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Abstract

Fitness interactions between mutations, referred to as epistasis, can strongly impact evolution. For RNA viruses and
retroviruses with their high mutation rates, epistasis may be particularly important to overcome fitness losses due to the
accumulation of deleterious mutations and thus could influence the frequency of mutants in a viral population. As human
immunodeficiency virus type 1 (HIV-1) resistance to azidothymidine (AZT) requires selection of sequential mutations, it is a
good system to study the impact of epistasis. Here we present a thorough analysis of a classical AZT-resistance pathway (the
41–215 cluster) of HIV-1 variants by fitness measurements in single round infection assays covering physiological drug
concentrations ex vivo. The sign and value of epistasis varied and did not predict the epistatic effect on the mutant
frequency. This complex behavior is explained by the fitness ranking of the variants that strongly depends on environmental
factors, i.e., the presence and absence of drugs and the host cells used. Although some interactions compensate fitness
losses, the observed small effect on the relative mutant frequencies suggests that epistasis might be inefficient as a
buffering mechanism for fitness losses in vivo. While the use of epistasis-based hypotheses to make general assumptions on
the evolutionary dynamics of viral populations is appealing, our data caution their interpretation without further knowledge
on the characteristics of the viral mutant spectrum under different environmental conditions.
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Introduction

Epistasis, the fitness interaction between mutations, has been

suggested to influence the evolutionary dynamics of virus

populations [1]. In its original definition by Bateson, epistasis

described a phenomenon in which a discrete phenotype derived

from a genetic variant in one locus was altered by a genetic

variant at another locus [2]. Thus both loci must be located

within the same phenotype-determining gene clusters and show

some kind of interaction. With this mechanism in mind, epistasis

is nowadays commonly used to describe any deviation from an

expected phenotype that originates from a combination of

mutations.

Fitness interactions can act in different directions. If mutations

interact such that their combined effect on fitness is greater than

expected from their individual effects, then epistasis is said to be

synergistic. By contrast, if mutations interact so that their

combined effect is smaller than expected, then epistasis is called

antagonistic. Depending on the nature of the mutations being

deleterious or beneficial, the sign of epistasis can be positive or

negative. When mutations are deleterious, synergistic interactions

result in negative epistasis and antagonistic interactions result in

positive epistasis. The contrary is true for beneficial mutations

were synergistic interactions result in positive epistasis and

antagonistic interactions result in negative epistasis [3,4].

Epistatic effects have been observed in many fundamental

biological processes like speciation [5], long-term selection in

model organisms [6], and in loci associated with human diseases

[7–9]. Epistatic interactions also have a central role in evolution-

ary topics such as the evolution of sexual reproduction [10,11] and

the structural evolution of genetic systems [12,13]. With respect to

viruses, interactions between mutations are also common. Epistasis

among viral loci has been found in many diverse viruses like DNA

bacteriophage Phi-X174 [14], RNA bacteriophage Phi-6 [15],

foot-and-mouth disease virus [16], polio virus [17], vesicular

stomatitis virus [18], chikungunya virus [19] and human

immunodeficiency virus (HIV) [20–24]. Although a wide range

of interactions (positive and negative) was observed, a predomi-

nance for positive epistasis seems to be the trend which may

directly impact viral robustness and the efficiency of variant

selection under therapy [1,3,18,25,26]

HIV is an ideal candidate to study epistatic interactions in

viruses. First, the virus shows a phenomenal genetic diversity

which is observed at all possible levels from between patient

comparisons to variants even within multi-infected individual cells

[27]. This genetic diversity is accompanied by the capacity of HIV
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to rapidly adapt to changing environments. It is best exemplified

by the rapid selection of escape mutants in response to antiviral

drugs. Depending on the nature of the drug-HIV interaction, it

may require just few weeks to fix the resistant mutants within the

viral population in vivo [28]. Second, HIV grows easily in cell

culture and assays to determine viral fitness are well established.

Third, there is ample data on HIV sequences and characteristics

within patients that allow estimating the consequences of epistatic

interactions within infected hosts.

Under the conditions of mutation-selection equilibrium, fitness

interactions between mutations will affect the frequency of

individual mutants within a virus population. A buffering effect

of deleterious mutations is expected if epistasis would be positive.

In this case, the abundance of deleterious mutants would be higher

than expected and the viral population may respond faster to a

new selection pressure supposing that the deleterious mutations

would be beneficial under the new growth conditions. A clinically

important example and test scenario for this is the selection of

drug-resistant HIV variants after the use of antiretroviral

treatment. By using amino acid sequence data of the reverse

transcriptase and protease regions of HIV-1 isolates from infected

individuals undergoing antiviral treatment, and the corresponding

fitness values measured in vitro in the absence of drugs, statistical

evidence for the predominance of positive epistasis has been

detected [20]. However, a number of limitations of this study have

been raised. One major concern was the likely under-representa-

tion of low fit variants in the data set that could have led to false

conclusions towards epistasis [29]. Such a biased genome

representation seems inevitably linked to the experimental

procedure used to generate the genotype to phenotype correla-

tions. A preference for the major viral mutants and thus more fit

variants is simply obtained by PCR-mediated amplification and

the direct cloning of the respective HIV regions into HIV vectors

for subsequent fitness measurements. Thereby the clonal sequence

representation is expected to be directly proportional to the

respective fitness of the variant in vivo. Other limitations of the

study were (i) the lack of fitness values in the presence of drugs so

that epistatic effects and their consequences could not be

compared with and without medication and (ii) the lack of

knowledge of the direct path of mutation accumulation including

all intermediate mutants.

A straightforward and complementary approach to measure

fitness interactions relies on the construction of HIV variants with

all mutations along an evolutionary pathway, then measuring their

individual and combined fitness effects, and comparing the results

with predictions generated under the null hypothesis of non-

epistatic interactions [18]. While this approach is experimentally

feasible only for a limited number of variants and thus lacks

completeness over all possible HIV mutation pathways, it is of

highest resolution and captures all variants including those of very

low fitness. Here we report the results of such an analysis of a

specific mutation pathway that HIV follows within individuals

after treatment with azidothymidine (AZT), a nucleoside-analog

reverse transcriptase inhibitor. The overall aim was (i) to generate

a complete and physiologically relevant HIV data set with fitness

values for all mutants within the mutation pathway, (ii) to

determine the influence of environmental factors like host cells

and antiviral drug concentrations on the fitness interactions of the

mutations and (iii) to derive quantitative estimates of the epistatic

effects on the relative frequency distribution of the viral mutants.

The determined fitness values match the HIV mutant frequencies

observed within patients and can explain the observed mutation

pathway. Epistatic interactions depend strongly on the host cell

environment and decrease with increasing drug concentrations.

The relationship between the value of epistasis and the relative

mutant frequency is complex and determined by the fitness

ranking of individual mutants.

Results

Selection of a HIV-1 mutation pathway for analysis of
epistatic interactions

In order to quantify precisely epistatic interactions in HIV and

analyze their dependence on environmental factors such as host

cells and antiviral drugs, we focused on a specific mutational

pathway that HIV-1 follows in vivo during treatment with AZT, the

prototypic reverse transcriptase (RT) inhibitor first used in infected

patients and a common component of current anti-retroviral

formulations. When taken up by cells, AZT is phosphorylated by

thymidine kinases to the active AZT-triphosphate. Upon incor-

poration into the nascent HIV DNA strand, RT-dependent chain

elongation is stopped due to the 39azido-group [30]. Treatment of

HIV-infected individuals with AZT leads to the selection of AZT-

resistant HIV-mutants with defined amino acid changes in the

RT. The mechanism of resistance development is well studied

[31,32] and follows specific pathways. One such HIV-1 resistance

pathway (Figure 1) is characterized by the key mutations at

positions 41 and 215 of the RT [31,33]. The highly AZT-resistant

double mutant M41L-T215Y appears in vivo after around 255

weeks of treatment and requires a number of intermediate mutants

of which only the M41L and T215Y mutants are commonly

observed [31]. However, at least one of the other possible

intermediates, T215S, T215N, M41L-T215S and M41L-T215N

must have been transiently generated (Figure 1, in grey).

Generation of AZT-resistant mutants of HIV-1, fitness
determination and epistasis calculations

All seven HIV-1 RT mutants from an AZT-resistance pathway

(Figure 1) were generated by shuffling PCR. They were then

cloned into an HIV-1 NL4-3-based vector that is deficient in the

expression of a functional envelope (Env) protein and contains the

Renilla luciferase gene in the position of nef [34]. Respective HIV-1

Env-pseudotyped viruses that can only undergo a single round of

infection in susceptible target cells were subsequently produced

from 293T cells after co-transfection with RT mutants and an

HIV-1 env expression plasmid. The relative fitness of the mutant

viruses was assessed under a range of physiologically relevant AZT

concentrations by infecting the TZM-bl cell-line or primary

peripheral blood lymphocytes (PBMCs) from two healthy donors

(here referred to as donors 1 and 2) and measuring the relative

luciferase activities of the variants compared to that of the wild-

type. The epistatic interaction E of the mutations was then

calculated according to the epistasis definition in a two-locus-two-

allele model: E = W00W112W01W10 [Equation 1], where W00 is

the fitness of the wild type, W11 the fitness of the double mutant

and W01, W10 are the fitness of both single mutants, respectively.

Observed and expected relative fitness values were then

graphically compared as described previously [3,24].

The fitness ranking of AZT-resistant HIV-1 RT mutants
corresponds to their frequency distribution in AZT-
treated patients

The distribution of fitness relative to that of the wild type for all

single and two-point HIV-1 RT mutants infecting TZM-bl cells or

PBMC in the presence of 0 to 10 mM AZT is shown in Figure 2

and in Figure S1 and Table S1 under Supporting Information.

With the TZM-bl cell line and the PBMC of two blood donors as

Fitness Ranking and Epistasis in HIV-1
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target cells, the wild-type virus has a varying fitness advantage over

the AZT-resistant variants in the absence of drug. Increasing drug

concentrations render particularly the mutants M41L, T215Y and

M41L/T215Y more fit than the wild type. These dominant RT

mutants have been analyzed previously and our determined

relative fitness values are concordant with previous findings

[35,36]. Similarly concordant are the inhibitory concentration

50 (IC50) values for AZT that have been determined for these

mutants [35,37–40] and which can be derived from our fitness

measurements as a function of drug concentrations. The newly

analyzed intermediate mutants T215S, T215N, M41L-T215S and

M41L-T215N of the AZT-resistance pathway (Figure 1) exhibit

low fitness values under all drug concentrations with the 215S

mutants being slightly fitter than the 215N. Thus, taken together,

Figure 1. Mutation pathway of the HIV-1 reverse transcriptase under AZT therapy in vivo. The scheme shows one common in vivo
developmental pathway of AZT-resistant HIV-1 mutants at amino acid positions 41 and 215 in the reverse transcriptase. Amino acids are given in the
one letter code. In the block arrow, estimated waiting times of mutant appearance are marked. The values are according to estimations from
Beerenwinkel, et al. [31] The flowchart arrows highlight the respective nucleotide changes. Mutants found in vivo are in bold type while mutants in
grey are not observed in vivo.
doi:10.1371/journal.pone.0018375.g001

Figure 2. Relative fitness values of HIV-1 reverse transcriptase mutants along an AZT-resistance pathway. Mean fitness values for wild
type (WT) and mutants in the TZM-bl cell line and PBMC from Donor 1 and Donor 2 as a function of AZT concentration. The values are the mean of
three or four independent infections (the actual values with standard deviations and errors are given in Table S1 and plotted in Figure S1 under
supporting information). The mean fitness of the wild type without the addition of drug was set to 1. AZT concentrations range from 0 to 10 mM
which cover the physiologically relevant range in vivo.
doi:10.1371/journal.pone.0018375.g002
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the ranking order of the fitness values for all RT mutants in the

presence of AZT correspond well with the frequency distribution

of the respective mutants found in patients under AZT treatment

i.e. T215Y . M41L . T215S . T215N (Stanford Drug

Resistance Database, http://hivdb.stanford.edu).

The fine structure of the fitness distribution of the RT mutants

in TZM-bl and PBMC revealed interesting features that are best

visualized in supplementary figure S1. (1) The relative fitness of

the AZT-resistant mutants is influenced by the host-cell

environment. For example, the mutants T215Y and M41L-

T215Y exhibit a higher relative fitness without drug in PBMC of

donor 2 than in PBMC of donor 1 or TZM-bl cells. Furthermore,

with the exception of the M41L-T215S, the non-dominant RT

mutants are fitter in TZM-bl cells under all AZT concentrations

than in PBMC. (2) The fitness of the wild type in the presence of

AZT is usually higher in PBMC than in TZM-bl cells. This

mounts to an about 10-fold and 30-fold difference under 2 mM

and 5 mM AZT respectively. Under 10 mM AZT, the replication

of the wild type was practically not detectable in all cell-types. (3)

The fitness differences between the wild type and the RT mutants

are not constant. For example, with 5 mM AZT, the highly

resistant mutant M41L/T215Y exhibits a 160-fold higher fitness

than the wild type in TZM-bl cells but is only around 6-fold or

20-fold fitter in PBMC of donor 1 and 2, respectively. Thus, the

fitness behavior of the wild type and the RT mutants as a

function of AZT concentrations is cell type dependent. This

correlates well with the observation that HIV replication and

adaptation strongly depends on the host-cell environment

[41–43].

The HIV-1 AZT-resistance pathway is characterized by
strong and varying epistasis between the RT mutations
at amino acids 41 and 215

In order to analyze possible interactions between the mutations

of the key amino acids along the AZT-resistance pathway, we

calculated epistasis (E) according to equation 1 from the

determined fitness values. Without drug pressure, E is always

strongly positive for the TZM-bl cells and both PBMC Donors

(Table S2, under Supporting Information) however the relative

values for the three double mutants differ in the target cells. To

better visualize the epistatic interactions between all RT

mutations, the experimental fitness values of the double mutants

(i.e. the observed fitness) were plotted against the products of the

fitness of the one-point mutants (i.e. the expected fitness under the

assumption of no epistatic interactions) (Figure 3A). Positive

epistasis means that the fitness of the double mutants is higher than

expected (the diagonal line corresponds to no epistatic effects). To

test whether the overall finding of epistatic interactions is

statistically robust, we performed bootstrapping to generate

randomized data sets (N = 1000) and applied the same analysis.

In all cases the mean epistasis values were significantly greater

than zero (Table S2 under Supporting Information).

Figure 3. Epistasis in AZT-resistant HIV-1 reverse transcriptase mutants. (A) The observed relative fitness of double mutants W11 along an
AZT resistance pathway under different AZT concentrations is plotted against the product of the relative fitness of the single mutants W10xW01. The
latter reflect the expected fitness if there is no epistasis. Values are calculated for the fitness in TZM-bl cells and PBMC from two healthy donors
(named Donors 1 and 2). The diagonal line corresponds to absence of epistasis while the areas of positive and negative epistasis are above and below
respectively. Error bars indicate standard error of the mean. (B) Positive epistasis declines in strength with increasing AZT concentrations. Epistasis
values for the three HIV-1 double mutants along the AZT resistance pathway are plotted against AZT concentrations. Error bars indicate standard
error of the mean.
doi:10.1371/journal.pone.0018375.g003
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The epistatic interactions between the mutations
changed upon increasing drug pressure and differed
between the target cells used

An increase in AZT concentrations resulted in a decrease of

epistasis. The three different double mutants showed a varying

relative decrease in the different target cells. With TZM-bl cells,

the sign of epistasis changed to negative already from the lowest

AZT concentration whereas with the PBMC of donors 1 and 2,

epistasis was mainly (donor 1) or always (donor 2) positive

(Figure 3B). The change in the sign of epistasis in the TZM-bl cells

is mainly due to the fitness ranking of the wild type, which is

relatively low, and the 1-point mutants, which are relatively high

in these cells as compared to PBMC (see Supporting Figure S1).

Together these observations show that the type of fitness

interaction may change along with the environmental conditions

under which it is analyzed. In the absence of drug, the fitness loss

due to the acquisition of resistance mutations is compensated by a

strong antagonistic interaction (positive epistasis) in all cases.

However when AZT is present, the fitness interaction is still

antagonistic (now negative epistasis) in TZM-bl cells but becomes

mainly synergistic (now positive epistasis) in PBMC. Thus the

fitness gain is less than expected for TZM-bl cells but mainly

higher than expected for PBMC.

Epistasis affects the relative abundance of drug-resistant
HIV-1 mutants

The fitness interactions between the mutations along a drug-

resistance pathway are expected to have an impact on the relative

mutant frequencies in a viral population. This in turn may be of

great clinical importance for the selection of drug-resistance under

antiviral treatment because a higher or lower steady state level of a

resistant mutant may lead to a faster or slower outgrowth. Having

determined all fitness values for all mutants along the AZT-

resistance pathway, we were now able to quantitatively estimate

the effect of epistasis on the relative abundance of the double

mutants. For this, the expected fitness values under the assumption

of no epistasis were calculated from the experimentally determined

fitness values and used to analyze the respective steady state

frequencies assuming a mutation-selection equilibrium as defined

by the general model of HIV quasispecies dynamics [44]. Under

this condition, the relative abundance of the wild-type virus and

the 1-point and 2-point mutants can be estimated by computing

the eigenvectors of the following eigenvalue problem [Equation 2]:

(1{m1)(1{m2)W00 (1{m1)m2W01 m1(1{m2)W10 m1m2W11

(1{m1)m2W00 (1{m1)(1{m2)W01 m1m2W10 m1(1{m2)W11

m1(1{m2)W00 m1m2W01 (1{m1)(1{m2)W10 (1{m1)m2W11

m1m2W00 m1(1{m2)W01 (1{m1)m2W10 (1{m1)(1{m2)W11

2
666664

3
777775
|

y00

y01

y10

y11

2
666664

3
777775
~l

y00

y01

y10

y11

2
666664

3
777775

Here, y00 and y11 denote the equilibrium abundance of the wild-

type virus and the 2-point mutant, respectively, whereas y01 and

y10 denote the equilibrium abundance of the 1-point mutants. The

parameters m1 and m2 characterize the mutation rate for the first

position and for the second position respectively, l is the standard

notation for the eigenvalue. Under the simplifying assumption that

the mutation rate m is not affected by the mutations itself, the

relative frequencies of the 2-point mutants can be readily

calculated using our fitness data (Table S1) and MATLAB

routines (www.mathworks.com). The results are shown in

Figure 4 and Table S3.

Depending on the AZT concentration, the presence of epistasis

has a marginal or a significant effect on the relative frequency

distribution of the 2-point mutants within the virus population.

Importantly, high epistasis values do not directly predict a large

effect on that distribution. For example, without AZT when

epistasis is highest, the relative mutant frequencies are around

1028 to 1029 and epistasis affect those frequencies up to 3-fold

(Figure 4 and Table S3). In the presence of AZT when epistasis

values were significantly smaller, frequency effects of up to around

104-fold are observed. Taking the M41L/T215Y mutant in the

presence of 0.03 mM AZT as an example, epistasis increased the

relative frequency around 104-fold according to the measurements

in PBMC of donor 2 (Table S3c), diminished it around 104-fold

according to the measurements in TZM-bl (Table S3a) or left it

relatively unchanged (PBMC donor 1, Table S3b). Furthermore,

the frequency effects were not linear. Taking again the M41L/

T215Y mutant, epistasis increased the relative frequency around

104-fold at 0.03 mM AZT and 2 mM AZT, however had nearly no

effect at 0.3 mM AZT. This complex behavior is due to the fact

that the epistasis effect on mutant frequencies strongly depends on

the distribution of the relative fitness values for wild type,

intermediate mutants and the 2-point mutant, i.e. their ranking.

If the intermediate one-point mutants (at least one of them) have

larger fitness value than the two-point mutant would have in the

absence of epistasis then the effect would be strong. Otherwise the

two-point mutant will dominate with and without epistasis. Let us

consider two examples: Under 0.3 mM AZT in PBMC of donor 2,

the fitness values for wild type, M41L, T215Y and M41L-T251Y

are 0.16260.010, 0.16660.013, 0.29360.014 and 0.38560.047,

respectively (see Table S1c for all values of the standard errors of

the mean and Table S4 for evaluation of the significance of the

fitness differences). Thus, one would expect that the M41L-T251Y

mutant will dominate because of its highest fitness and its relative

frequency is expected to be close to 1 (in fact 0.999; Table S3c).

Assuming no epistatic interaction, the relative fitness for the same

variants are 0.16260.010, 0.16660.013, 0.29360.014 and

0.30060.069, respectively. The M41L-T251Y mutant still dom-

inates because it has the highest fitness and its relative frequency is

close to 1 (0.998). In the case of 2 mM AZT, the fitness values with

epistasis are 0.042660.0027, 0.023660.0029, 0.11660.0078 and

0.18760.010, respectively. The M41L-T251Y mutant will

dominate with a relative frequency close to 1 (in fact 0.999).

Assuming no epistasis, the relative fitness is 0.042660.0027,

0.023660.0029, 0.11660.0078 and 0.064260.020, respectively.

Now the 1-point T251Y mutant will dominate because it has the

highest fitness and its relative frequency is expected to be close to

1. In this case the relative frequency of the two point mutant

M41L-T251Y is only 0.0000897. Thus the epistatic effect is large

although the epistasis value is small (Figure 3B and Figure 4).

Discussion

Epistasis is a fundamental component of the genetic architecture

of biological entities and has been suggested to influence the

evolutionary dynamics of virus populations. Here we have

quantified the fitness of all HIV-1 mutants along the classical

AZT-resistance pathway under physiological drug concentrations

ex vivo, calculated the epistasis values and estimated its impact on

mutant frequencies within the viral population. Overall, the

pattern of epistasis is complex and dependent on the drug

concentrations and the host cells used. Without AZT, epistasis is

consistently positive within the TZM-bl cell line and the PBMCs of

Fitness Ranking and Epistasis in HIV-1
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both blood donors, and results in an estimated 1.5 to 2.8-fold

increase in the ratio of the highly resistant 2-point mutant M41L-

T251Y to wild type. The presence of AZT leads to a

concentration-dependent decrease of epistasis. This is due to the

fitness decrease of all variants especially the wild type in the

presence of AZT and the respective reduction of the difference of

their products (see equation 1 and figure 2). Furthermore, the signs

and values of epistasis differ depending on the host cells used and

the numerical values do not predict the epistatic effect on the

mutant frequency. This complex behavior is explained by the

fitness ranking of all mutants in the presence of AZT and the

uneven fitness distribution of the 1-point mutants.

Figure 4. Effect of epistasis on the relative frequencies of drug-resistant HIV-1 mutants. The plot shows the estimated relative frequencies
of the double mutants along the AZT resistance pathway under different AZT concentrations for TZM-bl cells and both PBMC donors without
epistasis (black bars) and with epistasis (grey bars). Without drug pressure, epistasis has a small effect on the mutant frequencies. With the addtion of
drug, epistasis has a varying effect on the mutant frequencies that is dependent on the fitness ranking of the wild type, 1-point mutants and 2-point
mutants. Calculations were performed according to an established model specified in equation 2 (see text for details). Fitness values were taken from
Table S1.
doi:10.1371/journal.pone.0018375.g004
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The observed positive epistasis under drug-free conditions has a

buffering effect on the mutant distribution and caused an increase

of the relative frequency of the highly AZT-resistant 2-point

mutant M41L-T251Y over the expected frequency if epistasis

would be absent. However this relative frequency increase from

about 161028 to about 3.661028 (see Table S3) within the virus

population is only marginal considering the published estimates of

the HIV effective population size in vivo of around 103 to 104 [45].

In the presence of AZT, the sign of epistasis varies with the drug

concentrations and the host cells used. As a consequence, epistasis

increases or decreases the relative 2-point mutant frequencies or

leaves it relatively unchanged. For example, under 0.03 mM AZT

and TZM-bl as host cells, epistasis decreases the relative frequency

of M41L-T215Y from 1 to 5.561024, whereas with PBMC from

Donor 2, epistasis increases the relative frequency from 4.561024

to almost 1. Although these estimated relative frequencies are now

in the range of the effective population size of HIV in vivo, a

condition where epistatic effects are expected to be relevant, there

are no consistent biological criteria to derive general statements on

the importance of the epistatic effects for the mutant frequency at

the population level.

Epistasis was suggested to contribute to viral robustness, the

ability of a virus to maintain stable functioning despite genetic and

environmental perturbations [1,25]. In general, single mutations

in a viral genome are deleterious and will reduce viral fitness. The

observed predominance of positive epistasis among viral genomes

suggests a buffering effect for subsequent mutants such that the

mutant spectrum is enlarged [25,46,47]. This in turn may become

beneficial for the virus population in the context of a strong

selection pressure like antiviral treatment. However as we show

here for the mutants along the AZT resistance pathway, the

buffering effect without AZT is so low that positive epistasis is

unlikely to be a major contributing factor to the robustness of HIV

i.e. to allow low fitness mutants to survive in an HIV population in

vivo. Other mechanisms than epistasis may be considered as of

prime importance within infected individuals. First, the HIV

provirus can persist for months independent of the replicative

capacity of the respective mutant [48]. Second, multi-infection of

single cells in vivo is common and thus phenotypic mixing can

contribute to mutant survival [27,49]. The recent suggestion that

HIV is evolving towards a more robust population due to the

selection of a lower fitness landscape is compatible with such a

scenario [26,50].

The development of drug resistance in HIV infection remains

one of the most challenging difficulties in antiviral treatment. The

dynamics of resistant mutants depends on a number of virus

replication parameters such as the fitness values, the number of

available target cells and mutation/recombination rates. Although

the interplay between these factors has been studied using

mathematical models, their results suffer from not being based

on exact values for all parameters. Fitness is a major determinant

of the selection process of drug-resistant mutants that is amenable

to experimental quantification. In this respect, the fitness estimates

for a complete spectrum of AZT-resistant mutants as a function of

the drug concentrations obtained in our work established a solid

quantitative basis for further data-driven in silico studies.

In summary, our study provides high-resolution fitness values

along an important HIV drug-resistance mutation pathway and

quantifies the impact of epistasis on mutant frequencies. The

pattern of epistatic interactions between the specific mutations is

complex and dependent on environmental factors such as the

presence and absence of drugs and the host cells used. While some

interactions compensate fitness losses, the effect on the relative

mutant frequencies was small so that epistasis as a buffering

mechanism for fitness losses might be rather inefficient. Together

these data caution against over-interpreting qualitative data on

epistasis for evolutionary dynamics of viruses without knowledge of

the fitness ranking of the complete mutant spectrum.

Materials and Methods

Experimental Design
To measure the fitness of HIV-1 RT mutants along an AZT

resistance pathway and to evaluate the effect of epistasis ( = the

fitness interactions between the mutations), we generated the

respective RT mutants by site-directed mutagenesis PCR [51].

They were then cloned into the HIV-1 viral vector TN7-Stopp

that carries the Renilla luciferase reporter gene instead of nef and

lacks a functional env gene [34]. HIV pseudotypes were produced

by co-transfection of 293T cells with an HIV-1 env expression

plasmid. The fitness values of the mutants were quantified by

measuring the replication capacity of the mutants as the % relative

luciferase activity, compared to that of the wild type, after single

round infection of target cells with and without the addition of

AZT.

Generation of wild type and drug resistant mutants
Mutagenesis. PCR site-directed mutagenesis was used to

introduce the desired nucleotide changes at codons 41 and 215 of

the reverse transcriptase gene of the HIV-1 NL4-3 molecular

clone. This technique involves two PCR reactions using

overlapping primers (see Table S5 for primer details). Briefly, in

the first PCR, a 1062 base pair fragment containing the desired

region was amplified using a 59 primer carrying a unique

restriction site for BclI and the 39 overlapping primer carrying

the desired RT mutation. In parallel, another PCR used the 39

primer carrying the restriction site for AgeI and the 59 overlapping

primer carrying the other desired RT mutation. The resulting

fragments were isolated from an agarose gel and used as templates

in the second PCR with only the 59 BclI and the 39 AgeI primers

giving rise to the final template. The thermocycling conditions for

the first PCR were 94uC for 2 min followed by 30 cycles of 94uC
30 s, 58uC 30 s (50uC for the second PCR) and 68uC 45 s (72uC,

1 min for the second PCR) and then a final elongation step of

68uC for 7 min. The introduced restriction sites were used for the

subsequent cloning of the mutated fragment.

Plasmids and cloning. The PCR products were ligated into

the pGEM-T vector (Promega) via TA cloning following

manufacturer’s instructions. E. coli ER2925 (Stratagene) were

then transformed and selected on ampicillin agar plates. Plasmid

DNA was extracted using the alkaline method. Samples were run

on an agarose gel, isolated and sequenced by dideoxy-sequencing.

Plasmids containing the desired RT mutants were digested with

AgeI and BclI (New England Biolabs) and the respective fragments

were inserted into the pTN7-Stopp HIV-1 expression plasmid

using the same restriction sites. pTN7-Stopp is derived from the

HIV-1 NL4-3 based viral vector and has the luciferase gene in the

position of the nef gene [34]. It is designed for a single round of

replication since it does not express the envelope gene due to the

insertion of two nucleotides in the 59region of the signal peptide

resulting in a frameshift and premature termination of translation.

Generation of HIV-1 pseudovirus stocks. For pseudo-

typed virus generation, wild type or mutated pTN7-Stopp

plasmids were co-transfected with a specific plasmid expressing a

CCR5-tropic HIV-1 envelope gene into the 293T cell line [52].

Briefly, 293T cells (106 cells) were transfected with 4 mg of each

plasmid DNA using Lipofectamine (Invitrogen) according to the

manufacturer’s instructions. 48 hours after transfection, virus-
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containing supernatants were harvested, filtered with 0.45 mm

cellulose-acetate filters (Schleicher & Schuell), titrated and stored

in 1 ml aliquots at 280uC until use.
Range of AZT concentrations. We used AZT at final

concentrations of 0, 0.03, 0.3, 2, 5 and 10 mM for the infection

experiments. These cover the physiological concentrations of anti-

retroviral therapy [53,54].
HIV-1 pseudotype infections and determination of

relative fitness. Target cells for infection experiments were

peripheral blood mononuclear cells (PBMCs) from healthy blood

donors and TZM-bl cells. TZM-bl is a HeLa cell line, which

expresses CD4 and both CCR5 and CXR4 co-receptors [55,56].

Cells were plated in triplicate or quadruple on 96 well plates at a

density of 105 cells/well and left untreated (0 mM AZT) or pre-

incubated for 2 hours with AZT at the final concentrations

mentioned above before infections. PBMCs from healthy donors

were stimulated overnight with PHA prior to the drug incubation.

Infections were performed for each drug treatment by adding

wild-type and mutant virus at an MOI of 0,5 in 100 ml of medium

to untreated or treated cells. Forty-eight hours after infection, cells

were washed and assayed for luciferase activity with the Luciferase

Reaction Kit (Promega) according to the manufacturer’s

instructions. In addition, the relative luciferase activities from

infections were normalized to the transfection efficiencies of 293T

cells during HIV pseudotype preparation. The final relative fitness

values for all mutants were the obtained by relating them to the

fitness of the wild type (see below).
Statistical analysis. The method of estimating the mean

fitness value for every mutant and AZT dose was performed as

following: (i) the mean value of a given number of independent

measurements of RLU/s was estimated (RLUmutant); (ii) the

mean background value, i.e. control (RLUcontrol) was calculated

to (iii) correct the original value for the background by subtracting

it (RLUcorrected = RLUmutant-RLUcontrol) and then (iv) to

normalize the corrected replication capacity using the transfection

efficiency parameter, teff, thus getting absolute fitness estimate

fabs = RLUcorrected/teff. Finally, the absolute fitness estimates

were normalized with respect to the absolute fitness value of the wt

genome without drug (f0): f = fabs/f0. The above estimates of the

mean of the mutant fitness by using the sample means were

supplemented by evaluating their sample variances using the

formulas for variances of the products and ratios of independent

random variables [57]. The donor cell data were used to estimate

the mean fitness and variance values for each mutant using

standard formulas for the mean and variance of the sum of

independent random variables. To evaluate the epistasis values

two different approaches were used. One is based upon a direct

calculation of the mean and variance values using the epistasis

formula and the rules for dealing with the functions of random

variables [57]. The second one implements a parametric bootstrap

method to make inference about the mean and its associated

standard error. To this end a normal distribution with the

corresponding estimated sample mean and variance was used to

draw the fitness values of wt, single- and double mutant genomes

with the size of the generated sample of 1000. The 95%

confidence intervals shown in Tables S1 and S2 under

Supporting Information were calculated using the bootstrap

estimates of the standard deviation (SD) as mean 61.96*SD.

Supporting Information

Figure S1 Bar-plot showing the comparative and high-resolu-

tion cell-to-cell fitness distribution of the wild type and RTase 1-

point and 2-point mutants along an AZT resistance pathway

under different AZT concentrations. Error bars are standard error

of the mean.

(TIF)

Table S1 Complete set of the relative fitness values and statistics

for the wild type and RTase 1-point and 2-point mutants along an

AZT resistance pathway measured under different AZT concen-

trations in the TZM-bl cell line (a), Donor 1 (b) and Donor 2 (c).

(DOC)

Table S2 The calculated epistasis values and statistics for the

RTase 2-point mutants along an AZT resistance pathway under

different AZT concentrations in the TZM-bl cell line (a), Donor 1

(b) and Donor 2 (c). Calculations were made according to equation

1 (see main text and materials and methods for details).

(DOC)

Table S3 Relative frequency values for the RTase 2-point

mutants along an AZT resistance pathway under different AZT

concentrations in the TZM-bl cell line (a), Donor 1 (b) and Donor

2 (c). Relative frequencies with positive epistasis are noted in bold

and with negative epistasis in italic. Frequencies were calculated

according to equation 2 (see main text for details).

(DOC)

Table S4 Evaluation of statistical significance of the differences

in mean relative fitness between wild type and AZT-resistant

variants for Donor 2 by a Student-Newman-Keuls test. Fitness

values are taken from Table S1c. Calculations were performed in

Graphpad Prism. The examples selected here for statistical

evaluation are discussed under results.

(DOC)

Table S5 Primers uses for the site-directed PCR to generate the

HIV-1 RTase mutants used in this study. Restriction sites are

underlined and bold, codons with the introduced mutantions are

underlined.

(DOC)
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