S. H. Kappe, M. J. Gardner, S. M. Brown, and J. Ross, Exploring the transcriptome of the malaria sporozoite stage, Proceedings of the National Academy of Sciences, vol.98, issue.17, pp.9895-9900, 2001.
DOI : 10.1073/pnas.171185198

Y. Belkaid, J. G. Valenzuela, S. Kamhawi, and E. Rowton, Delayed-type hypersensitivity to Phlebotomus papatasi sand fly bite: An adaptive response induced by the fly?, Proceedings of the National Academy of Sciences, vol.97, issue.12, pp.6704-6709, 2000.
DOI : 10.1073/pnas.97.12.6704

J. G. Valenzuela, Y. Belkaid, M. K. Garfield, and S. Mendez, Vaccine Targeting Vector Antigens, The Journal of Experimental Medicine, vol.62, issue.3, pp.331-342, 2001.
DOI : 10.4049/jimmunol.166.8.5122

J. G. Valenzuela, I. M. Francischetti, V. M. Pham, M. K. Garfield, and J. M. Ribeiro, Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito, Insect Biochemistry and Molecular Biology, vol.33, issue.7, pp.717-732, 2003.
DOI : 10.1016/S0965-1748(03)00067-5

J. G. Valenzuela, V. M. Pham, M. K. Garfield, I. M. Francischetti, and J. M. Ribeiro, Toward a description of the sialome of the adult female mosquito Aedes aegypti, Insect Biochemistry and Molecular Biology, vol.32, issue.9, pp.1101-1122, 2002.
DOI : 10.1016/S0965-1748(02)00047-4

J. M. Ribeiro, R. Charlab, V. M. Pham, M. Garfield, and J. G. Valenzuela, An insight into the salivary transcriptome and proteome of the adult female mosquito Culex pipiens quinquefasciatus, Insect Biochemistry and Molecular Biology, vol.34, issue.6, pp.543-563, 2004.
DOI : 10.1016/j.ibmb.2004.02.008

I. Rosinski-chupin, J. Briolay, P. Brouilly, and S. Perrot, SAGE analysis of mosquito salivary gland transcriptomes during Plasmodium invasion, Cellular Microbiology, vol.175, issue.3, pp.708-724, 2007.
DOI : 10.1046/j.1365-2583.2002.00360.x

URL : https://hal.archives-ouvertes.fr/hal-00176474

D. E. Kalume, M. Okulate, J. Zhong, and R. Reddy, A proteomic analysis of salivary glands of femaleAnopheles gambiae mosquito, PROTEOMICS, vol.8, issue.14, pp.3765-3777, 2005.
DOI : 10.1002/pmic.200401210

V. A. Schevchenko, E. A. Akayeva, I. M. Yeliseyeva, and T. V. Yelisova, Human cytogenetic consequences of the Chernobyl accident, Mutation Research/Environmental Mutagenesis and Related Subjects, vol.361, issue.1, pp.29-34, 1996.
DOI : 10.1016/S0165-1161(96)90226-5

W. H. Tang, B. R. Halpern, I. V. Shilov, and S. L. Seymour, Discovering Known and Unanticipated Protein Modifications Using MS/MS Database Searching, Analytical Chemistry, vol.77, issue.13, pp.3931-3946, 2005.
DOI : 10.1021/ac0481046

R. Vitorino, M. J. Lobo, A. J. Ferrer-correira, and J. R. Dubin, Identification of human whole saliva protein components using proteomics, PROTEOMICS, vol.4, issue.4, pp.1109-1115, 2004.
DOI : 10.1002/pmic.200300638

E. C. Borges, E. M. Machado, E. S. Garcia, and P. Azambuja, Trypanosoma cruzi: Effects of infection on cathepsin D activity in the midgut of Rhodnius prolixus, Experimental Parasitology, vol.112, issue.2, pp.130-133, 2006.
DOI : 10.1016/j.exppara.2005.09.008

T. Saravanan, C. Weise, D. Sojka, and P. Kopacek, Molecular cloning, structure and bait region splice variants of ??2-macroglobulin from the soft tick Ornithodoros moubata, Insect Biochemistry and Molecular Biology, vol.33, issue.8, pp.841-851, 2003.
DOI : 10.1016/S0965-1748(03)00083-3

F. Oduol, J. Xu, O. Niare, R. Natarajan, and K. D. Vernick, Genes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria, Proceedings of the National Academy of Sciences, vol.97, issue.21, pp.11397-11402, 2000.
DOI : 10.1073/pnas.180060997

E. S. Garcia, C. B. Mello, P. Azambuja, and J. M. Ribeiro, Rhodnius prolixus: Salivary Antihemostatic Components Decrease with Trypanosoma rangeli Infection, Experimental Parasitology, vol.78, issue.3, pp.287-293, 1994.
DOI : 10.1006/expr.1994.1030

E. Calvo, B. J. Mans, J. F. Andersen, and J. M. Ribeiro, Function and Evolution of a Mosquito Salivary Protein Family, Journal of Biological Chemistry, vol.281, issue.4, pp.1935-1942, 2006.
DOI : 10.1074/jbc.M510359200

M. Hardt, H. E. Witkowska, S. Webb, and L. R. Thomas, Assessing the Effects of Diurnal Variation on the Composition of Human Parotid Saliva:?? Quantitative Analysis of Native Peptides Using iTRAQ Reagents, Analytical Chemistry, vol.77, issue.15, pp.4947-4954, 2005.
DOI : 10.1021/ac050161r

K. Aggarwal, L. H. Choe, and K. H. Lee, Shotgun proteomics using the iTRAQ isobaric tags, Briefings in Functional Genomics and Proteomics, vol.5, issue.2, pp.112-120, 2006.
DOI : 10.1093/bfgp/ell018

N. G. Haghighat and L. Ruben, Purification of novel calcium binding proteins from Trypanosoma brucei: properties of 22-, 24- and 38-kilodalton proteins, Molecular and Biochemical Parasitology, vol.51, issue.1, pp.99-110, 1992.
DOI : 10.1016/0166-6851(92)90205-X

A. Pay, E. Heberle-bors, and H. Hirt, An alfalfa cDNA encodes a protein with homology to translationally controlled human tumor protein, Plant Molecular Biology, vol.88, issue.3, pp.501-503, 1992.
DOI : 10.1007/BF00023399

L. Bini, H. Heid, S. Liberatori, and G. Geier, Two-dimensional gel electrophoresis ofCaenorhabditis elegans homogenates and identification of protein spots by microsequencing, Electrophoresis, vol.18, issue.3-4, pp.557-562, 1997.
DOI : 10.1002/elps.1150180337

J. Bhisutthibhan, X. Q. Pan, P. A. Hossler, and D. J. Walker, The Plasmodium falciparum Translationally Controlled Tumor Protein Homolog and Its Reaction with the Antimalarial Drug Artemisinin, Journal of Biological Chemistry, vol.273, issue.26, pp.16192-16198, 1998.
DOI : 10.1074/jbc.273.26.16192

S. R. Sturzenbaum, P. Kille, and A. J. Morgan, Identification of heavy metal induced changes in the expression patterns of the translationally controlled tumour protein (TCTP) in the earthworm Lumbricus rubellus, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1398, issue.3, pp.294-304, 1998.
DOI : 10.1016/S0167-4781(98)00077-3

M. Kim, Y. Jung, K. Lee, and C. Kim, Identification of the calcium binding sites in translationally controlled tumor protein, Archives of Pharmacal Research, vol.3, issue.6, pp.633-636, 2000.
DOI : 10.1007/BF02975253

S. M. Macdonald, T. Rafnar, J. Langdon, and L. M. Lichtenstein, Molecular identification of an IgE-dependent histamine-releasing factor, Science, vol.269, issue.5224, pp.688-690, 1995.
DOI : 10.1126/science.7542803

J. T. Schroeder, L. M. Lichtenstein, and S. M. Macdonald, An immunoglobulin E-dependent recombinant histamine-releasing factor induces interleukin-4 secretion from human basophils, Journal of Experimental Medicine, vol.183, issue.3, pp.1265-1270, 1996.
DOI : 10.1084/jem.183.3.1265

U. A. Bommer and B. J. Thiele, The translationally controlled tumour protein (TCTP), The International Journal of Biochemistry & Cell Biology, vol.36, issue.3, pp.379-385, 2004.
DOI : 10.1016/S1357-2725(03)00213-9

A. Mulenga and A. F. Azad, The Molecular and Biological Analysis of Ixodid Ticks Histamine Release Factors, Experimental and Applied Acarology, vol.210, issue.3-4, pp.215-229, 2005.
DOI : 10.1007/s10493-005-3261-8

A. Mulenga, K. R. Macaluso, J. A. Simser, and A. F. Azad, The American dog tick, Dermacentor variabilis, encodes a functional histamine release factor homolog, Insect Biochemistry and Molecular Biology, vol.33, issue.9, pp.911-919, 2003.
DOI : 10.1016/S0965-1748(03)00097-3

K. V. Rao, L. Chen, M. Gnanasekar, and K. Ramaswamy, Cloning and Characterization of a Calcium-binding, Histamine-releasing Protein from Schistosoma mansoni, Journal of Biological Chemistry, vol.277, issue.34, pp.31207-31213, 2002.
DOI : 10.1074/jbc.M204114200

J. A. Irving, R. N. Pike, A. M. Lesk, and J. C. Whisstock, Phylogeny of the Serpin Superfamily: Implications of Patterns of Amino Acid Conservation for Structure and Function, Genome Research, vol.10, issue.12, pp.1845-1864, 2000.
DOI : 10.1101/gr.GR-1478R

G. K. Christophides, E. Zdobnov, C. Barillas-mury, and E. Birney, Immunity-Related Genes and Gene Families in Anopheles gambiae, Science, vol.298, issue.5591, pp.159-165, 2002.
DOI : 10.1126/science.1077136

S. Hu, Y. Xie, P. Ramachandran, O. Loo, and R. R. , Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry, PROTEOMICS, vol.4, issue.6, pp.1714-1728, 2005.
DOI : 10.1002/pmic.200401037

B. Arca, F. Lombardo, J. G. Valenzuela, and I. M. Francischetti, An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae, Journal of Experimental Biology, vol.208, issue.20, pp.3971-3986, 2005.
DOI : 10.1242/jeb.01849

C. Hirtz, F. Chevalier, D. Centeno, and J. C. Egea, Complejidad del proteoma de la saliva humana, Journal of Physiology and Biochemistry, vol.21, issue.3, pp.469-480, 2005.
DOI : 10.1007/BF03168453

E. Calvo, A. G. Debianchi, A. A. James, and O. Marinotti, The major acid soluble proteins of adult female Anopheles darlingi salivary glands include a member of the D7-related family of proteins, Insect Biochemistry and Molecular Biology, vol.32, issue.11, pp.1419-1427, 2002.
DOI : 10.1016/S0965-1748(02)00062-0