C. A. Ross and M. A. Poirier, Protein aggregation and neurodegenerative disease, Nature Medicine, vol.99, issue.7, pp.10-17, 2004.
DOI : 10.1038/nm1066

C. Soto, Prion hypothesis: the end of the controversy?, Trends in Biochemical Sciences, vol.36, issue.3, pp.151-158, 2011.
DOI : 10.1016/j.tibs.2010.11.001

D. J. Selkoe, Folding proteins in fatal ways, Nature, vol.426, issue.6968, pp.900-904, 2003.
DOI : 10.1038/nature02264

K. K. Chung, V. L. Dawson, and T. M. Dawson, The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders, Trends in Neurosciences, vol.24, pp.7-14, 2001.
DOI : 10.1016/S0166-2236(01)00003-0

Z. Li, L. Arnaud, P. Rockwell, and M. E. Figueiredo-pereira, A single amino acid substitution in a proteasome subunit triggers aggregation of ubiquitinated proteins in stressed neuronal cells, Journal of Neurochemistry, vol.40, issue.1, pp.19-28, 2004.
DOI : 10.1111/j.1471-4159.2004.02456.x

R. Kim, M. Emi, K. Tanabe, and S. Murakami, Role of the unfolded protein response in cell death, Apoptosis, vol.19, issue.1, pp.5-13, 2006.
DOI : 10.1007/s10495-005-3088-0

T. Nakamura and S. A. Lipton, Molecular mechanisms of nitrosative stress-mediated protein misfolding in neurodegenerative diseases, Cellular and Molecular Life Sciences, vol.64, issue.13, pp.1609-1620, 2007.
DOI : 10.1007/s00018-007-6525-0

T. Uehara, T. Nakamura, D. Yao, Z. Q. Shi, Z. Gu et al., S-Nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration, Nature, vol.304, issue.7092, pp.513-517, 2006.
DOI : 10.1038/nature04782

C. A. Ross and C. M. Pickart, The ubiquitin???proteasome pathway in Parkinson's disease and other neurodegenerative diseases, Trends in Cell Biology, vol.14, issue.12, pp.703-711, 2004.
DOI : 10.1016/j.tcb.2004.10.006

D. R. Booth, M. Sunde, V. Bellotti, C. V. Robinson, W. L. Hutchinson et al., Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis, Nature, vol.385, issue.6619, pp.787-793, 1997.
DOI : 10.1038/385787a0

R. Raffen, L. J. Dieckman, M. Szpunar, C. Wunschl, P. R. Pokkuluri et al., Physicochemical consequences of amino acid variations that contribute to fibril formation by immunoglobulin light chains, Protein Science, vol.37, issue.3, pp.509-517, 1999.
DOI : 10.1110/ps.8.3.509

M. R. Nilsson and C. M. Dobson, Chemical modification of insulin in amyloid fibrils, Protein Science, vol.70, issue.11, pp.2637-2641, 2003.
DOI : 10.1110/ps.0360403

P. B. Stathopulos, J. A. Rumfeldt, G. A. Scholz, R. A. Irani, H. E. Frey et al., Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis show enhanced formation of aggregates in vitro, Proc. Natl Acad. Sci. USA, pp.7021-7026, 2003.
DOI : 10.1073/pnas.1237797100

K. Usui, J. D. Hulleman, J. F. Paulsson, S. J. Siegel, E. T. Powers et al., Site-specific modification of Alzheimer's peptides by cholesterol oxidation products enhances aggregation energetics and neurotoxicity, Proc. Natl Acad. Sci. USA, pp.18563-18568, 2009.
DOI : 10.1073/pnas.0804758106

C. M. Dobson, Principles of protein folding, misfolding and aggregation, Seminars in Cell & Developmental Biology, vol.15, issue.1, pp.3-16, 2004.
DOI : 10.1016/j.semcdb.2003.12.008

C. A. Ross and M. A. Poirier, Opinion: What is the role of protein aggregation in neurodegeneration?, Nature Reviews Molecular Cell Biology, vol.62, issue.11, pp.891-898, 2005.
DOI : 10.1016/S0733-8619(01)00020-2

J. N. Buxbaum, Diseases of protein conformation: what do in vitro experiments tell us about in vivo diseases?, Trends in Biochemical Sciences, vol.28, issue.11, pp.585-592, 2003.
DOI : 10.1016/j.tibs.2003.09.009

N. N. Danial and S. J. Korsmeyer, Cell Death, Cell, vol.116, issue.2, pp.205-219, 2004.
DOI : 10.1016/S0092-8674(04)00046-7

B. Fadeel and S. Orrenius, Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease, Journal of Internal Medicine, vol.104, issue.6, pp.479-517, 2005.
DOI : 10.1038/nm1101-1241

S. Cory and J. M. Adams, The bcl2 family: regulators of the cellular life-or-death switch, Nature Reviews Cancer, vol.2, issue.9, pp.647-656, 2002.
DOI : 10.1038/nrc883

C. Borner, The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions, Molecular Immunology, vol.39, issue.11, pp.615-647, 2003.
DOI : 10.1016/S0161-5890(02)00252-3

T. Sato, M. Hanada, S. Bodrug, S. Irie, N. Iwama et al., Interactions among members of the Bcl-2 protein family analyzed with a yeast twohybrid system, Proc. Natl Acad. Sci. USA, pp.9238-9242, 1994.

M. Suzuki, R. J. Youle, and N. Tjandra, Structure of Bax, Cell, vol.103, issue.4, pp.645-654, 2000.
DOI : 10.1016/S0092-8674(00)00167-7

A. Nechushtan, C. L. Smith, I. Lamensdorf, S. H. Yoon, and R. J. Youle, Bax and Bak Coalesce into Novel Mitochondria-Associated Clusters during Apoptosis, The Journal of Cell Biology, vol.14, issue.6, pp.1265-1276, 2001.
DOI : 10.1016/S0092-8674(00)81382-3

B. Antonsson, S. Montessuit, B. Sanchez, and J. C. Martinou, Bax Is Present as a High Molecular Weight Oligomer/Complex in the Mitochondrial Membrane of Apoptotic Cells, Journal of Biological Chemistry, vol.276, issue.15, pp.11615-11623, 2001.
DOI : 10.1074/jbc.M010810200

S. C. Ruffolo and G. C. Shore, BCL-2 Selectively Interacts with the BID-induced Open Conformer of BAK, Inhibiting BAK Auto-oligomerization, Journal of Biological Chemistry, vol.278, issue.27, pp.25039-25045, 2003.
DOI : 10.1074/jbc.M302930200

E. Lomonosova and G. Chinnadurai, BH3-only proteins in apoptosis and beyond: an overview, Oncogene, vol.12, pp.2-19, 2008.
DOI : 10.1101/gad.1045603

S. N. Willis, J. I. Fletcher, T. Kaufmann, M. F. Van-delft, L. Chen et al., Apoptosis Initiated When BH3 Ligands Engage Multiple Bcl-2 Homologs, Not Bax or Bak, Science, vol.315, issue.5813, pp.856-859, 2007.
DOI : 10.1126/science.1133289

J. E. Chipuk and D. R. Green, How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell, Biol, vol.18, pp.157-164, 2008.

L. H. Boise, M. Gonzalez-garcia, C. E. Postema, L. Ding, T. Lindsten et al., bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death, Cell, vol.74, issue.4, pp.597-608, 1993.
DOI : 10.1016/0092-8674(93)90508-N

A. M. Petros, E. T. Olejniczak, and S. W. Fesik, Structural biology of the Bcl-2 family of proteins, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1644, issue.2-3, pp.1644-83, 2004.
DOI : 10.1016/j.bbamcr.2003.08.012

M. Gonzalez-garcia, R. Perez-ballestero, L. Ding, L. Duan, L. H. Boise et al., bcl-XL is the major bcl-x mRNA form expressed during murine development and its product localizes to mitochondria, Development, vol.120, pp.3033-3042, 1994.

M. Karbowski, K. L. Norris, M. M. Cleland, S. Y. Jeong, and R. J. Youle, Role of Bax and Bak in mitochondrial morphogenesis, Nature, vol.21, issue.7112, pp.658-662, 2006.
DOI : 10.1038/nature05111

J. Pimkina, O. Humbey, J. T. Zilfou, M. Jarnik, and M. Murphy, ARF Induces Autophagy by Virtue of Interaction with Bcl-xl, Journal of Biological Chemistry, vol.284, issue.5, pp.2803-2810, 2008.
DOI : 10.1074/jbc.M804705200

E. Schmitt, M. Beauchemin, and R. Bertrand, Nuclear colocalization and interaction between bcl-xL and cdk1(cdc2) during G2/M cell-cycle checkpoint, Oncogene, vol.122, issue.40, pp.5851-5865, 2007.
DOI : 10.1038/sj.onc.1210396

E. Jonas, BCL-xL Regulates Synaptic Plasticity, Molecular Interventions, vol.6, issue.4, pp.208-222, 2006.
DOI : 10.1124/mi.6.4.7

Y. T. Hsu, K. G. Wolter, and R. J. Youle, Cytosolto-membrane redistribution of Bax and Bcl-X(L) during apoptosis, Proc. Natl Acad. Sci. USA, pp.3668-3672, 1997.

S. W. Muchmore, M. Sattler, H. Liang, R. P. Meadows, J. E. Harlan et al., X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death, Nature, vol.381, issue.6580, pp.335-341, 1996.
DOI : 10.1038/381335a0

B. S. Chang, A. J. Minn, S. W. Muchmore, S. W. Fesik, and C. B. Thompson, Identification of a novel regulatory domain in Bcl-xL and Bcl-2, The EMBO Journal, vol.16, issue.5, pp.968-977, 1997.
DOI : 10.1093/emboj/16.5.968

R. J. Clem, E. H. Cheng, C. L. Karp, D. G. Kirsch, K. Ueno et al., Modulation of cell death by Bcl-xL through caspase interaction, Proc. Natl Acad. Sci. USA, pp.554-559, 1998.
DOI : 10.1073/pnas.95.2.554

B. E. Deverman, B. L. Cook, S. R. Manson, R. A. Niederhoff, E. M. Langer et al., Bcl-xL Deamidation Is a Critical Switch in the Regulation of the Response to DNA Damage, Cell, vol.111, issue.1, pp.51-62, 2002.
DOI : 10.1016/S0092-8674(02)00972-8

S. Y. Jeong, B. Gaume, Y. J. Lee, Y. T. Hsu, S. W. Ryu et al., Bcl-xL sequesters its C-terminal membrane anchor in soluble, cytosolic homodimers, The EMBO Journal, vol.18, issue.10, pp.2146-2155, 2004.
DOI : 10.1016/S0092-8674(00)81382-3

O. Neill, J. W. Manion, M. K. Maguire, B. Hockenbery, and D. M. , BCL-XL Dimerization by Three-dimensional Domain Swapping, Journal of Molecular Biology, vol.356, issue.2, pp.367-381, 2006.
DOI : 10.1016/j.jmb.2005.11.032

G. R. Thuduppathy, J. W. Craig, V. Kholodenko, A. Schon, and R. B. Hill, Evidence that Membrane Insertion of the Cytosolic Domain of Bcl-xL is Governed by an Electrostatic Mechanism, Journal of Molecular Biology, vol.359, issue.4, pp.1045-1058, 2006.
DOI : 10.1016/j.jmb.2006.03.052

A. Schinzel, T. Kaufmann, and C. Borner, Bcl-2 family members: integrators of survival and death signals in physiology and pathology, Biochim. Biophys. Acta, pp.1644-95, 2004.

C. M. Dobson, Experimental investigation of protein folding and misfolding, Methods, vol.34, issue.1, pp.4-14, 2004.
DOI : 10.1016/j.ymeth.2004.03.002

R. F. Goldstein and L. Stryer, Cooperative polymerization reactions. Analytical approximations, numerical examples, and experimental strategy, Biophysical Journal, vol.50, issue.4, pp.583-599, 1986.
DOI : 10.1016/S0006-3495(86)83498-1

M. Kasai, S. Asakura, and F. Oosawa, The cooperative nature of G-F transformation of actin, Biochimica et Biophysica Acta, vol.57, issue.1, pp.22-31, 1962.
DOI : 10.1016/0006-3002(62)91073-9

S. Kumar, S. K. Mohanty, and J. B. Udgaonkar, Mechanism of Formation of Amyloid Protofibrils of Barstar from Soluble Oligomers: Evidence for Multiple Steps and Lateral Association Coupled to Conformational Conversion, Journal of Molecular Biology, vol.367, issue.4, pp.1186-1204, 2007.
DOI : 10.1016/j.jmb.2007.01.039

E. T. Powers and D. L. Powers, Mechanisms of Protein Fibril Formation: Nucleated Polymerization with Competing Off-Pathway Aggregation, Biophysical Journal, vol.94, issue.2, pp.379-391, 2008.
DOI : 10.1529/biophysj.107.117168

D. Talla-singh and W. E. Stites, Refinement of noncalorimetric determination of the change in heat capacity, ??Cp, of protein unfolding and validation across a wide temperature range, Proteins: Structure, Function, and Bioinformatics, vol.38, issue.4, pp.1607-1616, 2008.
DOI : 10.1002/prot.22016

J. K. Myers, C. N. Pace, and J. M. Scholtz, Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding, Protein Science, vol.5, issue.5, pp.2138-2148, 1995.
DOI : 10.1002/pro.5560050521

H. Levine and . Iii, [18] Quantification of ??-sheet amyloid fibril structures with thioflavin T, Methods Enzymol, vol.309, pp.274-284, 1999.
DOI : 10.1016/S0076-6879(99)09020-5

R. M. Johnson, S. D. Harrison, and D. Maclean, Therapeutic Applications of Cell-Penetrating Peptides, Methods Mol. Biol, vol.683, pp.535-551, 2011.
DOI : 10.1007/978-1-60761-919-2_38

T. Holm, S. E. Andaloussi, and U. Langel, Comparison of CPP Uptake Methods, Methods Mol. Biol, vol.683, pp.207-217, 2011.
DOI : 10.1007/978-1-60761-919-2_15

B. R. Liu, Y. W. Huang, J. G. Winiarz, H. J. Chiang, and H. J. Lee, Intracellular delivery of quantum dots mediated by a histidine- and arginine-rich HR9 cell-penetrating peptide through the direct membrane translocation mechanism, Biomaterials, vol.32, issue.13, pp.3520-3537, 2011.
DOI : 10.1016/j.biomaterials.2011.01.041

F. Madani, S. Lindberg, U. Langel, S. Futaki, and A. Graslund, Mechanisms of Cellular Uptake of Cell-Penetrating Peptides, Journal of Biophysics, vol.18, issue.2, p.414729, 2011.
DOI : 10.1042/BJ20061100

F. Chiti, M. Stefani, N. Taddei, G. Ramponi, and C. M. Dobson, Rationalization of the effects of mutations on peptide andprotein aggregation rates, Nature, vol.424, issue.6950, pp.805-808, 2003.
DOI : 10.1038/nature01891

F. Chiti and C. M. Dobson, Amyloid formation by globular proteins under native conditions, Nature Chemical Biology, vol.16, issue.1, pp.15-22, 2009.
DOI : 10.1038/nchembio.131

L. Bousset, N. H. Thomson, S. E. Radford, and R. Melki, The yeast prion Ure2p retains its native alpha-helical conformation upon assembly into protein fibrils in vitro, The EMBO Journal, vol.21, issue.12, pp.2903-2911, 2002.
DOI : 10.1093/emboj/cdf303

G. Plakoutsi, F. Bemporad, M. Calamai, N. Taddei, C. M. Dobson et al., Evidence for a Mechanism of Amyloid Formation Involving Molecular Reorganisation within Native-like Precursor Aggregates, Journal of Molecular Biology, vol.351, issue.4, pp.910-922, 2005.
DOI : 10.1016/j.jmb.2005.06.043

S. Kumar and J. B. Udgaonkar, Conformational Conversion May Precede or Follow Aggregate Elongation on Alternative Pathways of Amyloid Protofibril Formation, Journal of Molecular Biology, vol.385, issue.4, pp.1266-1276, 2009.
DOI : 10.1016/j.jmb.2008.11.033

G. Plakoutsi, F. Bemporad, M. Monti, D. Pagnozzi, P. Pucci et al., Exploring the Mechanism of Formation of Native-like and Precursor Amyloid Oligomers for the Native Acylphosphatase from Sulfolobus solfataricus, Structure, vol.14, issue.6, pp.993-1001, 2006.
DOI : 10.1016/j.str.2006.03.014

T. R. Jahn, M. J. Parker, S. W. Homans, and S. E. Radford, Amyloid formation under physiological conditions proceeds via a native-like folding intermediate, Nature Structural & Molecular Biology, vol.12, issue.3, pp.195-201, 2006.
DOI : 10.1038/nsmb1058

S. Kumar and J. B. Udgaonkar, Structurally Distinct Amyloid Protofibrils Form on Separate Pathways of Aggregation of a Small Protein, Biochemistry, vol.48, issue.27, pp.6441-6449, 2009.
DOI : 10.1021/bi900682w

K. E. Routledge, G. G. Tartaglia, G. W. Platt, M. Vendruscolo, and S. E. Radford, Competition between Intramolecular and Intermolecular Interactions in an Amyloid-Forming Protein, Journal of Molecular Biology, vol.389, issue.4, pp.776-786, 2009.
DOI : 10.1016/j.jmb.2009.04.042

R. Linding, J. Schymkowitz, F. Rousseau, F. Diella, and L. Serrano, A Comparative Study of the Relationship Between Protein Structure and ??-Aggregation in Globular and Intrinsically Disordered Proteins, Journal of Molecular Biology, vol.342, issue.1, pp.345-353, 2004.
DOI : 10.1016/j.jmb.2004.06.088

J. Ding, Z. Zhang, G. J. Roberts, M. Falcone, Y. Miao et al., Bcl-2 and Bax Interact via the BH1-3 Groove-BH3 Motif Interface and a Novel Interface Involving the BH4 Motif, Journal of Biological Chemistry, vol.285, issue.37, pp.28749-28763, 2010.
DOI : 10.1074/jbc.M110.148361

Z. Zhang, W. Zhu, S. M. Lapolla, Y. Miao, Y. Shao et al., Bax Forms an Oligomer via Separate, Yet Interdependent, Surfaces, Journal of Biological Chemistry, vol.285, issue.23, pp.17614-17627, 2010.
DOI : 10.1074/jbc.M110.113456

N. Azad, A. Iyer, V. Vallyathan, L. Wang, V. Castranova et al., Role of oxidative/nitrosative stress-mediated Bcl-2 regulation in apoptosis and malignant transformation, Annals of the New York Academy of Sciences, vol.43, issue.1, pp.1-6, 2010.
DOI : 10.1111/j.1749-6632.2010.05608.x

M. R. Nilsson, M. Driscoll, and D. P. Raleigh, Low levels of asparagine deamidation can have a dramatic effect on aggregation of amyloidogenic peptides: Implications for the study of amyloid formation, Protein Science, vol.26, issue.2, pp.342-349, 2002.
DOI : 10.1110/ps.48702

S. J. Korsmeyer, J. R. Shutter, D. J. Veis, D. E. Merry, and . Oltvai, Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death, Z. N. Semin. Cancer Biol, vol.4, pp.327-332, 1993.

A. Chenal, J. I. Guijarro, B. Raynal, M. Delepierre, and D. Ladant, RTX Calcium Binding Motifs Are Intrinsically Disordered in the Absence of Calcium: IMPLICATION FOR PROTEIN SECRETION, Journal of Biological Chemistry, vol.284, issue.3, pp.1781-1789, 2009.
DOI : 10.1074/jbc.M807312200

URL : https://hal.archives-ouvertes.fr/pasteur-00364637

R. W. Bourdeau, E. Malito, A. Chenal, B. L. Bishop, M. W. Musch et al., Cellular Functions and X-ray Structure of Anthrolysin O, a Cholesterol-dependent Cytolysin Secreted by Bacillus anthracis, Journal of Biological Chemistry, vol.284, issue.21, pp.14645-14656, 2009.
DOI : 10.1074/jbc.M807631200

S. Perez, A. C. Karst, J. C. Davi, M. Guijarro, J. I. Ladant et al., Characterization of the Regions Involved in the Calcium-Induced Folding of the Intrinsically Disordered RTX Motifs from the Bordetella pertussis Adenylate Cyclase Toxin, Journal of Molecular Biology, vol.397, issue.2, pp.534-549, 2010.
DOI : 10.1016/j.jmb.2010.01.031

URL : https://hal.archives-ouvertes.fr/hal-00512116

J. C. Karst, S. Perez, A. C. Guijarro, J. I. Raynal, B. Chenal et al., Adenylate Cyclase Toxin, Biochemistry, vol.49, issue.2, pp.318-328, 2010.
DOI : 10.1021/bi9016389

URL : https://hal.archives-ouvertes.fr/hal-00512114

A. Chenal, G. Vernier, P. Savarin, N. A. Bushmarina, A. Geze et al., Conformational States and Thermodynamics of ??-Lactalbumin Bound to Membranes: A Case Study of the Effects of pH, Calcium, Lipid Membrane Curvature and Charge, Journal of Molecular Biology, vol.349, issue.4, pp.890-905, 2005.
DOI : 10.1016/j.jmb.2005.04.036

URL : https://hal.archives-ouvertes.fr/hal-00384704

N. A. Bushmarina, C. E. Blanchet, G. Vernier, and V. Forge, Cofactor effects on the protein folding reaction: Acceleration of ??-lactalbumin refolding by metal ions, Protein Science, vol.15, issue.4, pp.659-671, 2006.
DOI : 10.1110/ps.051904206

A. R. Fersht, Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding, 1999.

J. Estrada, P. Bernado, M. Blackledge, and J. Sancho, ProtSA: a web application for calculating sequence specific protein solvent accessibilities in the unfolded ensemble, BMC Bioinformatics, vol.10, issue.1, p.104, 2009.
DOI : 10.1186/1471-2105-10-104