N. Gratz, Critical review of the vector status of Aedes albopictus, Medical and Veterinary Entomology, vol.10, issue.115, pp.215-227, 2004.
DOI : 10.1016/0035-9203(71)90051-4

S. Sinkins, H. Braig, O. Neill, and S. , Wolbachia Superinfections and the Expression of Cytoplasmic Incompatibility, Proceedings of the Royal Society B: Biological Sciences, vol.261, issue.1362, pp.325-330, 1995.
DOI : 10.1098/rspb.1995.0154

W. Zhou, F. Rousset, O. Neil, and S. , Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences, Proceedings of the Royal Society B: Biological Sciences, vol.265, issue.1395, pp.509-515, 1998.
DOI : 10.1098/rspb.1998.0324

C. Mcmeniman, Stable Introduction of a Life-Shortening Wolbachia Infection into the Mosquito Aedes aegypti, Science, vol.323, issue.5910, pp.141-144, 2009.
DOI : 10.1126/science.1165326

L. Moreira, A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium, Cell, vol.139, issue.7, pp.1268-1278, 2009.
DOI : 10.1016/j.cell.2009.11.042

Z. Xi, C. Khoo, and S. Dobson, Wolbachia Establishment and Invasion in an Aedes aegypti Laboratory Population, Science, vol.310, issue.5746, pp.326-328, 2005.
DOI : 10.1126/science.1117607

G. Bian, Y. Xu, P. Lu, Y. Xie, and Z. Xi, The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti, PLoS Pathogens, vol.17, issue.4, p.1000833, 2010.
DOI : 10.1371/journal.ppat.1000833.s001

M. Turelli and A. Hoffmann, Rapid spread of an inherited incompatibility factor in California Drosophila, Nature, vol.353, issue.6343, pp.440-442, 1991.
DOI : 10.1038/353440a0

M. Turelli and A. Hoffmann, Cytoplasmic incompatibility in Drosophila simulans: Dynamics and parameter estimates from natural populations, Genetics, vol.140, pp.1319-1338, 1995.

I. Iturbe-ormaetxe, T. Walker, O. Neill, and S. , Wolbachia and the biological control of mosquito-borne disease, EMBO reports, vol.43, issue.6, pp.508-518, 2011.
DOI : 10.1128/IAI.00376-09

Z. Kambris, P. Cook, H. Phuc, and S. Sinkins, Immune Activation by Life-Shortening Wolbachia and Reduced Filarial Competence in Mosquitoes, Science, vol.326, issue.5949, pp.134-136, 2009.
DOI : 10.1126/science.1177531

R. Zambon, M. Nandakumar, V. Vakharia, and L. Wu, The Toll pathway is important for an antiviral response in Drosophila, Proceedings of the National Academy of Sciences, vol.102, issue.20, pp.7257-7262, 2005.
DOI : 10.1073/pnas.0409181102

Z. Xi, J. Ramirez, and G. Dimopoulos, The Aedes aegypti Toll Pathway Controls Dengue Virus Infection, PLoS Pathogens, vol.19, issue.7, p.1000098, 2008.
DOI : 10.1371/journal.ppat.1000098.s008

Z. Kambris, Wolbachia Stimulates Immune Gene Expression and Inhibits Plasmodium Development in Anopheles gambiae, PLoS Pathogens, vol.113, issue.10, p.1001143, 2010.
DOI : 10.1371/journal.ppat.1001143.t001

K. Min and S. Benzer, Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death, Proceedings of the National Academy of Sciences, vol.94, issue.20, pp.10792-10796, 1997.
DOI : 10.1073/pnas.94.20.10792

E. Suh, D. Mercer, Y. Fu, and S. Dobson, Pathogenicity of Life-Shortening Wolbachia in Aedes albopictus after Transfer from Drosophila melanogaster, Applied and Environmental Microbiology, vol.75, issue.24, pp.7783-7788, 2009.
DOI : 10.1128/AEM.01331-09

L. Sun, M. Riegler, O. Neill, and S. , Development of a Physical and Genetic Map of the Virulent Wolbachia Strain wMelPop, Journal of Bacteriology, vol.185, issue.24, pp.7077-7084, 2003.
DOI : 10.1128/JB.185.24.7077-7084.2003

L. Hedges, J. Brownlie, O. Neill, S. Johnson, and K. , Wolbachia and Virus Protection in Insects, Science, vol.322, issue.5902, p.702, 2008.
DOI : 10.1126/science.1162418

S. Osborne, Y. Leong, O. Neill, S. Johnson, and K. , Variation in Antiviral Protection Mediated by Different Wolbachia Strains in Drosophila simulans, PLoS Pathogens, vol.76, issue.11, p.1000656, 2009.
DOI : 10.1371/journal.ppat.1000656.t001

L. Teixeira, A. Ferreira, and M. Ashburner, The Bacterial Symbiont Wolbachia Induces Resistance to RNA Viral Infections in Drosophila melanogaster, PLoS Biology, vol.23, issue.12, p.2, 2008.
DOI : 10.1371/journal.pbio.1000002.t001

E. Mcgraw, D. Merritt, J. Droller, O. Neill, and S. , Wolbachia density and virulence attenuation after transfer into a novel host, Proceedings of the National Academy of Sciences, vol.99, issue.5, pp.2918-2923, 2002.
DOI : 10.1073/pnas.052466499

M. Vazeille, L. Mousson, E. Martin, and A. Failloux, Orally Co-Infected Aedes albopictus from La Reunion Island, Indian Ocean, Can Deliver Both Dengue and Chikungunya Infectious Viral Particles in Their Saliva, PLoS Neglected Tropical Diseases, vol.83, issue.6, p.706, 2010.
DOI : 10.1371/journal.pntd.0000706.t004

URL : https://hal.archives-ouvertes.fr/pasteur-00490530

R. Chalk, H. Townson, and P. Ham, Brugia pahangi: The Effects of Cecropins on Microfilariae in Vitro and in Aedes aegypti, Experimental Parasitology, vol.80, issue.3, pp.401-406, 1995.
DOI : 10.1006/expr.1995.1052

R. Gwadz, Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes, Infect Immun, vol.57, pp.2628-2633, 1989.

S. Meister, Anopheles gambiae PGRPLC-Mediated Defense against Bacteria Modulates Infections with Malaria Parasites, PLoS Pathogens, vol.31, issue.2, p.1000542, 2009.
DOI : 10.1371/journal.ppat.1000542.s015

URL : http://doi.org/10.1371/journal.ppat.1000542

S. Blandin, Complement-Like Protein TEP1 Is a Determinant of Vectorial Capacity in the Malaria Vector Anopheles gambiae, Cell, vol.116, issue.5, pp.661-670, 2004.
DOI : 10.1016/S0092-8674(04)00173-4

C. Jin, X. Ren, and J. Rasgon, The Virulent Wolbachia Strain wMelPop Efficiently Establishes Somatic Infections in the Malaria Vector Anopheles gambiae, Applied and Environmental Microbiology, vol.75, issue.10, pp.3373-3376, 2009.
DOI : 10.1128/AEM.00207-09

S. Meister, Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae, Proceedings of the National Academy of Sciences, vol.102, issue.32, pp.11420-11425, 2005.
DOI : 10.1073/pnas.0504950102

P. Hancock, S. Sinkins, and H. Godfray, Strategies for Introducing Wolbachia to Reduce Transmission of Mosquito-Borne Diseases, PLoS Neglected Tropical Diseases, vol.106, issue.4, p.1024, 2011.
DOI : 10.1371/journal.pntd.0001024.s008

Y. Fu, L. Gavotte, D. Mercer, and S. Dobson, Artificial Triple Wolbachia Infection in Aedes albopictus Yields a New Pattern of Unidirectional Cytoplasmic Incompatibility, Applied and Environmental Microbiology, vol.76, issue.17, pp.5887-5891, 2010.
DOI : 10.1128/AEM.00218-10

P. Cook and E. Mcgraw, Wolbachia pipientis: an expanding bag of tricks to explore for disease control, Trends in Parasitology, vol.26, issue.8, pp.373-375, 2010.
DOI : 10.1016/j.pt.2010.05.006

C. Cirimotich, Natural Microbe-Mediated Refractoriness to Plasmodium Infection in Anopheles gambiae, Science, vol.332, issue.6031, pp.855-858, 2011.
DOI : 10.1126/science.1201618

S. Dobson, E. Marsland, and W. Rattanadechakul, Mutualistic Wolbachia infection in Aedes albopictus: Accelerating cytoplasmic drive, Genetics, vol.160, pp.1087-1094, 2002.

S. Dobson, W. Rattanadechakul, and E. Marsland, Fitness advantage and cytoplasmic incompatibility in Wolbachia single- and superinfected Aedes albopictus, Heredity, vol.93, issue.2, pp.135-142, 2004.
DOI : 10.1038/sj.hdy.6800458

M. Calvitti, R. Moretti, E. Lampazzi, R. Bellini, and S. Dobson, Characterization of a New <I>Aedes albopictus</I> (Diptera: Culicidae)???<I>Wolbachia pipientis</I> (Rickettsiales: Rickettsiaceae) Symbiotic Association Generated by Artificial Transfer of the <I>w</I>Pip Strain From <I>Culex pipiens</I> (Diptera: Culicidae), Journal of Medical Entomology, vol.47, issue.2, pp.179-187, 2010.
DOI : 10.1603/ME09140

T. Walker, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, vol.74, issue.7361, pp.450-453, 2011.
DOI : 10.1038/nature10355

A. Hoffmann, Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, vol.53, issue.7361, pp.454-457, 2011.
DOI : 10.1038/nature10356

Y. Otsuka and H. Takoaka, Elimination of Wolbachia pipientis from Aedes albopictus, Medical Entomology and Zoology, vol.48, issue.3, pp.257-260, 1997.
DOI : 10.7601/mez.48.257

K. Livak, Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis, Genetics, vol.107, pp.611-634, 1984.

D. Voronin, V. Tran-van, P. Potier, and P. Mavingui, Transinfection and growth discrepancy of Drosophila Wolbachia strain wMel in cell lines of the mosquito Aedes albopictus, J Appl Microbiol, vol.108, pp.2133-2141, 2010.

O. Neill and S. , In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line, Insect Molecular Biology, vol.6, issue.1, pp.33-39, 1997.
DOI : 10.1046/j.1365-2583.1997.00157.x

J. Rasgon, C. Gamston, and X. Ren, Survival of Wolbachia pipientis in Cell-Free Medium, Applied and Environmental Microbiology, vol.72, issue.11, pp.6934-6937, 2006.
DOI : 10.1128/AEM.01673-06