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Abstract

Background: The colonial cyanobacterium Microcystis proliferates in a wide range of freshwater
ecosystems and is exposed to changing environmental factors during its life cycle. Microcystis
blooms are often toxic, potentially fatal to animals and humans, and may cause environmental
problems. There has been little investigation of the genomics of these cyanobacteria.

Results: Deciphering the 5,172,804 bp sequence of Microcystis aeruginosa PCC 7806 has revealed
the high plasticity of its genome: 11.7% DNA repeats containing more than 1,000 bases, 6.8%
putative transposases and 21 putative restriction enzymes. Compared to the genomes of other
cyanobacterial lineages, strain PCC 7806 contains a large number of atypical genes that may have
been acquired by lateral transfers. Metabolic pathways, such as fermentation and a methionine
salvage pathway, have been identified, as have genes for programmed cell death that may be related
to the rapid disappearance of Microcystis blooms in nature. Analysis of the PCC 7806 genome also
reveals striking novel biosynthetic features that might help to elucidate the ecological impact of
secondary metabolites and lead to the discovery of novel metabolites for new biotechnological
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applications. M. aeruginosa and other large cyanobacterial genomes exhibit a rapid loss of synteny
in contrast to other microbial genomes.

Conclusion: Microcystis aeruginosa PCC 7806 appears to have adopted an evolutionary strategy
relying on unusual genome plasticity to adapt to eutrophic freshwater ecosystems, a property
shared by another strain of M. aeruginosa (NIES-843). Comparisons of the genomes of PCC 7806
and other cyanobacterial strains indicate that a similar strategy may have also been used by the
marine strain Crocosphaera watsonii WH8501 to adapt to other ecological niches, such as
oligotrophic open oceans.

Background
Dated approximately 3 billion years old by fossil records,
cyanobacteria were the first oxyphototrophic prokaryotes
present on Earth [1]. As architects of the Earth's atmos-
phere they had a major impact on the evolution of aerobic
metabolism and the evolution of life [2]. Cyanobacteria
still play a fundamental role in the functioning of global
ecosystems by significantly contributing to carbon fluxes
[3,4] and by providing nitrogen used for primary produc-
tion [5]. On the other hand, cyanobacterial blooms may

lead to a loss of biodiversity in the phytoplanktonic com-

munities and, by generating very high quantities of
organic matter used by anoxygenic bacteria in the bottom
layers of water resources, can cause massive death of fish
by asphyxia [6]. The financial costs resulting from cyano-
bacterial proliferations are considerable (e.g. 200 million
Australian dollars/year in Australia) [7].

Freshwater cyanobacteria of the genus Microcystis are dis-
tributed worldwide, and are involved in numerous prolif-
eration events in stratified lakes [8]. In their natural
environment, Microcystis cells are organized in large colo-
nies of various sizes and shapes, which were used to
define various morphospecies. Five of these have recently
been reunified as a single species, Microcystis aeruginosa
[9]. The determinism of the morphogical variations
within this polymorphic cyanobacterial species is cur-
rently under debate.

The ecology of M. aeruginosa is characterized by an annual
life cycle comprising a spring and summer pelagic phase,
and an overwintering benthic phase [10]. During the
pelagic phase, M. aeruginosa colonies migrate daily in the
water column [11] and may accumulate to form blooms

or scums on the surface of the water. Thus, on a daily
basis, as well as during the benthic and pelagic phases,
colonies are exposed to changing environmental condi-
tions of light, temperature and oxygen concentrations.

In the last decade, cyanobacterial blooms have been
involved in numerous cases of animal [12] and human
[13] poisonings, mainly due to the ability of Microcystis
cells to synthesize toxins, in particular variants of micro-
cystin [14]. Many other oligopeptides, such as cyanopep-

tolins, aeruginosins, microginins, microviridins and
cyclamides may also be produced [15]. Other peptides
and congeners doubtless remain to be discovered, as do
their respective biosynthesis pathways.

To gain further insight into the ecophysiology of Micro-
cystis aeruginosa, we deciphered the genome sequence of
the toxic strain PCC 7806. The results presented here asso-
ciate descriptive genomics and comparisons with the
genomes of other cyanobacteria isolated from freshwater
and marine ecosystems to highlight the ecophysiological
peculiarities of this strain, and put its particularly high
genome plasticity into a cyanobacterial context.

Results and discussion
General features of the M. aeruginosa PCC 7806 genome

The 12× shotgun sequencing project produced 90,000
sequence reads, and their assembly resulted in more than
500 contigs. After the first steps of a long finishing process
performed using CAAT-Box [16] and Consed [17] soft-
ware, the number of contigs was reduced to 328 (N50 =
100kb), 116 of which were more than 3,000 bases in
length (up to 533,374 bases). The genome contains an
unusually high number of long DNA repeats. Most of the
extremities of these contigs consist of DNA repeated
sequences including gene coding for transposases (see
below). The 116 contigs were deposited in the EMBL data-
base (AM778843–AM778958). The genome sequence of
M. aeruginosa PCC 7806 (Mic-PCC7806), represented by
these contigs, consists of 5,172,804 bases, with an average
G+C content of 42%. These values are consistent with
those previously determined using thermally denatured
DNA [18]. The contigs were annotated using CAAT-Box
software and a total of 5,292 predicted protein-coding
sequences (CDSs) were validated manually. These CDSs

were compared to several protein (Uniprot, COG and 45
cyanobacterial proteomes) and motif databases (Prosite
and Pfam).

All the genomes used for the comparative studies
described below are listed in the Methods section.

http://www.ebi.ac.uk/cgi-bin/dbfetch?AM778843
http://www.ebi.ac.uk/cgi-bin/dbfetch?AM778958
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Comparison with other cyanobacterial genomes

A concatenated dataset of large and small subunit rRNA

sequences (23S and 16S rRNA) was used to construct a
phylogenetic tree including Mic-PCC7806 and 37 other
cyanobacterial strains (Figure 1). The tree is congruent
with previously published ones based on 16S rRNA

sequences [19,20], but shows higher statistical support at
most nodes (especially internal ones), probably due to the
larger number of positions used. The strains of the genus
Microcystis form a well-supported group (BV of 853‰)
with Synechocystis sp. (Syn-PCC6803), Crocosphaera watso-
nii (Cwa-WH8501) and Cyanothece sp. (Cth-CCY0110
and Cth-ATCC51142). Within this group, Microcystis is
most closely related to Syn-PCC6803 (BV of 990‰).

The Mic-PCC7806 genome was compared to the recently
publicly available genome of Microcystis aeruginosa strain
NIES-843 (Mic-NIES843) [21]. Although the average sim-

ilarity between the orthologous genes is 94%, their com-

parison emphasizes that the two genomes largely differ
both in length and gene composition (Table 1). Indeed,
the Mic-NIES843 genome is 0.6 Mb longer than that of
Mic-PCC7806. Moreover, the two genomes display a high
number of strain-specific genes (838 for Mic-PCC7806
and 1760 for Mic-NIES843). Interestingly, most of these
genes are absent from 44 other cyanobacterial complete
genomes suggesting that they have recently been acquired
in each of the two Microcystis strains independently.
Although the two genomes contain the same proportions
of large DNA repeats (~12%, see below), their distribu-
tion and size partly differ since Mic-PCC7806 contains 48
repeats longer than 3,000 bases for only 11 in Mic-
NIES843. The comparison of the location of similar genes
in the largest contig of the Mic-PCC7806 assembly
(contig328) and in the Mic-NIES843 genome shows

numerous genomic rearrangements (see Additional file
1). These rearrangements, probably facilitated by the pres-
ence of large repeats, render the Mic-NIES843 genome of
little help for the finishing of the assembly process of the
Mic-PCC7806 genome sequence.

The 5292 CDSs of the Mic-PCC7806 genome were also
compared to the proteomes of 44 strains representing the
diversity of the cyanobacterial lineages (all publicly avail-
able genomes excluding Mic-NIES843). The distribution
of the best High Scoring Pairs (HSPs) found using Blastall
software indicates a high similarity between the proteome
of Mic-PCC7806 and a group of three strains Cth-
ATCC51142, Cth-CCY0110 and Cwa-WH8501 (Table 2).
This is puzzling, since Mic-PCC7806 is closer to Syn-
PCC6803 than to this group in the 23S-16S phylogeny
(Figure 1). In order to exclude possible bias introduced by
uneven distribution of CDSs in these genomes, we ana-

lyzed only the orthologs shared by three of these
genomes, Mic-PCC7806, Syn-PCC6803 and Cwa-

WH8501. Based on BiDirectional Best Hit (BDBH) analy-
ses, 1789 CDSs of the Mic-PCC7806 genome were found
to correspond to putative orthologs in Cwa-WH8501 and
Syn-PCC6803. The mean Blast score of these CDSs was

381 for the comparison between Mic-PCC7806 and Cwa-

WH8501, and only 366 for Mic-PCC7806 versus Syn-
PCC6803. The distribution curve of all the Blast scores
(see Additional file 2) showed that the Mic-PCC7806
genome was more closely related to Cwa-WH8501 than to
Syn-PCC6803 for all score values considered. The absence
of congruence between the results obtained with rDNA

sequences and the core proteins means that additional
data sets for other members of these three cyanobacterial
genera are required. Nevertheless, the results obtained by
comparing all the orthologous genes shared by Mic-
PCC7806 (freshwater strain) and Cwa-WH8501 (marine
strain) are consistent with the fact that freshwater and
marine cyanobacteria are interspersed in global 16S rDNA

phylogenetic trees [20].

Three distinct groups of proteins were identified on the
basis of Blastp analyses of the 5,292 CDSs of Mic-
PCC7806, with a selection of 15 other cyanobacterial
genomes displaying at least 1% of best Blastp hits with
Mic-PCC7806 (Table 2). The composition of these groups
largely depends on the threshold chosen to consider that

two proteins are similar. Without an obvious breakpoint
in the distribution of protein similarities between differ-
ent genomes (see Additional file 2), we arbitrarily chose a
threshold of 40% of similarity, considering that below
this value two proteins do not share the same function.
The three groups are as follows:

- The "maeru40" group included 764 CDSs (14.4%) spe-
cific to the Mic-PCC7806 genome and not found in the 15
selected genomes; 438 (8.3%) of them have no homolog
in the uniprot database;

- The "core40" group comprised 652 proteins (12.3%)
sharing significant Blastp scores with at least one CDS in
each of the 15 other genomes tested;

- The last group, designated "other40", consisted of 3,876
CDSs (73%) sharing significant Blastp scores with CDSs

in only some of the other 15 genomes tested.

The small percentage of CDSs in the core40 group reflects
the wide diversity of the cyanobacterial genomes ana-

lyzed. In the other40 group, the distribution of the Mic-
PCC7806 CDSs among the tested genomes matches their
phylogenetic distances based on 23S-16S rDNA

sequences. For example, in this group, 10% of the CDSs

were present in all the genomes, apart from that of Gvi-
PCC7421, which is the most distant phylogenetically (Fig-
ure 1). Moreover, the four closest genomes to Mic-
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Phylogenetic maximum likelihood (ML) tree based on the concatenated 23S-16S rDNA sequences of diverse cyanobacterial lin-eagesFigure 1
Phylogenetic maximum likelihood (ML) tree based on the concatenated 23S-16S rDNA sequences of diverse 
cyanobacterial lineages. The sequences were taken from public databases. Strain identifiers, and the methods used for the 
phylogenetic analysis, are described in the Methods section. The scale bar represents the average number of nucleotide substi-
tutions per site. Genome sizes in megabases (Mb) are mentioned in parentheses. Trees were constructed using three methods 
(ML, Neighbor Joining and Maximum Parsimony). ML bootstrap values are indicated only if the bootstrap values obtained with 
the three methods are > 500 (1000 resamplings).
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PCC7806 (Syn-PCC6803 and the group including Cwa-

WH8501, Cth-CCY0110 and Cth-ATCC51142) appear to
have the same percentage (2%) of CDSs, shared only with
Mic-PCC7806.

Plasticity of the genome of M. aeruginosa PCC 7806

Large number of long repeated sequences

The Mic-PCC7806 genome includes a very large number
of DNA sequences containing more than 1000 bases that

are repeated at least twice in the genome with more than
90% identity. A comparative analysis of all the cyanobac-
terial genome sequences available in databases showed
that Mic-PCC7806, Mic-NIES843 and Cwa-WH8501 are

particularly rich in such DNA repeats. Indeed, they
account for 11.7%, 11.7% and 19.8% of the total DNA

length, respectively (Figure 2). The cumulative size of the
DNA repeated sequences is not strictly a function of
genome length as Mic-PCC7806 and Cwa-WH8501
genomes have the highest percentage of DNA repeats, but
are of intermediate size relative to the other cyanobacte-
rial genomes (see Additional file 3). In the Mic-PCC7806
genome, 1346 CDSs (25%) are located within these DNA

repeats. Among these CDSs, only 256 and 92 belong to
the maeru40 and core40 groups, respectively. Most of the
CDSs of the core40 group correspond to orthologs that

are not located within DNA repeats in other cyanobacte-
rial genomes. This implies that over the course of evolu-
tion, resident genes were probably captured by genetic
mobile elements. A large number of CDSs (362) are very
similar to transposases from the COG database, and 93%
of them are located within long DNA repeated sequences.
At least 46 transposases correspond to ISMae1A/2/3/4 that

had previously been characterized in strain PCC7806
[22], but a large majority of the other transposases cannot
be clearly associated with any known insertion sequence
(only 17 are associated to IS30, 7 to IS1 and 3 to IS5). The
genome of Cwa-WH8501 also contains numerous puta-
tive transposases. One third of them are associated to IS5,
but none to IS30; the DNA repeated sequences are there-
fore different in each genome, and cannot account for the
close phylogenetic relationship between these two strains.

Synteny of cyanobacterial genomes

Although Mic-PCC7806 and Mic-NIES843 are very closely
related strains (Figure 1), their genomes contain a high
number of rearrangements. Moreover, an unexpectedly
low level of synteny was also observed between the Micro-
cystis strains and two close relatives, Cwa-WH8501 and
Syn-PCC6803 (68% mean CDS similarity). Since the
same observation was made for all the cyanobacterial
genomes tested, we compared the dynamics of these

Table 1: Comparison between two Microcystis genomes

Strain (a) Mic-PCC7806 Mic-NIES843

Genome length 5.17 Mb (116 Contigs) 5.84 Mb

rRNA loci 2 2

tRNA loci 41 42

Number of CDSs 5292 6312

Putative transposases (COG similarity) 362 (6.8%) 469 (7.4%)

Proteins linked by BDBH 3322 (63%) 3322 (53%)

Proteins absent in the other Microcystis genome (b) 838 (16%) 1760 (28%)

Strain-specific proteins (c) 644/838 (76%) 1484/1760 (84%)

Large repeats (d) 11.7% 11.7%

(a) See the Methods section for the strain identifiers.
(b) Proteins that do not share similarity (> 40%) with any proteins in the other Microcystis genome.
(c) Proteins with no similarity (> 40%) with any proteins in the 44 other cyanobacterial genomes.
(d) Proportion of large repeats (> 1000 bases; > 90% identity) in the genome (see Figure 2).
Mb: megabases; CDS: coding sequence; COG: cluster of orthologs; BDBH: bidirectional best hit.

Table 2: Distribution of the best Blastp of the Mic-PCC7806 
proteome against other cyanobacterial proteomes

No Significant HSP 14.4%

Cth-ATCC51142 15.5%

Cth-CCY0110 13.4%

Cwa-WH8501 9.9%

Mch-PCC7420 9%

Npu-PCC73102 5.8%

Syn-PCC6803 5.1%

Ana-PCC7120 4.3%

Nsp-CCY9414 4.2%

Lae-PCC8106 4%

Ava-ATCC29413 3.9%

Ama-MBIC11017 2.5%

Ter-IMS101 1.95%

Syn-PCC7002 1.6%

Gvi-PCC7421 1.15%

Syn-PCC7335 1%

Syn-PCC7942 0.5%

Tel-BP1 0.4%

Syn-WH5701 0.2%

Syn-JA-2-3B'a 0.1%

Syn-PCC6301 0.1%

Other genomes 0%

See the Methods section for the strain identifiers. HSP: High-Scoring 
Segment Pair.
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genomes using a large set of other bacterial genomes cho-
sen on the basis of their sizes and phylogenetic distances.
To this end, a synteny score was calculated for a number
of genome pairs (see Methods), and then compared to
their evolutionary distance based on the 23S-16S rDNA

tree. This analysis showed that the synteny scores for
cyanobacterial genomes were significantly lower than
those obtained for pairs of non-cyanobacterial genomes
with similar genome lengths and 23S-16S phylogenetic
distances (Figure 3). Similar results were obtained for all
the cyanobacterial genomes tested. This means that the
low synteny scores observed cannot be related to the long
DNA repeated sequences, which occur only in the Mic-
PCC7806 and Cwa-WH8501 genomes. These results are
in agreement with those of Fang et al. [23], who showed
that both persistent and rare genes are significantly clus-
tered in most of the 169 bacterial genomes analyzed.
However, in a minority subset of bacterial genomes that

includes the cyanobacteria, persistent genes were found to
be fairly uniformly distributed throughout the genome.

Interestingly, only 8 clusters with at least 4 CDSs remain
syntenic in the genomes of Mic-PCC7806, Cwa-WH8501
and Syn-PCC6803. Four of these clusters correspond to
ribosomal proteins. The other clusters are shown in Table

3. Considering the very low level of synteny between
cyanobacterial genomes, it is likely that these specific clus-
ters have been subjected to strong positive selection pres-
sure and may play essential roles in these cyanobacteria.
Some of these clusters are clearly linked to a specific bio-
logical function, such as the transport of phosphate (see
Additional file 4) [24], while others consist of conserved
proteins with unknown functions. One can thus speculate
that these proteins may be involved in the same biological
pathway as their close neighbors.

Intergenic regions

Four groups can clearly be identified among the cyano-
bacterial genomes studied on the basis of their intergenic
distances (Figure 4). The first consists solely of the
genome of Ter-IMS101, which harbors exceptionally long
intergenic regions. To the best of our knowledge, no data
has been published on this genome, which makes it
impossible to rule out the possibility that these regions
result from the poor quality of the sequence or the syn-
taxic annotation. The second group includes the genome
of Mic-PCC7806 and, among others, those of Cwa-

WH8501 and Syn-PCC6803 which have a high propor-
tion of intergenic sequences around 300 bases long; in the
case of the Mic-PCC7806 genome, less than 35% of inter-

Percentage of DNA repeated sequences in the total genome lengthFigure 2
Percentage of DNA repeated sequences in the total genome length. This analysis was performed on complete and 
in-finishing (*) cyanobacterial genomes. The strain identifiers are listed in the Methods section. Only DNA repeats containing 
more than 1000 bases, and with an identity threshold >90%, are taken into account.
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genic sequences are shorter than 100 bases. The third
group comprises the genomes of Syn-PCC7942, Tel-BP1
and Gvi-PCC7421, which have short intergenic regions,
similar in size to those found in a number of other bacte-
rial genomes (see Additional file 5). The fourth group
includes some members of the Prochlorococcus genus that

have very small genomes with short or no intergenic
regions.

The mean length of the intergenic sequences seems to be
linked to the genome size of the cyanobacterium, except
for the genome of Syn-PCC6803, which is smaller (3.6
Mb) than that of Gvi-PCC7421 (4.6 Mb), but harbors
longer intergenic sequences. Although the role of long
intergenic sequences in most cyanobacterial genomes
remains unclear, we can surmise that they might be
involved in the modulation of gene expression, which
would allow cells to acclimate to rapid environmental
changes.

Cluster of atypical genes

In order to explore the plasticity of the Mic-PCC7806
genome further, the number of CDSs with an atypical
dinucleotide composition was determined using a one-
order Markov chain-based methodology [25]. This
method can identify genes that may have been acquired
recently by lateral transfers. In the Mic-PCC7806 genome,
a total of 1971 atypical genes were found, including 1402
within 159 clusters of atypical genes (CAGs) that proba-
bly correspond to recently acquired foreign genomic ele-
ments (Table 4). As expected, more than 98% of Mic-
PCC7806 genes belonging to the core40 group were not
in CAGs, and 31% of the atypical genes were in the
maeru40 group. Moreover, a high percentage (80%) of
the transposase genes were in CAGs (16% of the genes
present in CAGs encode putative transposases). Com-

pared to seven other cyanobacterial genomes, those of
Mic-PCC7806 and Mic-NIES843 harbor the highest per-
centages of atypical genes (37%) and CAGs (34% and
36%, respectively). These findings may indicate that the
Microcystis genomes contain a higher proportion of genes

Comparison of the syntenic scores of cyanobacterial genomes (filled square) and other bacterial genomes (empty diamond) according to the maximum likelihood distances of their 23S-16S sequences calculated by Phyml (see Methods)Figure 3
Comparison of the syntenic scores of cyanobacterial genomes (filled square) and other bacterial genomes 
(empty diamond) according to the maximum likelihood distances of their 23S-16S sequences calculated by 
Phyml (see Methods). The pairs of cyanobacterial genomes used in this study are listed in the Methods section.
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Table 3: Conserved gene clusters in the genomes of Mic-PCC7806, Cwa-WH8501 and Syn-PCC6803

Cluster 1 = Phosphate transport system

Gene name sphX pstS pstC pstA pstB1 pstB2

Mic-PCC7806 
contig328

mic3546 mic3547 mic3548 mic3549 mic3550 mic3552

Cwa-
WH8501 
contig3

EAM51827.1 EAM51828.1 EAM51829.1 EAM51831.1 EAM51832.1 EAM51833.1

Syn-PCC6803 sll0679 sll0680 sll0681 sll0682 sll0683 sll0684

Gene 
annotation

periplasmic 
phosphate-
binding 
protein of 
ABC 
transporter

phosphate-
binding 
periplasmic 
protein 
precursor

phosphate 
transport 
system 
permease 
protein

phosphate 
transport 
system 
permease 
protein

phosphate 
transport 
ATP-binding 
protein

phosphate 
transport 
ATP-binding 
protein

Cluster 2 = Ci-concentrating mechanism

Gene name ccmK2 ccmk1 ccmL ccmM ccmN

Mic-PCC7806 
contig303

mic5495 mic5496 mic6196 mic5695 mic5233

Cwa-
WH8501 
contig2

EAM52133.1 EAM52134.1 EAM52135.1 EAM52136.1 EAM52137.1

Syn-PCC6803 sll1028 sll1029 sll1030 sll1031 sll1032

Gene 
annotation

carbon 
dioxide 
concentrating 
mechanism 
protein

carbon 
dioxide 
concentrating 
mechanism 
protein

putative 
carboxysome 
assembly 
protein

putative 
carboxysome 
structural 
protein

putative 
carboxysome 
assembly 
protein

Cluster 3 = Unassigned function

Gene name yidC rnpA

Mic-PCC7806 
contig303

mic5398 mic5399 mic5400 mic6364

Cwa-
WH8501 
contig2

EAM51643.1 EAM51642.1 EAM51641.1 EAM51640.1

Syn-PCC6803 slr1472 slr1471 slr1470 slr1469

Gene 
annotation

COG1847 
Predicted 
RNA-binding 
protein

COG0706 
Preprotein 
translocase 
subunit

No similarity; 
highly 
conserved in 
cyanobacteria

protein 
subunit of 
ribonuclease 
P

Cluster 4 = ATP synthase

Gene name/
Alternate 
gene name

atpC atpA atpH/atpD atpF atpG atpE/atpH atpB/atpI atpI

Mic-PCC7806 
contig290

mic4443 mic4444 mic4445 mic4446 mic4447 mic4448 mic4449 mic4451

Cwa-
WH8501 
contig1

EAM53207.1 EAM53206.1 EAM53205.1 EAM53204.1 EAM53203.1 EAM53202.1 EAM53201.1 EAM53200.1

Syn-PCC6803 sll1327 sll1326 sll1325 sll1324 sll1323 ssl2615 sll1322 sll1321

Gene 
annotation

ATP synthase 
gamma chain

ATP synthase 
alpha chain

ATP synthase 
delta chain of 
CF(1)

ATP synthase 
B chain 
(subunit I) of 
CF(0)

ATP synthase 
of B' chain 
(subunit b') of 
CF(0)

ATP synthase 
C chain of 
CF(0)

ATP synthase 
A chain

ATP synthase 
protein I

For each of the three genomes, the gene identifiers are indicated in italics. See the Methods section for the strain identifiers.
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recently acquired by lateral transfers than the other
genomes studied.

Putative restriction and modification systems

Blast searches for restriction enzymes and examination of
genes surrounding DNA methylases, identified 21 poten-
tial restriction enzymes (see Additional file 6), seven of
which were found to be co-localized with putative methy-
lases (see Additional file 7) in the Mic-PCC7806 genome.
The Mic-NIES843 genome also contains a high number
(at least 17) of putative restriction enzymes [21]. Blast
searches revealed that 14 restriction enzymes are common

to both genomes. In contrast, seven and eight restriction
enzymes seem specific to Mic-PCC7806 and Mic-
NIES843, respectively. The Microcystis aeruginosa strains
might thus constitute a rich source of novel restriction
enzymes potentially useful in biotechnology. According
to Zhao et al. [26], filamentous cyanobacteria (Anabaena,
Spirulina and Nostoc strains) contain more restriction and
modification genes than unicellular cyanobacteria (Syne-
chocystis, Synechococcus and Prochlorococcus strains). Based
on COG annotations, at least as many restriction-modifi-
cation genes were found in Mic-PCC7806, Mic-NIES843
and Cwa-WH8501 as in filamentous cyanobacteria. Thus,

Distribution of the intergenic distances in diverse cyanobacterial genomesFigure 4
Distribution of the intergenic distances in diverse cyanobacterial genomes. The distances are based on the public 
syntaxic annotation of each genome. Strain identifiers are listed in the Methods section.

Table 4: Analysis of the presence of atypical genes in several cyanobacterial genomes

Strain (a) Number of genes Number of AGs Number of CAGs Number of genes in CAGs AGs in CAGs

Mic-PCC7806 5292 1971 (37%) 159 1790 (34%) 78%

Mic-NIES843 6364 2335 (37%) 126 2298 (36%) 66%

Cwa-WH8501 5967 1004 (17%) 61 523 (9%) 60%

Mch-PCC7420 7357 2008 (27%) 150 1403 (19%) 68%

Syn-PCC6803 3314 494 (15%) 32 243 (7%) 75%

Npu-PCC72103 6182 1259 (20%) 65 596 (10%) 64%

Lae-PCC8106 6142 1549 (25%) 102 1084 (18%) 67%

Ana-PCC7120 5430 1254 (23%) 48 390 (7%) 69%

(a) See the Methods section for the strain identifiers. Higher scores are shown in bold. AG: Atypical gene; CAG: Cluster of atypical genes.
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rather than corresponding to a difference between fila-
mentous and unicellular cyanobacteria, the restriction-
modification gene content of Microcystis aeruginosa may

reflect the potential exposure of the cells to high concen-
trations of foreign DNA due to the presence of numerous
other bacterial cells or viruses associated with Microcystis
colonies [27]. This exposure to foreign DNA is also con-
sistent with the high number of CAGs putatively acquired
by lateral transfers. Whether such a hypothesis might also
hold true for planktonic cyanobacteria of the genus Cro-
cosphaera remains an open question.

In bacterial genomes containing a high number of genes
for restriction enzymes, short palindromic sequences cor-
responding to the target sites of these enzymes may be
under-represented [28]. Since the genomes of Microcystis
aeruginosa and Cwa-WH8501 contain a very high number
of putative restriction enzymes, there should be a number
of under-represented short sequences that correspond to
restriction sites. To test this hypothesis, the number of
occurrences of each 6-mer was counted, and a frequency
distribution calculated for Mic-PCC7806, Mic-NIES843,
Cwa-WH8501 and Syn-PCC6803 (Table 5). The under-
represented sites in the three first genomes were not found
in Syn-PCC6803, a genome devoid of restriction enzymes
[29], supporting the idea that these rare 6-mers could
indeed correspond to restriction enzyme sites. In total,
there are 4096 possible 6-mers, 1.5% of which are palin-
dromes. Fifty-one percent of the rarest 1% of 6-mers in the
Mic-PCC7806 genome are palindromes (see Additional
file 8). Palindromes are thus over-represented among the
rarest 6-mers, further supporting the hypothesis that they
could correspond to sites cut by restriction enzymes. The
identity of the rarest 1% of 6-mers in the Mic-PCC7806
genome was compared to known restriction sites in other
organisms as identified by New England Biolabs [30]. We
found that 20 of the 41 sites corresponded to sites cut by
restriction enzymes in other organisms.

A novel DNA modification system was discovered recently
in the Gram-positive bacterium Streptomyces lividans 66
[31]. This system results in the degradation of DNA in vitro
by oxidative, double-stranded, site-specific cleavage dur-
ing electrophoresis, and is determined by a cluster of five
genes (dndA-B-C-D-E). The dnd gene products incorporate
sulfur into the DNA backbone as a sequence-selective,
stereospecific phosphorothioate modification [32].
According to He et al. [33], the resistance of phosphoro-
thiate linkages to a variety of nuclease activities, and the
site specific nature of such a modification suggest that

phosphorothioates could have a role comparable to that

of DNA methylation in protection against nucleases.
Although the presence of dndB homologs is not clear in
the genomes of cyanobacteria, the rest of the cluster was

found in several of them including Mic-PCC7806 (see
Additional file 9). Despite the low level of synteny in
cyanobacterial genomes (see above), the dndC-D-E genes
are still clustered.

Unraveling genetic features related to the ecophysiology 

of M. aeruginosa PCC 7806

Life cycle, colony formation and floatation

During the overwintering benthic phase of their life cycle,
Microcystis colonies withstand long periods of darkness. A
fermentation pathway has been proposed based on bio-
chemical data [34]. All the genes coding for the enzymes
required for the various steps in this pathway have been
identified in the genome sequence (see Additional file
10). During the benthic phase, Microcystis colonies are
exposed to lower temperature and higher pressure. In this
respect, it is interesting to note the presence of a gene
(mic5251) coding for a protein similar to Hik33 that per-
ceives osmotic stress and cold stress in Syn-PCC6803 [35].
Another gene, mic5237, is similar to the Ana-PCC7120
orrA gene whose product is involved in osmoregulation
[36]. A genomic island carrying actM and pfnM, two genes
that encode eukaryotic-like proteins, actin and profilin
(an actin cognate binding partner), respectively, have
been discovered in the Mic-PCC7806 genome. As shown

Table 5: Distribution of rare 6-mers in cyanobacterial genomes

Ratio (a) Obs/Shuf Number of 6-mers

Mic-PCC7806 Mic-NIES843 Cwa-WH8501 Syn-PCC6803

< 0.02 6 (4) 12 (8) 6 (3) 0 (0)

< 0.04 13 (8) 11 (5) 9 (3) 7 (3)

< 0.06 10 (4) 8 (3) 6 (3) 5 (2)

< 0.08 2 (1) 2 (1) 3 (2) 6 (1)

< 0.1 2 (1) 3 (0) 13 (6) 14 (1)

(a) Ratio between the frequency observed (Obs) for a given 6-mers and the frequency for the same 6-mers after shuffling (Shuf) of the genome 
sequence.
Figures in bold represent the number of 6-mers present 50× more in the shuffled sequence than in the original sequence. Figures in parentheses 
indicate the number of palindromic sites.
See the Methods section for the strain identifiers.



BMC Genomics 2008, 9:274 http://www.biomedcentral.com/1471-2164/9/274

Page 11 of 20

(page number not for citation purposes)

by Guljamow et al. [37], this eukaryotic-like actin forms a
shell-like structure that could strengthen cell resistance to
hydrostatic and osmotic pressures. Interestingly, these
genes are only present in Microcystis cells that inhabit the
Braakman water reservoir (The Netherlands), which was

cut off from the sea in the 20th century, and from which
the Mic-PCC7806 strain was originally isolated.

Although several different M. aeruginosa morphotypes
have been described [38], little is known about their col-
ony formation. The genome sequence of strain Mic-
PCC7806 revealed a gene coding for a lectin (mvn;
mic3128), which binds specifically to a sugar moiety
present on the surface of Mic-PCC7806 cells, and a bind-
ing partner has been identified in the lipoplysaccharide
fraction [39]. A functional correlation between the potent
toxin microcystin and this lectin has been demonstrated,
with possible implications for the formation of colonial
aggregates that are characteristic of different Microcystis
morphotypes. Another protein, MrpC (microcystin-
related protein C), has been shown to be a potential target
of an O-glycosyltransferase of the SPINDLY family [40]. In
situ, this protein accumulates at the cell surface, and is
involved in cellular interactions. Microcystins may there-
fore have an impact on the aggregation of Microcystis cells,
which is very important for the competitive advantage of
these organisms over other phytoplankton species. Mvn
and MrpC are predominantly encoded in toxic strains
[[38] and E. Dittmann, unpublished data], but not in the
genome of Mic-NIES843. The latter strain may thus repre-
sent an ecotype that differs from Mic-PCC7806 in the
characteristics of the cell surface. Genes coding for a Ser/
Thr kinase (mic0129) and a Ser/Thr phosphatase of the
PPP family (mic4622) are found within two clusters that

may be involved in cell wall synthesis. Mic-PCC7806 also
has two genes that encode Wzc-like protein Tyr kinases
(mic2086 and mic1089) and three genes coding for Wzb-
like protein Tyr phosphatases (mic3515, mic3588 and
mic6566). In E. coli, the function of these systems is
known to be related to the synthesis of the cell wall and
polysaccharides [41]. These kinases/phosphatases could
potentially be involved in colony formation. Colony
migration depends not only on the cell ballast resulting
from the accumulation of photosynthates and the size of
the colonies, but also on the synthesis of gas vesicles (GV),
intracellular structures providing cells with buoyancy
[42]. The Mic-PCC7806 genome carries a cluster of 12
genes required for GV synthesis, two of which, gvpV and
gvpW, are novel [43]. The mic1271 and mic1270 genes are
highly similar to the genes coding for a light-regulated
two-component system in Syn-PCC6803. This system,
which consists of a cyanobacterial phytochrome (Cph1)
and its response regulator (Rcp1), has been proposed to
play a role in the control of processes required for the
adaptation from light to dark conditions and vice-versa

[44]. Moreover, all the genes involved in circadian rhythm
[45] are present in Mic-PCC7806 (see Additional file 11).
Whether day-night cycles and the timing of vertical migra-
tion of Microcystis colonies in the water column are con-
trolled by this phytochrome and by the circadian clock
mechanism would be worth being tested.

In natural populations of Microcystis, oxidative stress was

shown to induce programmed cell death (PCD) [46].
Accordingly, 5 putative eukaryotic caspase-like genes were
identified by PSI-Blast in the genome of strain Mic-
PCC7806. Three of them (Mic0980, Mic3930 and
Mic4051) showed best similarity with Mic-NIES843 pro-
teins that lack caspase-like motifs. Consequently, these
three proteins are likely involved in other functions than
PCD. In contrast, the Mic1068 protein showed similarity
in the caspase-like region with one protein of Mic-
NIES843 (MAE24870). The last caspase-like protein of
Mic-PCC7806 (Mic5406) is strain-specific. Both mic1068
and mic5406 are expressed, and a cross-reaction with
human caspase-3 polyclonal antisera was observed indi-
cating that the proteins are synthesized (data not shown).
Alignment of the regions containing the conserved cas-
pase domains of Mic1068, Mic5406, MAE24870 and a
yeast metacaspase shows that the Histidine-Cysteine cata-
lytic diad of the key functionnal regions of the capases is
conserved (see Additional file 12). PCD might thus be
triggered when Microcystis cells are exposed to severe envi-
ronmental stress conditions, leading to the rapid decline
of blooms, as has been suggested by Berman-Frank et al.
in the case of Ter-IMS101 [47]. Mic-PCC7806 and Mic-
NIES843 are the only unicellular cyanobacteria known to
have genes coding for HstK-like kinases (mic1879 and
mic1015), proteins characterized by the presence of both
His and Ser/Thr kinase domains [48,49]. Some of these
kinases are implicated in either the iron homeostasis/oxi-
dative stress response or in the differentiation of N2-fixing
cells in filamentous cyanobacteria [[48,49] and C-C

Zhang, unpublished data]. Cell differentiation does not
occur in M. aeruginosa, but it would be interesting to test
whether these HstK-like protein kinases are involved in
iron homeostasis and/or in the control of programmed
cell death in response to oxidative stress. It has been pro-
posed that the methionine recycling pathway may con-
tribute to preventing oxidative stress in Bacillus subtilis
[50,51]. Interestingly, all the genes involved in this path-
way are present in the Mic-PCC7806 genome (see Addi-
tional file 13). One of these genes, mtnW (rbcLIV), encodes
a 2,3-diketo-5-methylthiopentyl-1-phosphate enolase
that has been identified in all the Microcystis strains tested
including Mic-NIES843 [21,52], but not in other cyano-
bacteria for which the genome sequences are available,
except Lae-PCC8106 (accession n° ZP_01618990) and
Cth-PCC8801 (accession n° ZP_02940034). The putative
methionine recycling pathway may thus have a specific
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role related to the lifestyle or ecological niches inhabited
by members of the genera Microcystis, Lyngbya and Cyan-
othece.

Genetic potential for the production of secondary metabolites

Cyanobacteria are known as prolific producers of natural
products, in particular of the nonribosomal peptide and
polyketide classes [15,53]. However, the potential to pro-
duce complex secondary metabolites largely varies among
the cyanobacterial genera and species, and even among
individual strains. Remarkably, the genomes of Mic-
PCC7806, Mic-NIES843 and Cwa-WH8501 differ from
unicellular cyanobacteria of other genera in that they con-
tain a large number of genes that encode nonribosomal
peptide synthetases (NRPS) and polyketide synthases
(PKS). Interestingly, such genes in Mic-PCC7806 out-
number those found in Mic-NIES843 and Cwa-WH8501
(Table 6). Apart from the terrestrial filamentous strain
Npu-PCC73102, Mic-PCC7806 devotes the largest per-
centage of its genome (~3.5%) to secondary metabolite
production (Table 6) [54].

The strain Mic-PCC7806 is known to produce two iso-
forms of microcystin [55]. The corresponding genes in the
bi-directional mcyA-J gene cluster encoding NRPS, PKS
and tailoring enzymes [56,57] could be re-assigned dur-
ing the genome sequencing project (Figure 5). Genes for
cyanopeptolin biosynthesis (mcn cluster) could be
assigned based on the amino acid specificities of the sub-
strate-activating domains of a second NRPS gene cluster
that was congruent with the amino acid moieties con-
tained in the cyanopeptolin structure [58] (Figure 5). The
mcn genes of Mic-PCC7806 display some similarity to the
anabaenopeptilide genes of Anabaena strain 90 [59] and
to the cyanopeptolin genes of Microcystis wesenbergii [60].
In addition, the genome of Mic-PCC7806 harbors three
NRPS and PKS gene clusters (Figure 5). One of the clusters
displays some similarity to the cluster involved in the pro-

duction of the protease inhibitor aeruginoside in Plank-
tothrix agardhii Cya 126 [61]. The genomic data therefore
clearly indicate that strain Mic-PCC7806 might be capable
of producing a variant of aeruginosin (Figure 5).

The two remaining PKS I gene clusters do not show signif-
icant similarity to any known cyanobacterial biosynthetic
gene clusters, and may be involved in the production of
hitherto unknown compounds (Figure 5 and Table 6).
The first gene cluster encodes an iterative PKS I that is sim-

ilar in both architecture and sequence to the PksE of vari-
ous actinobacteria, and is accompanied by several
tailoring enzymes including three halogenases. The actin-
obacterial enzyme is involved in the biosynthesis of
enedyine type antitumor antibiotics [62]. The second PKS
gene cluster encodes a modular PKS I complex accompa-
nied by several putative tailoring enzymes, and a PKS III
type enzyme that is capable of synthesizing compounds of
the chalcone/stilbene family. These biosynthetic enzymes
are widespread in plants but have only recently been dis-
covered in bacteria [63]. A comparison of the biosynthetic
potential of Mic-PCC7806 and Mic-NIES843 reveals that

three of the large NRPS/PKS complexes, namely those
dedicated to microcystin, cyanopeptolin and aeruginosin
production, are encoded on both genomes, whereas some
other gene clusters are not shared by both genomes. The
biosynthetic versatility of members of the genus Micro-
cystis may thus be larger than expected, since the two
strains selected for genome sequencing have similar
chemotypes. Beside the NRPS and PKS encoding genes,
the genome of Mic-PCC7806 contains a gene cluster sim-

ilar to the patellamide genes that were recently detected in
symbiotic cyanobacterial strains of ascidians [64]. Patella-
mides are a family of cyclic peptides generated from a
ribosomally-synthesized precursor. Mic-PCC7806 is the
first freshwater cyanobacterium showing the capability to
produce patellamide-like peptides. A peptide with striking
similarity to the patellamides, microcyclamide, has been

Table 6: Gene clusters involved in the biosynthesis of secondary metabolites

Strain (a) Size Mb % SM (b) PKS NRPS Patellamide like

Modular type I Iterative type I/glycolipid 
synthase (c)

Enedyine type PKS III NRPS/PKS NRPS

Mic-PCC7806 5.2* 3.5 1 0 1 1 (d) 2 1 1

Mic-NIES843 5.8 2.6 1 0 1 0 2 1 0

Cwa-WH8501 6.2* 1.6 0 0 0 0 1 6 (e) 0

Npu-PCC73102 8.2 4.5 2 2 0 0 6 1 0

Syn-PCC6803 3.6 0 0 0 0 0 0 0 0

(a) See the Methods section for the strain identifiers.
(b) %SM: percentage of the genome dedicated to secondary metabolites of the non-ribosomal peptide, polyketide or patellamide type family.
(c) Iterative PKS I not including enedyine type.
(d) PKS III is associated with modular PKS I.
(e) NRPS clusters in Cwa-WH8501 are all of a small size with an average of 1–2 genes per cluster.
* in-finishing genome; Mb: megabases; PKS: polyketide synthase; NRPS: non-ribosomal peptide synthetase.
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reported in M. aeruginosa strain NIES-298 [65]. Chemical
analyses have revealed that the gene cluster discovered in
Mic-PCC7806 is indeed dedicated to the production of a
microcyclamide-type compound [66]. The genome of
Mic-PCC7806 could attract further attention, as it also
contains gene clusters comprising unique features that

have yet to be characterized and which may well produce
so-far unidentified natural substances.

Transporter genes are commonly found in the immediate
vicinity of the secondary metabolite biosynthetic genes.

These secondary metabolites may therefore at least partly
function at the surface of Microcystis cells, in the colony-
surrounding sheath or in their planktonic environment.
Gene clusters involved in the synthesis of secondary
metabolites are frequently associated with genes that con-
fer resistance to these metabolites, which would otherwise
be toxic to the cells producing them. In Mic-PCC7806,
only the transport system associated with the uncharacter-
ized PKS I/PKS III hybrid compound (Figure 5) shows any
similarity to typical efflux transporters that potentially
confer self-resistance. The compound produced could

Schematic representation of secondary metabolite gene clusters in Mic-PCC7806Figure 5
Schematic representation of secondary metabolite gene clusters in Mic-PCC7806. (A) Gene clusters encoding 
non-ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS). The names assigned to individual genes in Mic-
PCC7806, or to genes that were characterized in other cyanobacterial strains are indicated above the arrows. Products 
assigned to the respective pathways are shown on the right. (B) Gene cluster encoding enzymes potentially involved in a patel-
lamide-like pathway. Names of patellamide biosynthesis genes are indicated above the arrows. Gene identifiers in the Mic-
PCC7806 genome are indicated below the arrows.
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therefore have an allelopathic or antibacterial role in the
environment [67].

Conclusion
Among bacteria, members of the genus Microcystis have a
particularly high potential for the production of complex
secondary metabolites, although this is lower than that of
some actinobacterial and myxobacterial genomes that

have been shown to devote up to 10% of their coding
capacity to the production of secondary metabolites [68].
Genomics has already been useful to the study of second-
ary metabolites, and has restored natural product research
as a major field of pharmaceutical research [69]. Analysis
of the Mic-PCC7806 genome has revealed striking novel
biosynthetic features that might help to explain the eco-
logical impact of these compounds, as well as guide the
search for novel metabolites of biotechnological impor-
tance.

Data mining of the genome sequence of Mic-PCC7806
has also shed light on genes that are of importance for the
colonial life style and survival of this cyanobacterium in
its natural habitat, either during the benthic phase or
when it forms blooms on the surface of the water. One of
the most intriguing features of this genome is its excep-
tional plasticity, characterized by a very large number of
long repeated sequences, and genes encoding trans-
posases and putative restriction enzymes. These biological
entities may generate deletions, duplications, conver-
sions, and rearrangements in the chromosome [70]. One
illustration of these changes is the marked loss of synteny
between this genome and other cyanobacterial genomes.
In addition, the presence of a large number of clustered
atypical genes in the genome of Mic-PCC7806 suggests
that frequent gene acquisition events by lateral transfers
have occurred.

Genome plasticity in prokaryotes is often considered to be
an adaptive strategy allowing microorganisms to promote
diversification in a way similar to sexual reproduction in
eukaryotic organisms. However, genomic rearrangements
can also impede the co-expression of genes [71] and dis-
rupt gene dosage effects [70]. The resulting trade-off
between gene conservation and rearrangement in the
chromosome depends on various factors and processes
linked to the ecophysiology of the microorganisms. The
cost of chromosome rearrangements may be greater for
fast-growing bacteria, than for slow-growing ones such as
cyanobacteria [72]. The relative importance of the process
of gene co-expression in cyanobacteria is more difficult to
evaluate. However, it is worth noting that some of the
eight syntenic clusters found in Mic-PCC7806 concern
transport systems for nutrients, such as phosphate, which
is often the limiting factor in marine and freshwater eco-
systems.

Although Syn-PCC6803, Cwa-WH8501 and Mic-
PCC7806 are phylogenetically closely related, only the
last two strains have highly plastic genomes containing
high proportions of long DNA repeats and transposase
genes. No obvious explanation can be deduced from the
ecophysiological features of these two strains. Indeed,
members of the genus Microcystis are freshwater colonial
cyanobacteria that proliferate in eutrophic ecosystems

(e.g. ! 2.107cells/ml in [73]) while the Crocosphaera are
marine nitrogen-fixing cyanobacteria living in oligo-
trophic open oceans (! 103 cells/ml [74]). Microcystis col-
onies may display chaotic population dynamics, with
alternating explosion and crash phases [75], but to the
best of our knowledge, no such data are available for Cro-
cosphaera. Such chaotic population dynamics could
explain the widespread occurrence of rearrangements in
the Mic-PCC7806 genome, if, as proposed by Helm et al.
[76] for Salmonella serovars, bottlenecks and genetic drifts
generally promote the fixation of mildly harmful rear-
rangements.

More genome sequences of members of the Microcystis
and Crocosphaera genera are required to clarify the molec-
ular basis of their genome plasticity, at both the interge-
neric and intraspecies levels. This will also provide a
deeper understanding of the evolutionary significance of
this mode of adaptation to the environment. The ongoing
sequencing of such genomes should make it possible to
reach this goal in the near future. More generally, large
cyanobacterial genomes constitute excellent model sys-
tems for studying genome dynamics and the mecha-

nism(s) by which some gene clusters may escape
rearrangement and retain the same physical organization
in several different lineages.

Methods
Strain and genome nomenclature

Abbreviations used to designate the cyanobacterial strains (genome 

accession number)

Ama-MBIC11017: Acaryochloris marina MBIC11017
(embl: CP000828)

Ana-PCC7120: Anabaena/Nostoc sp. PCC 7120 (embl:
BA000019)

Ava-ATCC29413: Anabaena variabilis ATCC 29413 (embl:
CP000117)

Cbi-PCC7001: Cyanobium sp. PCC 7001 (gb:
1106012173546)

Cth-ATCC51142: Cyanothece sp. ATCC 51142 (embl:
CP000806)

http://www.ebi.ac.uk/cgi-bin/dbfetch?CP000806
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Cth-CCY0110: Cyanothece sp. CCY0110 (gb:
1101676644636–1101676644658)

Cwa-WH8501: Crocosphaera watsonii WH8501 (embl:
AADV02000100)

Syn-JA33Ab: Cyanobacteria Yellowstone JA-3-3Ab (embl:
CP000239)

Syn-JA23B'a: Cyanobacteria Yellowstone JA-2-3B'a (embl:
CP000240)

Gvi-PCC7421: Gloeobacter violaceus PCC 7421 (embl:
BA000045)

Lae-PCC8106: Lyngbya aestuari PCC 8106 (gb:
1099428180563–1099428180584)

Mch-PCC7420: Microcoleus chthonoplastes PCC 7420
(gb:1103659003780–1103659003836)

Mic-NIES843: Microcystis aeruginosa NIES-843 (embl:
AP009552)

Mic-PCC7806: Microcystis aeruginosa PCC 7806 (embl:
AM778843–AM778958)

Nsp-CCY9414: Nodularia spumigena CCY9414
(gb:1099428179735–1099428179797)

Npu-PCC73102: Nostoc punctiforme PCC 73102 (kindly
provided by J. C. Meeks) [77]

Pro-SS120: Prochlorococcus marinus SS120 (embl:
AE017126)

Pro-AS9601: Prochlorococcus marinus AS9601 (embl:
CP000551)

Pro-MED4: Prochlorococcus marinus MED4 (embl:
BX548174)

Pro-MIT9211: Prochlorococcus marinus MIT9211 (embl:
AALP01000001)

Pro-MIT9215: Prochlorococcus marinus MIT9215 (embl:
CP000825)

Pro-MIT9301: Prochlorococcus marinus MIT9301 (embl:
CP000576)

Pro-MIT9303: Prochlorococcus marinus MIT9303 (embl:
CP000554)

Pro-MIT9312: Prochlorococcus marinus MIT9312 (embl:
CP000111)

Pro-MIT9313: Prochlorococcus marinus MIT9313 (embl:
BX572095)

Pro-MIT9515: Prochlorococcus marinus MIT9515 (embl:
CP000552)

Pro-NATL1A: Prochlorococcus marinus NATL1A (embl:
CP000553)

Pro-NATL2A: Prochlorococcus marinus NATL2A (embl:
CP000095)

Syn-BL107: Synechococcus sp. BL107 (gb:
1099739244347)

Syn-CC9311: Synechococcus sp. CC9311 (embl:
CP000435)

Syn-CC9605: Synechococcus sp. CC9605 (embl:
CP000110)

Syn-CC9902: Synechococcus sp. CC9902 (embl:
CP000097)

Syn-PCC6301: Synechococcus elongatus PCC 6301 (embl:
AP008231)

Syn-PCC7002: Synechococcus sp. PCC 7002 (embl:
CP000951)

Syn-PCC7335: Synechococcus sp. PCC 7335 (gb:
1103496006889–1103496006899)

Syn-PCC7942: Synechococcus elongatus PCC 7942 (embl:
CP000100)

Syn-RCC307: Synechococcus sp. RCC307 (embl:
CT978603)

Syn-RS9916: Synechococcus sp. RS9916 (gb:
1100013018508)

Syn-RS9917: Synechococcus sp. RS9917 (gb:
1099465004208)

Syn-WH5701: Synechococcus sp. WH5701 (gb:
1099465003749–1099465003864)

Syn-WH7803: Synechococcus sp. WH7803 (embl:
CT971583)

http://www.ebi.ac.uk/cgi-bin/dbfetch?AADV02000100
http://www.ebi.ac.uk/cgi-bin/dbfetch?CP000239
http://www.ebi.ac.uk/cgi-bin/dbfetch?CP000240
http://www.ebi.ac.uk/cgi-bin/dbfetch?BA000045
http://www.ebi.ac.uk/cgi-bin/dbfetch?AP009552
http://www.ebi.ac.uk/cgi-bin/dbfetch?AM778843
http://www.ebi.ac.uk/cgi-bin/dbfetch?AM778958
http://www.ebi.ac.uk/cgi-bin/dbfetch?AE017126
http://www.ebi.ac.uk/cgi-bin/dbfetch?CP000551
http://www.ebi.ac.uk/cgi-bin/dbfetch?BX548174
http://www.ebi.ac.uk/cgi-bin/dbfetch?AALP01000001
http://www.ebi.ac.uk/cgi-bin/dbfetch?CP000825
http://www.ebi.ac.uk/cgi-bin/dbfetch?CP000576
http://www.ebi.ac.uk/cgi-bin/dbfetch?CP000554
http://www.ebi.ac.uk/cgi-bin/dbfetch?CP000111
http://www.ebi.ac.uk/cgi-bin/dbfetch?BX572095
http://www.ebi.ac.uk/cgi-bin/dbfetch?CP000552
http://www.ebi.ac.uk/cgi-bin/dbfetch?CP000553
http://www.ebi.ac.uk/cgi-bin/dbfetch?CP000095
http://www.ebi.ac.uk/cgi-bin/dbfetch?CP000435
http://www.ebi.ac.uk/cgi-bin/dbfetch?CP000110
http://www.ebi.ac.uk/cgi-bin/dbfetch?CP000097
http://www.ebi.ac.uk/cgi-bin/dbfetch?AP008231
http://www.ebi.ac.uk/cgi-bin/dbfetch?CP000951
http://www.ebi.ac.uk/cgi-bin/dbfetch?CP000100
http://www.ebi.ac.uk/cgi-bin/dbfetch?CT978603
http://www.ebi.ac.uk/cgi-bin/dbfetch?CT971583


BMC Genomics 2008, 9:274 http://www.biomedcentral.com/1471-2164/9/274

Page 16 of 20

(page number not for citation purposes)

Syn-WH7805: Synechococcus sp. WH7805 (gb:
1099646010155–1099646010157)

Syn-WH8102: Synechococcus sp. WH8102 (gb: BX548020)

Syn-PCC6803: Synechocystis sp. PCC 6803 (embl:
BA000022)

Tel-BP1: Thermosynechococcus elongatus BP-1 (embl:
BA000039)

Ter-IMS101: Trichodesmium erythreum IMS101 (embl:
CP000393)

Pairs of cyanobacterial genomes used in Figure 3

Mic-PCC7806/Cwa-WH8501

Mic-PCC7806/Syn-PCC6803

Cwa-WH8501/Syn-PCC6803

Lae-PCC8106/Ter-IMS101

Npu-PCC73102/Ava-ATCC29413

Npu-PCC73102/Ana-PCC7120

Npu-PCC73102/Nsp-CCY9414

Nsp-CCY9414/Ana-PCC7120

Ava-ATCC29413/Nsp-CCY9414

Ana-PCC7120/Ava-ATCC29413

Other bacterial strains used in Figure 3 (genome accession number)

Shigella dysenteriae, serovar 1, strain Sd97/Sd197
(CP000034_GR)

Acidovorax avenae subsp. citrulli AAC00-1 (NC_008752)

Agrobacterium tumefaciens str. C58 (NC_003062)

Bacillus subtilis subsp. subtilis str. 168 (NC_000964)

Bordetella parapertussis 12822 (NC_002928)

Escherichia coli APEC O1 (NC_008563)

Enterobacter sp. 638 (NC_009436)

Janthinobacterium sp. Marseille (NC_009659)

Klebsiella pneumoniae subsp. pneumoniae MGH 78578
(CP000647)

Listeria monocytogenes EGD-e (NC_003210)

Methylococcus capsulatus str. Bath (NC_002977)

Ochrobactrum anthropi ATCC 49188 chromosome 1
(NC_009667)

Polaromonas naphthalenivorans CJ2 (NC_008781)

Pseudomonas aeruginosa PA7 (NC_009656)

Pseudomonas fluorescens PfO-1 (NC_007492)

Rhizobium etli CFN 42 (NC_007761)

Rhizobium leguminosarum bv. viciae 3841 (NC_008380)

Rhodobacter sphaeroides ATCC 17025 (NC_009428)

Rhodoferax ferrireducens T118 (NC_007908)

Shewanella loihica PV-4 (NC_009092)

Shewanella oneidensis MR-1 (NC_004347)

Shewanella sp. W3-18-1 (NC_008750)

Shigella boydii Sb227 (NC_007613)

Silicibacter sp. TM1040 (NC_008044)

Yersinia enterocolitica subsp. enterocolitica 8081
(NC_008800)

Yersinia pestis CO92 (NC_003143)

Photorhabdus luminescens subsp. laumondii TTO1
(NC_005126)

DNA preparation and sequencing

The strain Microcystis aeruginosa PCC 7806 (kept in con-
stant culture since its isolation in 1978; Pasteur Culture
Collection, Paris, France [18]) was grown as described
[52]. The genome sequence of Mic-PCC7806 was deter-
mined by a whole-genome shotgun strategy. Two libraries
were generated using genomic DNA extracted with the kit
Nucleobond AGX500 (Macherey-Nagel, Hoerdt, France)
and shared by nebulization. The first library contained
inserts from 1 to 4 kb cloned in pcDNA2.1 (Invitrogen
Life Technologies, Carlsbad, CA, USA) and the second
included inserts from 5 to 8 kb cloned in the low-copy
vector pSYX34 (gift of F. Kunst, Institut Pasteur, Paris,
France). A BAC library was constructed into the vector
pBeloBAC11 (inserts ! 20 kb) (Epicentre, Madison, USA)

http://www.ebi.ac.uk/cgi-bin/dbfetch?BA000022
http://www.ebi.ac.uk/cgi-bin/dbfetch?BA000039
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using spooled DNA extracted as described [78] and par-
tially hydrolyzed with HindIII.

Plasmid DNA purification was performed using the Mon-
tage Plasmid Miniprep96 Kit (Millipore, Molsheim,
France) or the TempliPhi DNA sequencing template
amplification kit (GE Healthcare, Uppsala, Sweden). BAC
Miniprep96 Kit (Millipore, Molsheim, France) was used
for BAC templates. Sequencing reactions were done, from
both ends of DNA inserts, using ABI PRISM BigDye Termi-
nator cycle sequencing ready reactions kit and run on a
3700 Genetic Analyzer (Applied Biosystems, Foster City,
CA, USA). The trace file was used with the Phred-Phrap-
Consed package to perform the assembly [79]. Sequenc-
ing reactions were performed to close gaps, improve cov-
erage and resolve sequence ambiguities using PCR

products amplified from genomic DNA or DNA plasmid
templates.

Phylogenetic analysis

A dataset containing a concatenation of the 16S and 23S
sequences was aligned by Muscle [80], and the alignment
was manually edited to remove ambiguously aligned
positions, giving a final dataset of 4195 nucleotide posi-
tions for phylogenetic analysis. From this dataset, a maxi-
mum likelihood tree was calculated by Phyml [81], using
the HKY model of nucleotide evolution with an estima-

tion of the transition/transversion ratio, including 4 rates
of site heterogeneity, an estimated number of invariable
positions, and an estimated alpha shape parameter. The
numbers at the nodes correspond to the bootstrap values
calculated on 1000 resampled datasets by Phyml.

Syntenic score computation

Ten orthologs located on either side of one pair of puta-
tively orthologous CDS (linked by BDBH) were analyzed.
For each pair of orthologous genes located in the proxim-

ity of the tested gene and of its ortholog, the synteny score
was incremented by 1. Using this method of calculation,
two totally syntenic genomes will have a score of 20 attrib-
uted to each of their orthologs, whereas two-non syntenic
genomes will have a score of 0.

Restriction-modification enzymes

Putative restriction enzymes were identified by Blast
searching of known type I and II restriction enzymes
against the Mic-PCC7806 genome. Because DNA methyl-
ases are more reliably identified by Blast than restriction
enzymes, we also identified all methylases, and examined
the surrounding genes for potential restriction enzymes.

Detection of atypical CDSs

A first-order Markov model was built based on the dinu-
cleotide composition of the core genes of a group of 8
selected cyanobacterial genomes (Table 4), identified by

bi-directional best hits using BLASTp (bitscore of 30%
against itself). This Markov model takes into account the
Markov probability matrix of the core genes to analyse
whether the composition of the CDS under study is "atyp-
ical", using the formula described in [25]. For each CDS,
the model calculates an index that represents the likeli-
hood that CDS will have a dinucleotide composition
compatible with that of the core genes. In order to assess
significance cutoffs, we applied the following statistics
[82]: for each gene analyzed, one million random
sequences were generated based on the Markov model
probability matrix of the core genes, and the Markov
index was calculated for each of these random sequences.
The results were then analyzed by a one-tailed test with
cut-offs of 0.1%. The cut-off was defined after several in
silico horizontal gene transfer simulations, during which
random genes from different genomes were introduced
artificially into the genome sequences under study. The
optimal threshold (0.1%) was defined for all the genomes
of the group as the value at which the model had the high-
est detection of the in silico introduced genes (true posi-
tives), and the lowest detection of core genes (false
positives).

Clustering of atypical genes

We defined an initial cluster of at least 4 neighboring atyp-
ical genes which was allowed to grow (in both directions)
searching for other nearby atypical genes, until regions
containing 4 or more non-atypical genes appeared. By this
process, a reduced number of less-atypical genes and of
normal genes could be included in a larger CAG.

Abbreviations
CDS: coding sequence; HSP: high scoring segment pair;
BDBH: bidirectional best hit; rDNA: ribosomal DNA;

CAG: cluster of atypical gene; BV: bootstrap value. NRPS:

nonribosomal peptide synthetase; PKS: polyketide syn-
thase; N50: contig size such that all the larger contigs con-
tain 50% of the bases of the assembly.
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