes.fr/inserm-00173088

D. Houzelstein, A. Cohen, M. E. Buckingham, and B. Robert, Insertional mutation of the mouse Msx1 homeobox gene by an nlacZ reporter gene, Mechanisms of Development, vol.65, issue.1-2, pp.123-133, 1997.
DOI : 10.1016/S0925-4773(97)00065-8

J. S. Hu and E. N. Olson, Functional receptors for transforming growth factor-beta are retained by biochemically differentiated C2 myocytes in growth factor-deficient medium containing EGTA but down-regulated during terminal differentiation, J. Biol. Chem, vol.265, pp.7914-7919, 1990.

J. Huang, L. Cheng, J. Li, M. Chen, D. Zhou et al., Myocardin regulates expression of contractile genes in smooth muscle cells and is required for closure of the ductus arteriosus in mice, Journal of Clinical Investigation, vol.118, pp.515-525, 2008.
DOI : 10.1172/JCI33304

S. M. Hughes and H. M. Blau, Migration of myoblasts across basal lamina during skeletal muscle development, Nature, vol.345, issue.6273, pp.350-353, 1990.
DOI : 10.1038/345350a0

G. Kardon, J. K. Campbell, and C. J. Tabin, Local Extrinsic Signals Determine Muscle and Endothelial Cell Fate and Patterning in the Vertebrate Limb, Developmental Cell, vol.3, issue.4, pp.533-545, 2002.
DOI : 10.1016/S1534-5807(02)00291-5

T. Katagiri, A. Yamaguchi, M. Komaki, E. Abe, N. Takahashi et al., Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage [published erratum appears in J Cell Biol 1995 Feb;128(4):following 713], The Journal of Cell Biology, vol.127, issue.6, pp.1755-1766, 1994.
DOI : 10.1083/jcb.127.6.1755

S. V. Koushik, H. Chen, J. Wang, and S. J. Conway, Generation of a conditionalloxP allele of thePax3 transcription factor that enables selective deletion of the homeodomain, genesis, vol.28, issue.2, pp.114-117, 2002.
DOI : 10.1002/gene.10051

M. Lagha, T. Sato, B. Regnault, A. Cumano, A. Zuniga et al., Transcriptome analyses based on genetic screens for Pax3 myogenic targets in the mouse embryo, BMC Genomics, vol.11, issue.1, 2010.
DOI : 10.1186/1471-2164-11-696

URL : https://hal.archives-ouvertes.fr/pasteur-00644394

G. Lagna, M. M. Ku, P. H. Nguyen, N. A. Neuman, B. N. Davis et al., Control of Phenotypic Plasticity of Smooth Muscle Cells by Bone Morphogenetic Protein Signaling through the Myocardin-related Transcription Factors, Journal of Biological Chemistry, vol.282, issue.51, pp.37244-37255, 2007.
DOI : 10.1074/jbc.M708137200

C. Lepper, S. J. Conway, and C. M. Fan, Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements, Nature, vol.22, issue.7255, pp.627-631, 2009.
DOI : 10.1038/nature08209

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767162

Q. Lin, J. Lu, H. Yanagisawa, R. Webb, G. E. Lyons et al., Requirement of the MADS-box transcription factor MEF2C for vascular development, Development, vol.125, pp.4565-4574, 1998.

F. Lluis and M. P. Cosma, Cell-fusion-mediated somatic-cell reprogramming: A mechanism for tissue regeneration, Journal of Cellular Physiology, vol.322, pp.6-13, 2010.
DOI : 10.1002/jcp.22003

R. T. Megens, S. Reitsma, P. H. Schiffers, R. H. Hilgers, J. G. De-mey et al., Two-Photon Microscopy of Vital Murine Elastic and Muscular Arteries, Journal of Vascular Research, vol.44, issue.2, pp.87-98, 2007.
DOI : 10.1159/000098259

G. Messina, D. Sirabella, S. Monteverde, B. G. Galvez, R. Tonlorenzi et al., Skeletal Muscle Differentiation of Embryonic Mesoangioblasts Requires Pax3 Activity, Stem Cells, vol.104, issue.22, pp.157-164, 2009.
DOI : 10.1634/stemcells.2008-0503

J. M. Miano, Serum response factor: toggling between disparate programs of gene expression, Journal of Molecular and Cellular Cardiology, vol.35, issue.6, pp.577-593, 2003.
DOI : 10.1016/S0022-2828(03)00110-X

M. G. Minasi, M. Riminucci, L. De-angelis, U. Borello, B. Berarducci et al., The mesoangioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues, Development, vol.129, pp.2773-2783, 2002.

D. Montarras, J. Morgan, C. Collins, F. Relaix, S. Zaffran et al., Direct Isolation of Satellite Cells for Skeletal Muscle Regeneration, Science, vol.309, issue.5743, pp.2064-2067, 2005.
DOI : 10.1126/science.1114758

URL : https://hal.archives-ouvertes.fr/pasteur-00181349

G. K. Owens, M. S. Kumar, and B. R. Wamhoff, Molecular Regulation of Vascular Smooth Muscle Cell Differentiation in Development and Disease, Physiological Reviews, vol.84, issue.3, pp.767-801, 2004.
DOI : 10.1152/physrev.00041.2003

G. Pallafacchina, S. Francois, B. Regnault, B. Czarny, V. Dive et al., An adult tissue-specific stem cell in its niche: A gene profiling analysis of in vivo quiescent and activated muscle satellite cells, Stem Cell Research, vol.4, issue.2, pp.77-91, 2010.
DOI : 10.1016/j.scr.2009.10.003

URL : https://hal.archives-ouvertes.fr/pasteur-00508865

M. S. Parmacek, Myocardin-Related Transcription Factors: Critical Coactivators Regulating Cardiovascular Development and Adaptation, Circulation Research, vol.100, issue.5, pp.633-644, 2007.
DOI : 10.1161/01.RES.0000259563.61091.e8

A. Patel, B. Fine, M. Sandig, and K. Mequanint, Elastin biosynthesis: The missing link in tissue-engineered blood vessels, Cardiovascular Research, vol.71, issue.1, pp.40-49, 2006.
DOI : 10.1016/j.cardiores.2006.02.021

G. C. Pipes, S. Sinha, X. Qi, C. H. Zhu, T. D. Gallardo et al., Stem cells and their derivatives can bypass the requirement of myocardin for smooth muscle gene expression, Developmental Biology, vol.288, issue.2, pp.502-513, 2005.
DOI : 10.1016/j.ydbio.2005.10.014

G. C. Pipes, E. E. Creemers, and E. N. Olson, The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis, Genes & Development, vol.20, issue.12, pp.1545-1556, 2006.
DOI : 10.1101/gad.1428006

J. H. Pomerantz, S. Mukherjee, A. T. Palermo, and H. M. Blau, Reprogramming to a muscle fate by fusion recapitulates differentiation, Journal of Cell Science, vol.122, issue.7, pp.1045-1053, 2009.
DOI : 10.1242/jcs.041376

M. J. Potthoff and E. N. Olson, MEF2: a central regulator of diverse developmental programs, Development, vol.134, issue.23, pp.4131-4140, 2007.
DOI : 10.1242/dev.008367

C. Pouget, K. Pottin, and T. Jaffredo, Sclerotomal origin of vascular smooth muscle cells and pericytes in the embryo, Developmental Biology, vol.315, issue.2, pp.437-447, 2008.
DOI : 10.1016/j.ydbio.2007.12.045

F. Relaix, D. Rocancourt, A. Mansouri, and M. Buckingham, Divergent functions of murine Pax3 and Pax7 in limb muscle development, Genes & Development, vol.18, issue.9, pp.1088-1105, 2004.
DOI : 10.1101/gad.301004

F. Relaix, D. Rocancourt, A. Mansouri, and M. Buckingham, A Pax3/Pax7-dependent population of skeletal muscle progenitor cells, Nature, vol.72, issue.7044, pp.948-953, 2005.
DOI : 10.1242/dev.01617

URL : https://hal.archives-ouvertes.fr/pasteur-00176824

F. Relaix, D. Montarras, S. Zaffran, B. Gayraud-morel, D. Rocancourt et al., Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells, The Journal of Cell Biology, vol.48, issue.1, pp.91-102, 2006.
DOI : 10.1083/jcb.200312007

URL : https://hal.archives-ouvertes.fr/hal-00311188

S. S. Rensen, P. A. Doevendans, and G. J. Van-eys, Regulation and characteristics of vascular smooth muscle cell phenotypic diversity, Netherlands Heart Journal, vol.15, issue.3, pp.100-108, 2007.
DOI : 10.1007/BF03085963

P. Seale, L. A. Sabourin, A. Girgis-gabardo, A. Mansouri, P. Gruss et al., Pax7 Is Required for the Specification of Myogenic Satellite Cells, Cell, vol.102, issue.6, pp.777-786, 2000.
DOI : 10.1016/S0092-8674(00)00066-0

N. Smart, C. A. Risebro, A. A. Melville, K. Moses, R. J. Schwartz et al., Thymosin ??4 induces adult epicardial progenitor mobilization and neovascularization, Nature, vol.296, issue.7124, pp.177-182, 2007.
DOI : 10.1038/nbt813

M. Y. Speer, X. Li, P. G. Hiremath, and C. M. Giachelli, Runx2/Cbfa1, but not loss of myocardin, is required for smooth muscle cell lineage reprogramming toward osteochondrogenesis, Journal of Cellular Biochemistry, vol.90, issue.4, pp.935-947, 2010.
DOI : 10.1002/jcb.22607

S. Tozer, M. A. Bonnin, F. Relaix, D. Savino, S. Garcia-villalba et al., Involvement of vessels and PDGFB in muscle splitting during chick limb development, Development, vol.134, issue.14, pp.2579-2591, 2007.
DOI : 10.1242/dev.02867

D. Wang, P. S. Chang, Z. Wang, L. Sutherland, J. A. Richardson et al., Activation of Cardiac Gene Expression by Myocardin, a Transcriptional Cofactor for Serum Response Factor, Cell, vol.105, issue.7, pp.851-862, 2001.
DOI : 10.1016/S0092-8674(01)00404-4

Z. Wang, D. Z. Wang, G. C. Pipes, and E. N. Olson, Myocardin is a master regulator of smooth muscle gene expression, Proc. Natl. Acad. Sci. USA, pp.7129-7134, 2003.
DOI : 10.1073/pnas.1232341100

C. H. Washabaugh, M. P. Ontell, and M. Ontell, Nonmuscle stem cells fail to significantly contribute to regeneration of normal muscle, Gene Therapy, vol.11, issue.23, pp.1724-1728, 2004.
DOI : 10.1038/sj.gt.3302353

D. Yaffe and O. Saxel, A Myogenic Cell Line with Altered Serum Requirements for Differentiation, Differentiation, vol.7, issue.1-3, pp.159-166, 1977.
DOI : 10.1111/j.1432-0436.1977.tb01507.x

T. Yoshida and G. K. Owens, Molecular Determinants of Vascular Smooth Muscle Cell Diversity, Circulation Research, vol.96, issue.3, pp.280-291, 2005.
DOI : 10.1161/01.RES.0000155951.62152.2e

T. Yoshida, K. Kawai-kowase, and G. K. Owens, Forced Expression of Myocardin Is Not Sufficient for Induction of Smooth Muscle Differentiation in Multipotential Embryonic Cells, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.9, pp.1596-1601, 2004.
DOI : 10.1161/01.ATV.0000137190.63214.c5

B. Zheng, B. Cao, M. Crisan, B. Sun, G. Li et al., Prospective identification of myogenic endothelial cells in human skeletal muscle, Nature Biotechnology, vol.12, issue.9, pp.1025-1034, 2007.
DOI : 10.1038/nbt1334

H. M. Zhou, J. Wang, R. Rogers, and S. J. Conway, Lineage-specific responses to reduced embryonic Pax3 expression levels, Developmental Biology, vol.315, issue.2, pp.369-382, 2008.
DOI : 10.1016/j.ydbio.2007.12.020