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Abstract  

While NK cells in the mouse are thought to develop in the bone marrow, a small population 

of NK cells in the thymus has been shown to derive from a GATA-3 dependent pathway. 

Characteristically, thymic NK cells express CD127, few Ly49 molecules and lack CD11b. Since 

these NK cells develop in the thymus, the question of their relationship to the T cell lineage has 

been raised. Using several different mouse models, we find that unlike T cells, thymic NK cells are 

not the progeny of Rorc-expressing progenitors and do not express Rag2 or rearrange the TCRγ 

locus. We further demonstrate that thymic NK cells develop independently of the Notch signalling 

pathway, supporting the idea that thymic NK cells represent bona fide NK cells that can develop 

independently of all T cell precursors.  
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Introduction 

It is now recognized that the peripheral NK cell compartment harbors diverse subsets of 

mature NK cells consistent with specialized functions (1). The origin behind this NK cell diversity 

remains unclear but might involve microenvironmental cues influencing the terminal differentiation 

of NK cells in peripheral tissues as well as local developmental pathways that generate distinct NK 

cell subsets. While NK cell development primarily occurs in the bone marrow (BM) with mature 

NK cells subsequently seeding peripheral niches (1), we have recently identified a local GATA3-

dependent pathway of mouse NK cell development in the thymus generating NK cells with a 

distinct phenotype (CD127+CD11b-Ly49lo) and functional potential (higher cytokine secretion, 

lower cytotoxic potential (2)). Moreover, thymic NK cells are exported to the lymph nodes where 

they represent around 20% of the resident NK cell population (2).  

While the thymic environment harbors other non-T cell lineage cells (including 

hematopoietic precursors (HPC), B cells, and myeloid cells), the presence of a pathway of NK cell 

development in the thymus evokes the question of their relationship to T cells and/or T cell 

progenitors. For example, one study proposed that thymic NK cells actually represent NK-like γδ T 

cells (3), although this is inconsistent with the fact that thymic NK cells develop independently of 

Rag2 (2). The Takei laboratory reported TCRγ rearrangements in a large fraction of NK cells in the 

thymus and lymph nodes (4, 5) and suggested that thymic NK cells might share a precursor stage 

with T cells and thus represent failed T cell precursors (4). In addition, recent data showed that the 

population of NK cell progenitor cells (NKP) in the bone marrow encompasses cells with not only 

NK potential but T as well as NK/T bi-potent precursor cells (6). The relationship of thymic NK 

cells to classical NK cells, innate T lymphocytes (γδ T cells, NK-T cells) and mainstream αβ T cells 

remains unclear. 

Environmental cues coordinate with specific transcription factors to orchestrate lymphocyte 

development. Essential cytokines for NK development (including thymic NK cells) includes IL-15, 

while IL-7 is required for T cell development and thymic NK cells but not for BM and spleen NK 

cells (2, 7, 8). Concerning transcription factors, the Id2 repressor is required for NK cell 

development, but not for T cells, while Gata3 is necessary for T and thymic NK cells but impacts 

less on BM/spleen NK cell development (2, 9-11). Thus, the developmental requirements for 

thymic NK cells do not cleanly dissociate with either classical NK cells or T cells. Concerning the 

latter, critical signals are delivered by Notch1 that help specify the T cell fate and are reinforced by 

signals through the retinoic acid-related orphan receptor (ROR)γ (encoded by Rorc), following 

expression of the pre-TCR in committed pre-T cells (12). Here we assess the impact of these critical 
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T cell pathways on thymic NK cell development to clarify the relationship of these innate cells to T 

cell precursors and their progeny. 
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Materials and Methods (sharply limited) 

Mice 

C57BL/6J mice were purchased from Charles River. Rag2-GFP BAC transgenic, Mx-cre transgenic 

Rbpjf/f, and Mx-cre transgenic Notch1f/f, Rorc(t)-CreTG ROSA-YFP, CD3ε-/- and TCRβ-/- mice have 

been described previously (13-18). Mice were analyzed at 6-12 weeks of age. All experiments 

followed institutional guidelines (Animal Care and Use Committee of the Institut Pasteur) and were 

performed in accordance with French law or with the authorization and approval of the review 

board of the Veterinary Service from Canton de Vaud (Lausanne, Switzerland). 

 

Flow cytometry and Cell sorting 

Single-cell suspensions were prepared and stained for intracellular and cell surface proteins as 

described (2). Antibodies to Notch 1 (22E5.5) and Notch 2 (16F11) have been described (19). 

Stained single cell suspensions were acquired on a FACSCanto II (FACSDiva software 6.1; BD 

Biosciences) and analyzed using FlowJo software (Tree Star, Inc.). Cells were sorted on a 

FACSAria II cell sorter (BD Biosciences). Dead cells were excluded using Live/Death fixable Aqua 

cell stain (Invitrogen).  

 

PCR 

Single NK cells were sorted from CD3ε-/- mice (thymus: CD127+ cells; spleen: CD127- cells), and 

γδT cells from the thymus of TCRβ-/- mice as controls. Single-cell PCRs to detect the Vγ2-Jγ2 and 

Vγ4-Jγ1 rearrangements (according to the Heilig and Tonegawa nomenclature; ref 20) were 

performed as described (21).  

 

 

Bone marrow chimeras 

MX-cre Tg Rbpjf/f mice and MX-cre Tg Notch1f/f mice (both CD45.2) were injected 5 times at 2-

day intervals with 150µg of poly(I)-poly(C) (Sigma-Aldrich). BM cells (where the deletion of the 

corresponding floxed alleles were verified as described (14, 15); supplemental Figure 1) were 

mixed with wild-type BM (CD45.1) at a 1:1 ratio and injected i.v. into lethally irradiated C57Bl/6 

mice (CD45.1) to generate Rbpj- or Notch1-deficient BM chimeras. MX-cre-negative Rbpjf/f or 

Notch1f/f littermates were treated in the same way to generate control BM chimeras. Mice were 

analysed twelve weeks post-graft. 
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Results and Discussion 

Most thymic NK cells do not derive from Rorc-expressing precursors and do not express 

intracellular CD3ε 

The transcription factor Rorc is expressed by all developing CD4+CD8+ double-positive 

(DP) thymocytes (22). To identify whether thymic NK cells (identified as either CD3-NKp46+ or 

CD3-NK1.1+ cells) derive from Rorc-expressing committed T cell precursors, we used an in vivo 

cell fate-mapping approach (16). BAC transgenic mice expressing the Cre recombinase under the 

control of the Rorc regulatory elements (Rorc(t)-CreTG mice) were crossed to mice where the 

expression of a fluorescence reporter gene (YFP) inserted into the endogenous ROSA26 locus is 

prevented by a loxP-flanked transcriptional stop cassette (Rosa-YFP mice, (16)). Cre-mediated 

excision of the stop-cassette genetically marks all cells expressing Rorc as well as their progeny 

with YFP expression (16). Using this system, we found that less than 8% of NK cells in the thymus 

of adult mice were progeny of Rorc-expressing progenitors (Figure 1A and supplemental Figure 2) 

indicating that the vast majority of these cells do not derive from DP cells. Moreover, only a small 

percentage (less than 3%) of thymic NK cells expressed intracellular CD3ε (Figure 1B). These data 

are inconsistent with the idea that thymic NK cells represent ‘masquerading’ TCRαβ+ cells (3).  

 

Thymic NK cells do not express Rag2 and do not rearrange the TCRγ locus 

It was previously reported that a large proportion of CD127+ and CD127- NK cells from 

thymus and lymph nodes carry TCRγ rearrangements (4, 5) suggesting that they are derived from 

CD4-CD8- double negative (DN) T cell progenitors and might be the product of abortive early T 

cell development (4). DN T cell precursors can be subdivided into four subsets (DN1-4) based on 

their differential expression of CD44 and CD25 (Figure 2A and (23)). TCR rearrangements of the 

β, γ and δ chains occur at the DN2 and DN3 stages (24).	
  As these rearrangements depend on the 

presence of recombination activating genes (Rag)1 and Rag2, we used BAC transgenic mice 

expressing GFP under the Rag2 promoter (13), to assess Rag2 expression in early DN thymocytes 

and thymic NK cells. While 11% of DN1 cells, 80% of DN2 and all DN3 cells expressed high 

levels of GFP (Figure 2B), less than 1% of thymic NK cells were GFP+ (Figure 2B). Moreover, the 

level of GFP expression by thymic NK cells was considerably lower compared to GFP+ DN1 and 

DN2 cells (Figure 2B). These data indicate that essentially all thymic NK cells are not actively 

rearranging their antigen receptor loci, however, it can not be excluded that thymic NK cells might 

derive from Rag-expressing progenitors that have extinguished Rag expression. 

 Previous studies found at least 50% of thymic NK cells carried TCRγ rearrangements (4, 5) 

and these authors concluded that thymic NK cells derive from early T cell precursors that had 
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undergone TCRγ rearrangements. However, those analyses were made using in vitro expanded NK 

cell cultures isolated from thymus, lymph nodes or spleen (4, 5) and the possibility of a small 

number of contaminating mature T cells was not rigorously excluded. Moreover, when using 

freshly isolated splenic NK cell from B6 or in vitro expanded splenic NK cells from TCRβ-/-δ-/- 

double-deficient mice only very few NK cells (about 1%) were found to have TCRγ rearrangements 

(4, 5). We therefore sorted single Lin-NK1.1+CD127+ thymic NK cells from CD3ε-/- mice (to avoid 

mature T cell contamination) and directly performed single-cell PCR to detect Vγ2-Jγ2 or Vγ4-Jγ1 

rearrangements as these gene segments have been demonstrated to undergo the highest rate of 

rearrangements (25). Importantly, early T cell precursors from CD3ε-/- mice have been shown to 

undergo normal TCR rearrangements (17). We found 1/159 thymic NK cells had both Vγ2-Jγ2 and 

Vγ4-Jγ1 rearrangements, while none of the sorted thymic NK cells carried either only Vγ2-Jγ2 or 

only Vγ4-Jγ1 rearrangements. This represents a frequency of less than 1%, which is in agreement 

with the absence of Rag2 expression by thymic NK cells (Figure 2). As a control, we found that 

30/30 single γδ T cells sorted from TCRβ-/- mice and 0/22 sorted splenic CD127- NK cells from 

CD3ε-/- mice carried either Vγ2-Jγ2 and/or Vγ4-Jγ1 rearrangements as determined side-by-side in 

the same single-cell PCR assays. Collectively, these data show that thymic NK cells do not express 

Rag2 and do not rearrange the TCRγ locus, which is inconsistent with their development from 

aborted T cell precursors that had previously expressed Rag genes. 

 

Thymic NK cells develop in the absence of Notch signalling  

The transcription factor Notch plays an essential role in T cell development by instructing 

early lymphoid progenitors to adopt a T versus B cell fate (26). Notch signaling is critically 

dependent on the transcription factor RBPJ (26) and the absence of Notch1 or RBPJ has been 

shown to result in a complete absence of T cells (14, 15)	
  due to an absence of the earliest T cell 

progenitors (ETPs) (8). We hypothesized that if thymic NK cells would derive from ETPs they 

should equally depend on Notch signalling for their development. We first determined whether 

thymic NK cells expressed any of the 4 Notch family members. We found that thymic NK cells as 

well as CD25+ DN thymocytes expressed Notch 1 and Notch 2 while only the latter population 

expressed Notch 3 (Figure 3A and data not shown). The expression of Notch-proteins by splenic 

CD127-NK cells was similar to that observed on thymic NK cells (Figure 3A and data not shown). 

Thymic NK cells and CD25+ DN thymocytes expressed similar levels of Notch 2 at the cell surface 

while Notch 1 was expressed at around 10-fold higher levels by CD25+ DN thymocytes than by 

thymic NK cells (Figure 3A). These data suggested that thymic NK cells might derive from a Notch 

1 and 2 expressing ETP. To assess the role for Notch signalling in thymic NK cell development we 
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analyzed RBPJ-deficient BM chimeras (14). Among the RBPJ-deficient cells (CD45.2+) in the 

spleen of RBPJ-deficient BM chimeras, we observed an absence of T cells and marginal zone B 

cells, as expected ((14, 26); Supplemental Figure 3A and B). The numbers of splenic RBPJ-

deficient and control CD127-CD3-NKp46+ NK cells were comparable in the respective BM 

chimeras (Rbpj-/- NK cells: 1.4*105 ± 7.5*104 cells versus controls: 2.2*105 ± 105 NK cells; p=0,35) 

and the distribution of donor-derived splenic NK cell subsets, as defined by the differential 

expression of CD11b versus CD27, was not statistically significantly different between controls and 

mutants (data not shown). While thymic cellularity was comparable in both types of BM chimeras 

(Rbpj-/- : 4.2*107 ± 3.3*107 versus controls: 3.5*107 ± 2.1*107) CD45.2 cells were clearly reduced 

in the absence of RBPJ (Rbpj-/- cells: 9.8*104 ± 2.6*104 versus controls: 2.1*106 ± 2.9*106). 

Nevertheless, thymic NK cells were present in normal percentages among total thymocytes when 

compared to control BM chimeras (Figure 3B) and their phenotype (Figure 3C) and absolute 

numbers (Figure 3D) were unaltered in the absence of RBPJ. We found no statistically significant 

difference in the frequency of CD127+ cells among gated CD3-NKp46+ thymocytes when 

comparing donor-derived cells (controls to Rbpj-/-: p>0.4), endogenous cells (control BM chimeras 

to Rbpj-/- BM chimeras: p>0.4) or donor-derived to endogenous cells (control: p>0.2; Rbpj-/-: 

p>0.5). Similar results were obtained using Notch1-deficient BM chimeras (data not shown). While 

CD127+ NK cells can be generated from BM NKPs and ETPs in vitro using co-cultures with OP9 

or OP9/DL1 cells (the latter expressing the Notch-ligand DL1;(6)), our results suggest that Notch 

signals are not mandatory for thymic NK cell development in vivo. In conclusion, our data show 

that the Notch pathway dissociates development of thymic NK cells from early T cell precursors in 

vivo.  

 

Concluding remarks 

Our data clearly demonstrate that the vast majority of thymic NK cells do not belong to the 

T cell lineage. Although thymic NK cells can develop in the absence of signals essential for T cell 

development, it remains possible that thymic NK cells may derive from thymic seeding of the 

recently described early bi-potent NK/T progenitor present in the bone marrow (6). In contrast, 

DN2 thymocytes, while exhibiting NK cell potential in different experimental systems (27), appear 

to represent only a marginal substrate for the development of thymic NK cells, at least under 

physiologic conditions, as the latter can develop in absence of all T cell precursors and show little 

evidence of antigen-receptor rearrangements.  

Collectively, our data indicate that thymic NK cells represent bona fide NK cells and are 

consistent with the notion that peripheral NK cell diversity is not only a consequence of mature NK 
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cell differentiation within various tissue microenvironments/under the influence of issue-derived 

factors but also via the local generation of tissue-resident/specific NK cells. 
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Figure Legends 

 

Figure 1. Rorc expression ‘fate mapping’ and intracellular CD3ε expression by T cells and thymic 

NK cells. A) Expression of YFP by CD3+NKp46- (black line) and CD3-NKp46+ thymocytes 

(shaded grey) from Rorc(t)-CreTG ROSA-YFP mice. B) Viable thymocytes from adult C57BL/6 

mice were stained with the indicated antibodies (left). Expression of intracellular CD3ε versus 

NK1.1 (middle) on gated cells as indicated on the left. Percentages indicate the frequencies of the 

gated cells. 

 

Figure 2. Rag2-GFP expression by double-negative thymocytes and thymic NK cells. A) CD44 

versus CD25 profile on gated CD3-CD4-CD8-Gr-1-CD19- thymocytes from adult Rag2-GFP BAC 

transgenic mice. The percentages give the frequencies of the double-negative (DN) subsets (DN1: 

CD44+CD25-; DN2: CD44+CD25+; DN3: CD44-CD25+; DN4: CD44-CD25-). B) GFP versus 

NK1.1 expression as detected in the different DN subsets (as indicated in A).  

 

Figure 3. Thymic NK cells develop in the absence of Notch signaling. A) Expression of Notch 1 

(shaded grey) and Notch 2 (grey line) by CD3-CD4-CD8-Gr-1-CD19-CD122+NKp46+CD127+ (left) 

and CD3-CD4-CD8-Gr-1-CD19-CD122-CD25+ thymocytes (middle) and CD3-CD4-CD8-Gr-1-

CD19-CD122-NKp46+CD127- splenocytes (right). Controls are in black (shaded). B) CD127 versus 

CD11b profiles of gated CD45.2+NKp46+CD3- thymocytes from the indicated BM chimeras. 

Frequency of CD127+ cells is indicated. Results of one representative experiment out of three are 

shown. C) Chimerism among CD3-NKp46+ thymocytes from the different BM chimeras (left: 

control; right: Rbpj-deficient) 12 weeks after reconstitution is given in percentages. D) Absolute 

numbers (mean and s.d.) of CD45.2+CD127+thymic NK cells in controls (littermate n=3) and Rbpj-/-

BM chimeras (n=3). p>0,4. NS=not statistically significant. 
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