S. Bray, Notch signalling: a simple pathway becomes complex, Nature Reviews Molecular Cell Biology, vol.281, issue.9, pp.678-689, 2006.
DOI : 10.1016/S1534-5807(04)00097-8

C. Brou, Intracellular trafficking of Notch receptors and ligands, Experimental Cell Research, vol.315, issue.9, pp.1549-1555, 2009.
DOI : 10.1016/j.yexcr.2008.09.010

D. Miyamoto, A. Weinmaster, and G. , The many facets of Notch ligands, Oncogene, vol.27, pp.5148-5167, 2008.

S. Heuss, D. Ndiaye-lobry, E. Six, A. Israël, and F. Logeat, The intracellular region of Notch ligands Dll1 and Dll3 regulates their trafficking and signaling activity, Proceedings of the National Academy of Sciences, vol.105, issue.32, pp.11212-11217, 2008.
DOI : 10.1073/pnas.0800695105

URL : https://hal.archives-ouvertes.fr/pasteur-00336966

A. Rajan, A. Tien, C. Haueter, K. Schulze, and H. Bellen, The Arp2/3 complex and WASp are required for apical trafficking of Delta into microvilli during cell fate specification of sensory organ precursors, Nature Cell Biology, vol.122, issue.7, pp.815-824, 2009.
DOI : 10.1038/ncb1888

A. Tolia, D. Strooper, and B. , Structure and function of ??-secretase, Seminars in Cell & Developmental Biology, vol.20, issue.2, pp.211-218, 2009.
DOI : 10.1016/j.semcdb.2008.10.007

Y. Yan, N. Denef, and T. Schupbach, The Vacuolar Proton Pump, V-ATPase, Is Required for Notch Signaling and Endosomal Trafficking in Drosophila, Developmental Cell, vol.17, issue.3, pp.387-402, 2009.
DOI : 10.1016/j.devcel.2009.07.001

N. Gupta-rossi, E. Six, O. Lebail, F. Logeat, and P. Chastagner, Monoubiquitination and endocytosis direct ??-secretase cleavage of activated Notch receptor, The Journal of Cell Biology, vol.127, issue.1, pp.73-83, 2004.
DOI : 10.1074/jbc.273.20.12436

URL : https://hal.archives-ouvertes.fr/pasteur-00583271

D. Komander, M. Clague, and S. Urbe, Breaking the chains: structure and function of the deubiquitinases, Nature Reviews Molecular Cell Biology, vol.280, issue.8, pp.550-563, 2009.
DOI : 10.1038/nrm2731

A. Dirac, S. Nijman, T. Brummelkamp, and R. Bernards, Functional Annotation of Deubiquitinating Enzymes Using RNA Interference, Methods Enzymol, vol.398, pp.554-567, 2005.
DOI : 10.1016/S0076-6879(05)98045-2

A. Hinnebusch, eIF3: a versatile scaffold for translation initiation complexes, Trends in Biochemical Sciences, vol.31, issue.10, pp.553-562, 2006.
DOI : 10.1016/j.tibs.2006.08.005

M. Zhou, A. Sandercock, C. Fraser, G. Ridlova, and E. Stephens, Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3, Proceedings of the National Academy of Sciences, vol.105, issue.47, pp.18139-18144, 2008.
DOI : 10.1073/pnas.0801313105

M. Sharon, T. Taverner, X. Ambroggio, R. Deshaies, and C. Robinson, Structural Organization of the 19S Proteasome Lid: Insights from MS of Intact Complexes, PLoS Biology, vol.279, issue.8, 2006.
DOI : 10.1371/journal.pbio.0040267.t004

X. Ambroggio, D. Rees, and R. Deshaies, JAMM: A Metalloprotease-Like Zinc Site in the Proteasome and Signalosome, PLoS Biology, vol.419, issue.1, 2004.
DOI : 10.1371/journal.pbio.0020002.t001

V. Maytal-kivity, N. Reis, K. Hofmann, and M. Glickman, MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function, BMC Biochemistry, vol.3, issue.1, p.28, 2002.
DOI : 10.1186/1471-2091-3-28

R. Kopan, E. Schroeter, H. Weintraub, and J. Nye, Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain., Proceedings of the National Academy of Sciences, vol.93, issue.4, pp.1683-1688, 1996.
DOI : 10.1073/pnas.93.4.1683

D. Strooper, B. Annaert, W. Cupers, P. Saftig, P. Craessaerts et al., A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain, Nature, vol.398, issue.6727, pp.518-522, 1999.
DOI : 10.1038/19083

C. Brou, F. Logeat, N. Gupta, C. Bessia, and O. Lebail, A Novel Proteolytic Cleavage Involved in Notch Signaling, Molecular Cell, vol.5, issue.2, pp.207-216, 2000.
DOI : 10.1016/S1097-2765(00)80417-7

L. Shearwin-whyatt, D. Brown, F. Wylie, J. Stow, and S. Kumar, N4WBP5A (Ndfip2), a Nedd4-interacting protein, localizes to multivesicular bodies and the Golgi, and has a potential role in protein trafficking, Journal of Cell Science, vol.117, issue.16, pp.3679-3689, 2004.
DOI : 10.1242/jcs.01212

G. Cope, G. Suh, L. Aravind, S. Schwarz, and S. Zipursky, Role of Predicted Metalloprotease Motif of Jab1/Csn5 in Cleavage of Nedd8 from Cul1, Csn5 in cleavage of Nedd8 from Cul1, pp.608-611, 2002.
DOI : 10.1126/science.1075901

J. Mccullough, M. Clague, and S. Urbe, AMSH is an endosome-associated ubiquitin isopeptidase, The Journal of Cell Biology, vol.166, issue.4, pp.487-492, 2004.
DOI : 10.1038/nature01071

H. Scheel and K. Hofmann, Prediction of a common structural scaffold for proteasome lid, COP9-signalosome and eIF3 complexes, BMC Bioinformatics, vol.6, issue.1, p.71, 2005.
DOI : 10.1186/1471-2105-6-71

R. Verma, L. Aravind, R. Oania, W. Mcdonald, and J. Yates, Role of Rpn11 Metalloprotease in Deubiquitination and Degradation by the 26S Proteasome, Science, vol.298, issue.5593, pp.611-615, 2002.
DOI : 10.1126/science.1075898

S. Gastaldello, S. Hildebrand, O. Faridani, S. Callegari, and M. Palmkvist, A deneddylase encoded by Epstein???Barr virus promotes viral DNA replication by regulating the activity of cullin-RING ligases, Nature Cell Biology, vol.37, issue.4, pp.351-361, 2010.
DOI : 10.1038/ncb2035

C. Brooks, M. Li, M. Hu, Y. Shi, and W. Gu, The p53???Mdm2???HAUSP complex is involved in p53 stabilization by HAUSP, Oncogene, vol.303, issue.51, pp.7262-7266, 2007.
DOI : 10.1038/sj.onc.1210531

N. Popov, M. Wanzel, M. Madiredjo, D. Zhang, and R. Beijersbergen, The ubiquitin-specific protease USP28 is required for MYC stability, Nature Cell Biology, vol.23, issue.7, pp.765-774, 2007.
DOI : 10.1016/j.cell.2005.08.016

P. Chastagner, A. Israel, and C. Brou, Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains, EMBO reports, vol.18, issue.11, pp.1147-1153, 2006.
DOI : 10.1016/j.str.2005.07.015

URL : https://hal.archives-ouvertes.fr/pasteur-00162850

K. Lindsten, F. De-vrij, L. Verhoef, D. Fischer, and F. Van-leeuwen, Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation, The Journal of Cell Biology, vol.23, issue.3, pp.417-427, 2002.
DOI : 10.1021/bi00044a032

T. Honjo, The shortest path from the surface to the nucleus: RBP-Jkappa/Su(H) transcription factor, Genes to Cells, vol.1, issue.1, pp.1-9, 1996.
DOI : 10.1046/j.1365-2443.1996.10010.x

S. Minoguchi, Y. Taniguchi, H. Kato, T. Okazaki, and L. Strobl, RBP-L, a transcription factor related to RBP-Jkappa., Molecular and Cellular Biology, vol.17, issue.5, pp.2679-2687, 1997.
DOI : 10.1128/MCB.17.5.2679

E. Six, D. Ndiaye, G. Sauer, Y. Laabi, and R. Athman, The Notch Ligand Delta1 Recruits Dlg1 at Cell-Cell Contacts and Regulates Cell Migration, Journal of Biological Chemistry, vol.279, issue.53, pp.55818-55826, 2004.
DOI : 10.1074/jbc.M408022200

N. Gupta-rossi, L. Bail, O. Gonen, H. Brou, C. Logeat et al., Functional Interaction between SEL-10, an F-box Protein, and the Nuclear Form of Activated Notch1 Receptor, Journal of Biological Chemistry, vol.276, issue.37, pp.34371-34378, 2001.
DOI : 10.1074/jbc.M101343200

URL : https://hal.archives-ouvertes.fr/pasteur-00583295

G. Wu, S. Lyapina, I. Das, J. Li, and M. Gurney, SEL-10 Is an Inhibitor of Notch Signaling That Targets Notch for Ubiquitin-Mediated Protein Degradation, Molecular and Cellular Biology, vol.21, issue.21, pp.7403-7415, 2001.
DOI : 10.1128/MCB.21.21.7403-7415.2001

J. Aster, E. Robertson, R. Hasserjian, J. Turner, and E. Kieff, Oncogenic forms of Notch1 lacking either the primary binding site for RBP-Jk or nuclear localization sequences retain the ability to associate with RBP-Jk and activate transcription, J Biol Chem, vol.272, pp.11336-11343, 1997.

K. Takeyama, R. Aguiar, L. Gu, C. He, and G. Freeman, The BAL-binding Protein BBAP and Related Deltex Family Members Exhibit Ubiquitin-Protein Isopeptide Ligase Activity, Journal of Biological Chemistry, vol.278, issue.24, pp.21930-21937, 2003.
DOI : 10.1074/jbc.M301157200

S. Cayli, J. Klug, J. Chapiro, S. Fröhlich, and G. Krasteva, COP9 Signalosome Interacts ATP-dependently with p97/Valosin-containing Protein (VCP) and Controls the Ubiquitination Status of Proteins Bound to p97/VCP, Journal of Biological Chemistry, vol.284, issue.50, pp.34944-34953, 2009.
DOI : 10.1074/jbc.M109.037952

R. Groisman, J. Polanowska, I. Kuraoka, J. Sawada, and M. Saijo, The Ubiquitin Ligase Activity in the DDB2 and CSA Complexes Is Differentially Regulated by the COP9 Signalosome in Response to DNA Damage, Cell, vol.113, issue.3, pp.357-367, 2003.
DOI : 10.1016/S0092-8674(03)00316-7

B. Hetfeld, A. Helfrich, B. Kapelari, H. Scheel, and K. Hofmann, The Zinc Finger of the CSN-Associated Deubiquitinating Enzyme USP15 Is Essential to Rescue the E3 Ligase Rbx1, Current Biology, vol.15, issue.13, pp.1217-1221, 2005.
DOI : 10.1016/j.cub.2005.05.059

J. Mummery-widmer, M. Yamazaki, T. Stoeger, M. Novatchkova, and S. Bhalerao, Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi, Nature, vol.314, issue.7241, pp.987-992, 2009.
DOI : 10.1038/nature07936

S. Nijman, M. Luna-vargas, A. Velds, T. Brummelkamp, and A. Dirac, A Genomic and Functional Inventory of Deubiquitinating Enzymes, Cell, vol.123, issue.5, pp.773-786, 2005.
DOI : 10.1016/j.cell.2005.11.007

D. Komander, F. Reyes-turcu, J. Licchesi, P. Odenwaelder, and K. Wilkinson, Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains, EMBO reports, vol.10, issue.5, pp.466-473, 2009.
DOI : 10.1038/sj.onc.1211042

P. Zhu, W. Zhou, J. Wang, J. Puc, and K. Ohgi, A Histone H2A Deubiquitinase Complex Coordinating Histone Acetylation and H1 Dissociation in Transcriptional Regulation, Molecular Cell, vol.27, issue.4, pp.609-621, 2007.
DOI : 10.1016/j.molcel.2007.07.024

Y. Sato, A. Yoshikawa, A. Yamagata, H. Mimura, and M. Yamashita, Structural basis for specific cleavage of Lys???63-linked polyubiquitin chains, Nature, vol.96, issue.7211, pp.358-362, 2008.
DOI : 10.1038/nature07254

B. Sobhian, G. Shao, D. Lilli, A. Culhane, and L. Moreau, RAP80 Targets BRCA1 to Specific Ubiquitin Structures at DNA Damage Sites, Science, vol.316, issue.5828, pp.1198-1202, 2007.
DOI : 10.1126/science.1139516

E. Pick and L. Pintard, In the land of the rising sun with the COP9 signalosome and related Zomes. Symposium on the COP9 signalosome, Proteasome and eIF3, EMBO reports, vol.10, issue.4, pp.343-348, 2009.
DOI : 10.1073/pnas.0801313105

URL : https://hal.archives-ouvertes.fr/hal-00395632

S. Valente, G. Gilmartin, K. Venkatarama, G. Arriagada, and S. Goff, HIV-1 mRNA 3??? End Processing Is Distinctively Regulated by eIF3f, CDK11, and Splice Factor 9G8, Molecular Cell, vol.36, issue.2, pp.279-289, 2009.
DOI : 10.1016/j.molcel.2009.10.004

A. Csibi, K. Cornille, M. Leibovitch, A. Poupon, and L. Tintignac, The Translation Regulatory Subunit eIF3f Controls the Kinase-Dependent mTOR Signaling Required for Muscle Differentiation and Hypertrophy in Mouse, PLoS ONE, vol.5, issue.2, 2010.
DOI : 10.1371/journal.pone.0008994.s004

URL : https://hal.archives-ouvertes.fr/hal-01129600

J. Lee, A. Brauweiler, M. Rudolph, J. Hooper, and H. Drabkin, The TRC8 Ubiquitin Ligase Is Sterol Regulated and Interacts with Lipid and Protein Biosynthetic Pathways, Molecular Cancer Research, vol.8, issue.1, pp.93-106, 2010.
DOI : 10.1158/1541-7786.MCR-08-0491

J. Shi, J. Hershey, and M. Nelson, Phosphorylation of the eukaryotic initiation factor 3f by cyclin-dependent kinase 11 during apoptosis, FEBS Letters, vol.156, issue.6, pp.971-977, 2009.
DOI : 10.1016/j.febslet.2009.02.028

Z. Sha, L. Brill, R. Cabrera, O. Kleifeld, and J. Scheliga, The eIF3 Interactome Reveals the Translasome, a Supercomplex Linking Protein Synthesis and Degradation Machineries, Molecular Cell, vol.36, issue.1, pp.141-152, 2009.
DOI : 10.1016/j.molcel.2009.09.026

G. Hernández, M. Altmann, J. Sierra, H. Urlaub, D. Del-corral et al., Functional analysis of seven genes encoding eight translation initiation factor 4E (eIF4E) isoforms in Drosophila, Mechanisms of Development, vol.122, issue.4, pp.529-543, 2005.
DOI : 10.1016/j.mod.2004.11.011

J. Li and W. Li, A novel function of Drosophila eIF4A as a negative regulator of Dpp/BMP signalling that mediates SMAD degradation, Nature Cell Biology, vol.9, issue.12, pp.1407-1414, 2006.
DOI : 10.1128/MCB.22.6.1656-1663.2002

J. Warner and K. Mcintosh, How Common Are Extraribosomal Functions of Ribosomal Proteins?, Molecular Cell, vol.34, issue.1, pp.3-11, 2009.
DOI : 10.1016/j.molcel.2009.03.006

T. Brummelkamp, S. Nijman, A. Dirac, and R. Bernards, Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-??B, Nature, vol.424, issue.6950, pp.797-805, 2003.
DOI : 10.1038/nature01811

T. Brummelkamp, R. Bernards, and R. Agami, A System for Stable Expression of Short Interfering RNAs in Mammalian Cells, Science, vol.296, issue.5567, pp.550-553, 2002.
DOI : 10.1126/science.1068999

E. Schroeter, J. Kisslinger, and R. Kopan, Notch-1 signalling requires ligandinduced proteolytic release of intracellular domain, Nature, vol.393, pp.382-386, 1998.

F. Logeat, C. Bessia, C. Brou, O. Lebail, and S. Jarriault, The Notch1 receptor is cleaved constitutively by a furin-like convertase, Proceedings of the National Academy of Sciences, vol.95, issue.14, pp.8108-8112, 1998.
DOI : 10.1073/pnas.95.14.8108