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Abstract 

 Glycosylphosphatidylinositol (GPI) membrane anchors of Plasmodium falciparum 

surface proteins are thought to be important factors contributing to malaria pathogenesis, and 

anti-GPI antibodies have been suggested to provide protection by neutralizing the toxic 

activity of GPIs. In this study, IgG responses against P. falciparum GPIs and a baculovirus 

recombinant MSP1p19 antigen were evaluated in two distinct groups of 70 patients each, who 

were hospitalized with malaria. In both groups, anti-GPI IgGs were found to be significantly 

lower in patients with confirmed cerebral malaria compared to those with mild malaria, or 

immune asymptomatic individuals (P <0.01). In contrast, a particular marker of the anti-

parasite immunity, as monitored by the anti-MSP1p19 IgG response, was similar in all 

categories of individuals, although significantly lower in the subgroup having a fatal outcome 

to cerebral malaria. These results are consistent with a potential anti-toxin role for anti-GPI 

antibodies associated with protection against cerebral malaria. 
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antibody response; cerebral malaria; protection. 



 

3 

1.Introduction 

 

 Many clinical manifestations of P. falciparum infection are caused by a complex 

cascade of events triggered during schizont rupture. Glycosylphosphatidylinositol (GPI) 

anchor structures are considered to be important parasite toxin candidates that could 

contribute to immunopathological events leading to the development of severe malaria. The 

patho-physiological effects of parasite GPIs have been attributed to their ability to induce 

the production of proinflammatory cytokines in the host, including tumor necrosis factor 

(TNF-), interleukin-1 (IL1), nitric oxide (NO), and interferon (IFN-) [1-4].  Additionally, 

Plasmodium GPIs have been proposed to mediate hypoglycemia by mimicking the activity 

of insulin [5].  

 GPIs are ubiquitous in eukaryotes, and are primarily involved in anchoring certain cell 

surface proteins to plasma membranes. Compared to animal cells, GPIs are abundantly 

expressed in various parasite species including Plasmodium, Trypanosoma, and Leishmania, 

and these organisms contain large pools of free GPIs that are not attached to proteins [6]. 

Unlike protein anchored forms, free GPIs are not masked on cell surfaces, and therefore are 

more accessible for triggering innate immune responses [7], including pro-inflammatory 

cytokine secretion [8]. Although the physiological functions of the GPIs remain poorly 

understood, it appears likely that the parasites use GPI bioactivity to stimulate host immune 

responses for their own benefits. However, uncontrolled stimulation of the innate immune 

system is deleterious to host, and that can lead to severe clinical symptoms [7].  

 Since individuals living in areas of high malaria transmission have acquired immunity to 

malaria pathogenesis, anti-GPI antibodies have been proposed as mediators of malaria “anti-

disease” immunity. Several studies have addressed the question of the protective role of anti-

GPI antibodies [8-11]. In malaria endemic areas, anti-GPI IgG is produced in an age-

dependent manner, correlating with the cumulative age-related acquisition of protective 
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immunity to malaria. It has also been observed that antibodies to GPIs are predominantly of 

the IgG3 subclass and are rapidly boosted in response to infection, but they are short lived [9-

12]. While a recent study has shown that anti-GPI antibodies are significantly higher in 

children with asymptomatic infections compared to those exhibiting clinical symptoms [9, 10, 

13], the observed differences were not statistically significant and there is clearly a need for 

more controlled studies.   

 In this cross-sectional study, we have investigated the potential protective role of P. 

falciparum anti-GPI IgG responses in malaria pathogenesis, in individuals from an urban area 

presenting at two hospitals in Dakar, Senegal with symptoms of cerebral malaria. Two sets of 

distinct, well-defined groups of patients with confirmed cerebral malaria were recruited in two 

consecutive timeframes. In parallel we measured the levels of IgG specific for baculovirus 

recombinant MSP1p19, the conserved 19 kDa C-terminal fragment of the 200-kDa major 

merozoite surface protein 1, which is anchored to the parasite surface by a GPI moiety. During 

merozoite invasion of erythrocytes, a major portion of N-terminal MSP1 is proteolytically 

cleaved, leaving MSP1p19 and its GPI anchor intact that are carried into newly invaded 

erythrocytes [14]. Antibody responses to PfMSP1p19 have been extensively studied and 

shown to be associated with clinical immunity in children and adults [15, 16]. MSP1p19 is 

known to induce an effective P. falciparum anti-parasite immune response by inducing 

antibodies that interfere with the merozoite invasion process [17]. The baculovirus expressed 

MSP1p19 antigen used in this study [18] is strongly recognized by the sera of infected 

individuals, and IgG responses were shown to be significantly associated with delayed 

infection following drug cure [19], and with clinical protection [20]. Our data show that, in 

both study groups, patients with cerebral malaria had significantly lower levels of anti-GPI 

antibodies compared to individuals with mild or asymptomatic malaria. 
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2. Materials and methods 

 

2.1. Sample collection and study population 

 Subjects were patients living in the hypoendemic urban area of Dakar who were treated 

at Principal and LeDantec Hospitals, Dakar. In Dakar, over 2 million people seasonally 

receive an average of 0.5 infective bite per individual per year, with highly variable densities 

of vector anopheline mosquitoes [21]. A mean incidence of 2.4% of clinical accesses (26 

cases out of 1067) were observed [13]. Blood samples collected for biological investigations 

from patients hospitalized for acute symptoms of malaria at different periods of time during 

and after the transmission season (September to December) were used. Controls consisted of 

samples from individuals living in Ndiop, a mesoendemic area of transmission, who are 

resistant to malaria pathogenesis, and were either asymptomatic or presented only mild 

symptoms such as transient fever and low parasitemia throughout a longitudinal follow-up 

carried out for several years [22]. In the Ndiop project, the longitudinal follow-up protocol 

was renewed yearly by assembling the villagers, and informed consent was obtained from all 

participants, their parents or guardians. The protocols were approved by the Ethics Committee 

of the Ministry of Health of Senegal. 

 The first study-group consisted of 70 hospitalized “adults” (≥13 years old, and not 

treated in the pediatric intensive care facilities). In this group, 35 patients had confirmed 

cerebral malaria and recovered with no sequelae (mean age 28 years, sampled in 1998-1999), 

and 35 adults hospitalized for “mild” malaria (mean age 31.7 years, sampled in November-

December 1999). The immune controls for this study-group consisted of 35 adults and 

children aged 6 to 70 years (mean age 24.5 years) from Ndiop. These individuals were 

sampled in 1998 following the transmission season (with a cumulated entomological 

inoculation rate of 5.3 infective bites per individual). In these three groups, there was no 

significant difference in the age distribution.  
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 The second study group consisted of 70 patients hospitalized with cerebral malaria, 

sampled from November 2000 to December 2001. Of these, 24 were aged 13 to 63 years 

(mean age 31 years), 28 were 2 to 12 years old (mean age 6.8 years) with confirmed cerebral 

malaria but recovered, and 18 adults and children 2.6 to 63 years old had a fatal outcome to 

cerebral malaria (mean 20.6 years). The controls for this group were: i) 63 matched 

individuals from Ndiop sampled in November 2001, including adults and children from 4 to 

65 years (mean 19.4 years) with a cumulative entomological inoculation rate of 80 infective 

bites; ii) 30 individuals treated for “mild” malaria at the health centre of Dakar (6 to 46 years, 

mean 17.3 years); iii) 47 uninfected individuals (2 to 62 years, mean 20.6 years) living in 

Dakar, sampled in the context of routine biological analyses carried out at the hospital during 

the transmission period. In these groups, there was no significant difference in the age 

distribution.  

 After collection of blood samples, red blood cells were separated by centrifugation, and 

plasma stored at -20°C until used. Each set of samples has been grouped and analyzed 

separately. 

 

2.2. Antigens and ELISA procedure  

 GPIs were isolated and purified by HPLC as described [9]. Recombinant MSP1p19 

(Palo Alto allele), was produced in Trichoplusia ni insect cells (High Five, Invitrogen) 

infected with recombinant baculovirus and purified by metalloaffinity chromatography [23]. 

GPIs were dissolved in methanol and 50 µl per well (2 ng GPI) was transferred to flat-

bottomed Immulon-4 ninety six-well microtiter plates (Dynatech, Springfield, VA). Plates 

were dried at 37
o
C and blocked with Phosphate-buffered saline containing 5% BSA (PBS-

BSA). Microtiter plates were coated with 100 µl per well of MSP1p19 at a concentration of 

0.5 µg/ml.  Plasma samples were diluted 1:100 in PBS with 1% BSA /0.05% Tween 20, and 

ELISAs were performed as described previously [9, 19, 24]. 
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 The results are expressed as OD ratios, i.e., ODsample/ODnegative control. The 

negative control was pooled plasma from Europeans not exposed to malaria. Positive 

responders were individuals with OD ratios > 2 (approximate mean OD + 2 SD of naive 

controls) [19, 24]. For positive controls, ODs were ~0.45 (OD ratio of ~6) and ~1.6 (OD ratio 

of ~11) for GPI and MSP1p19, respectively.  

 

2.3. Statistical analysis  

 Comparisons of antibody levels between different groups were done by the Mann-

Whitney rank test for non-normally distributed unpaired data. The Wilcoxon signed rank test 

and the Spearman rank correlation test was used for paired data. The exact Fisher's test was 

used to compare between groups (
2
). P values <0.05 were considered significant. Statistical 

analyses were performed using Statview 5.0® software (SAS Institute, Cary, NJ). 

 

3. Results  

 

3.1. IgG responses to GPI and MSP1p19 in the first study group  

 As summarized in Table 1, MSP1p19 was strongly recognized by all patients (94-100% 

responders) with an OD ratio > 2. As shown in Fig. 1a, there were similar levels of MSP1p19 

specific IgG in all groups, including those with asymptomatic (AM, 9.1 ± 4 OD ratio), mild 

(MM, 7.7 ± 2.1), or cerebral malaria (CM, 7.2 ± 2.5). In contrast, as shown on Fig. 1b, the 

anti-GPI IgG levels were significantly lower in individuals with CM (1.7 ± 0.8) compared to 

those exhibiting AM and MM (3.2 ± 3; 2.6 ± 3.3 OD ratio, respectively) (P <0.01). The 

prevalence of responders was significantly lower in CM compared with AM (global test: 
2
 = 

5.51; P = 0.02). Interestingly, differences in serum antibody levels between MM and CM 
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groups was detectable only for GPIs but not for several P. falciparum recombinant protein 

antigens including MSP1p19 (Fig. 1a, and data not shown).  

 We found a significant correlation between IgG responses against MSP1p19 and GPI 

only in malaria-protected individuals (P = 0.08, Rho = 0.47). The levels of IgGs against GPIs 

and MSP1p19 were age-dependent only in Ndiop villagers (P = 0.01, rho = 0.38 and P 

<0.001, Rho = 0.64, respectively). This is in agreement with the results of previous studies 

showing that the anti-GPI IgG responses increased with age, along with cumulative immune 

responses in individuals continuously exposed to P. falciparum [11]. 

 

3.2. IgG responses to GPI and MSP1p19 in the second study group  

 As in the first group, MSP1p19 was strongly recognized by all categories of individuals 

(71-87% positive responders), except by the urban negative controls (Table 1). However, 

there were no significant differences in anti-MSP1p19 antibody levels or prevalence in 

patients with cerebral malaria compared to those with mild malaria or immune individuals 

living in Ndiop, although all were significantly higher than uninfected individuals from an 

urban setting (figure 2a, P < 0.001). In contrast, anti-GPI IgG levels were significantly 

different in these three categories of patients; low levels in urban uninfected controls to high 

levels in malaria-protected individuals. Patients with cerebral malaria had slightly higher 

levels of anti-GPI IgGs compared to controls (P = 0.008), but significantly lower than in 

Ndiop villagers (P = 0.0004) (Fig. 2b). AM and MM sera showed similar prevalence and 

levels of IgG responses to GPI. Of note, anti-GPI IgG levels in CM tended to be lower than 

for MM, but were not statistically significant, in contrast to the incidence of responders, 

which was significantly lower in CM compared to MM (global test: 
2
 = 4.76; P = 0.03). This 

intermediary result observed with the MM group was probably related to the limited number 

of patients.  
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 In addition, as observed in the first study group, similar relationships between IgG 

responses against GPIs, MSP1p19 and age were found. As shown in Fig. 3, anti-GPI and anti-

MSP1p19 antibody responses and age increased co-linearly in Ndiop villagers, exhibiting age-

dependent cumulative immune responses (P<0.001, Rho around 0.44), but not in patients 

suffering from cerebral malaria. 

 Importantly, in the group of hospitalized individuals, a comparison of IgG responses 

specific for MSP1p19 (figure 2c) or GPI (figure 2d) in patients who recovered from cerebral 

malaria versus those who had fatal outcomes indicated that the anti-GPI IgG levels were not 

substantially different. However, in fatal cases, there was a significantly lower level of anti-

MSP1p19 antibody responses (mean OD ratio of 4.7) for the 50% of positive responders 

(P=0.012 and global test: 
2
 = 5.45; P = 0.02). 

 

4. Discussion 

 

 In this study, we have analyzed anti-GPI IgG responses in individuals living in an urban 

area of low endemicity, who developed cerebral malaria following P. falciparum infection. 

Two groups of patients (CM and AM), considered to be non-immune or partially immune, 

were sampled from the same location during different time periods, and categorized on the 

basis of the clinical outcomes.  These individuals, regardless of age and exposure to infective 

bites, were at risk for clinical episodes, and shared similar observable clinical outcomes of 

cerebral malaria, well documented and sharing an adequate follow-up and treatments in the 

intensive care unit of Dakar’s hospitals. Recruitment was limited to the transmission season 

and restricted by the capacity of the intensive care facilities, requiring a cumulative enrollment 

during two consecutive seasons to collect an adequate number of comparable samples. Indeed, 

there was a substantial heterogeneity in such recruitment, as the individual medical care and 
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history of infection is not totally documented before hospitalization. In this line we conducted 

two independent studies.  

 A second category of individuals living in the mesoendemic village of Ndiop, who had 

acquired natural immunity (AM) in an age-dependent manner by repeated exposure, was 

included for comparison with CM and MM groups. Children from Ndiop were known to have a 

substantially higher degree of anti-malarial immunity than older adults living in Dakar (24, 26). 

Previous data from longitudinal studies showed similar antibody responses against conserved 

antigens, including MSP1, PfEMP3 and Pf332, when measured during consecutive years, at 

similar time periods (before or after the transmission season). Thus, such well-defined samples 

were considered to be relevant "immune" controls for antibody responses to the antigens 

investigated in this study, despite the different geographical settings (1, 12, 14-16). 

 The data consistently showed that, in both study groups, individuals who developed 

cerebral malaria had markedly lower levels of anti-GPI antibodies compared to those who had 

asymptomatic infections or mild symptoms. This suggests that cerebral malaria outcomes is 

associated with low levels of anti-GPI IgGs, possibly resulting in insufficient anti-GPI 

neutralizing activity. In contrast, there was no significant association of anti-MSP1p19 

antibodies in these three categories of individuals. This may be related to differences in the 

kinetics of the production of antibodies against GPI and MSP1p19. Glycolipids are generally 

poor antigens compared to proteins and therefore, the anti-GPI antibody response may require 

repeated exposure, as compared to rapid boosting of the highly immunogenic MSP1p19 

antigen. Even though the anti-GPI antibody responses are considerably lower than those for 

MSP1p19, they nevertheless seem to influence significantly the development of cerebral 

malaria. 

 The presence of comparable levels of anti-MSP1p19 antibodies in individuals from both 

study groups, regardless of disease status, suggests that protective responses against parasite 

surface protein antigens, which likely control infection by interfering with parasite invasion 
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[17], may not be sufficient for effective control of malaria. Thus, the results of our study argue 

in support of the widely prevailing notion that protective immunity against malaria pathology 

consists of two major components: “antiparasite” and “antitoxin” immunity [25]. While 

antibodies against parasite antigens such as MSP1p19 can effectively control parasite infection 

[17, 19], and thereby lower the risk of developing severe malaria, anti-GPI antibodies, have 

been suggested to provide protection against the development of severe disease by neutralizing 

the activity of GPIs [2]. Although in some cases, depending on host genetic variation, the anti-

parasite approach may provide sufficient protection, the combined approach is expected to be 

much more effective. Thus, the anti-GPI antibody response can be an important and valid target 

for the development of anti-disease therapies and/or vaccines. However, since anti-GPI 

antibodies are short lived, the challenge is to obtain long lasting antibody responses to realize 

the full potential of GPI-based vaccines [10, 12]. 

 An unexpected finding of this study is that, despite elevated mean IgG responses to 

MSP1p19 in all malaria infected groups, there were significantly lower IgG levels in the 

subgroup of individuals with fatal outcomes to cerebral malaria, compared to those who 

recovered. These results are consistent with recent findings of a prospective study in Ndiop 

suggesting a requirement for a critical level of anti-MSP1p19 antibodies (OD ratio = 7), for a 

significant association with delayed reinfection following drug cure [19]. In this study, anti-

MSP1p19 IgG responses in fatal cases were unusually low compared to results of several 

studies of P. falciparum infected individuals (urban and hospital consultants) using the 

baculovirus expressed MSP1p19 antigen (unpublished data). However, specific IgG responses 

to MSP1p19 do not qualify as prognostic measures for predicting severe disease and/or fatal 

outcomes in infected individuals, because multiple targets on the merozoite surface are likely to 

contribute to the prevention of hyper-parasitemia. In addition, since anti-disease immunity is 

required to achieve complete protection against severe malaria [26], our results show that 
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measures of anti-GPI IgG could not discriminate between recovery and fatal outcomes to 

cerebral malaria. 

 In summary, our results argue for a substantial protection-associated role of anti-GPI 

IgGs against the manifestations of cerebral malaria. However, a direct role for anti-GPI 

antibodies in neutralizing parasite toxins involved in malaria pathogenesis remains to be 

demonstrated. Our results call for further studies on the mechanisms by which GPIs are able to 

stimulate host adaptive immune responses to produce anti-GPI antibodies to exploit the 

potential of this approach for malaria prophylaxis or therapy. 
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7. Legends to Table and Figures 

 

Table 1.  Levels and prevalence of IgG responses against MSP1p19 and GPI in the different 

study groups  

 

Figure 1:  Antibodies against GPIs and MSP1p19 in study group 1. Histograms represent 

mean levels (± SE) of IgG responses of 35 immune controls from Ndiop (dark grey), 35 adults 

with “mild” malaria (light grey), and 35 patients with confirmed cerebral malaria (black). 

Shown are the levels of IgG antibodies against GPI (a) and MSP1p19 (b). The asterisks (*) 

indicates P <0.05.  

 

Figure 2: Antibodies against MSP1p19 and GPI in study group 2. Histograms represent mean 

IgG levels (± SE) against MSP1p19 (a, c) and GPI (b, d) for 47 non-infected individuals (a 

and b), 63 immune controls from Ndiop (a and b), 30 individuals with “mild” malaria (a and 

b), and 70 patients with cerebral malaria (a, b and c). Shown are the levels of IgG antibodies 

to MSP1p19 (a, c) and GPI (b). The asterisks (*) indicates P <0.05. 

 

Figure 3: Relationship between age and antibody responses against MSP1p19 and GPI in 

study group 2. Shown are the age- related distribution of Ab responses against MSP1p19 (a, 

b) and GPI (c,d) of Ndiop individuals (a, c), and of patients with cerebral malaria (b, d). A 

significant relationship between age and IgG responses against MSP1p19 and GPI was found 

for Ndiop villagers (P <0.001 by Spearman rank test) but not for hospitalized patients. 
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Table 1.  Levels and prevalence of IgG responses against MSP1p19 and GPI in the different 

study groups  

 

C ategory of individuals
 group

a

n M S P 1p19 G P I toxin


IgG  responses  agains t

mO D rt ±  S D 

b

P rev.

c

mO D rt ±  S D P rev.


Immune individuals  (N diop) 1 39 9.1 ±  4.0 96% 3.2 ±  3.0 43% 


P atients  w ith mild malaria 1 35 7.7 ±  2.1 100% 2.6 ±  3.3 31% 


P atient w ith cerebral malaria 1 35 7.2 ±  2.5 94% 1.7 ±  0.8 17% 


Immune individuals  (N diop) 2 63 8.0 ±  4.1 87% 3.3 ±  3.4 43% 


P atients  w ith mild malaria 2 30 6.6 ±  4.4 87% 2.8 ±  3.3 33% 


P atient w ith cerebral malaria 2 70 6.7 ±  4.4 71% 1.5 ±  0.9 14% 


U rban negative controls 2 47 1.7 ±  1.6 4% 1.1 ±  0.2 0% 

a
S tudy groups  of individuals : 1  & 2 =  firs t and second group independently inves tigated


b
M ean O D  ratio ±  s tandard deviation


c
P revalence of pos itive responders ie  individuals  w ith an O D  ratio >  2
  

 

 

 

Figure 1 
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Figure 2 
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Figure 3 

 


