J. Dienstag, Hepatitis B Virus Infection, New England Journal of Medicine, vol.359, issue.14, pp.1486-500, 2008.
DOI : 10.1056/NEJMra0801644

J. Chang and S. Lewin, Immunopathogenesis of hepatitis B virus infection

B. Rehermann and M. Nascimbeni, Immunology of hepatitis B virus and hepatitis C virus infection, Nature Reviews Immunology, vol.24, issue.3, pp.215-244, 2005.
DOI : 10.1172/JCI200318509

L. Guidotti and F. Chisari, IMMUNOBIOLOGY AND PATHOGENESIS OF VIRAL HEPATITIS, Annual Review of Pathology: Mechanisms of Disease, vol.1, issue.1
DOI : 10.1146/annurev.pathol.1.110304.100230

F. Castellino and R. Germain, T CELLS: When, Where, and How, Annual Review of Immunology, vol.24, issue.1, pp.519-559, 2006.
DOI : 10.1146/annurev.immunol.23.021704.115825

D. Ganem and A. Prince, Hepatitis B virus infection--natural history and clinical 12 consequences, N Engl J Med Mar, vol.11350, issue.11, pp.1118-1147, 2004.
DOI : 10.1056/nejmra031087

S. Malmassari, Q. Deng, H. Fontaine, D. Houitte, F. Rimlinger et al., Impact 14 of hepatitis B virus basic core promoter mutations on T cell response to an immunodominant 15

A. Hbx-derived-epitope-pajot, M. Michel, M. Mancini-bourgine, M. Ungeheuer, D. Ojcius et al., et 17 al. Identification of novel HLA-DR1-restricted epitopes from the hepatitis B virus envelope 18 protein in mice expressing HLA-DR1 and vaccinated human subjects, Hepatology Microbes Infect, vol.45, issue.16, pp.1199-209, 2006.

A. Sponaas, C. Carstens, and N. Koch, C-terminal extension of the MHC class II-associated 21 invariant chain by an antigenic sequence triggers activation of naive T cells, Gene Ther, vol.8, issue.20, pp.12-132783, 1999.

I. Freisewinkel, K. Schenck, N. Koch, and M. Mancini-bourgine, The segment of invariant chain that is critical 24 for association with major histocompatibility complex class II molecules contains the, pp.1826-1860

R. Nayersina, P. Fowler, S. Guilhot, G. Missale, A. Cerny et al., HLA-transgenic mice 14 and hepatitis B virus-infected patients HLA A2 16 restricted cytotoxic T lymphocyte responses to multiple hepatitis B surface antigen epitopes 17 during hepatitis B virus infection The 19 cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and 20 after acute viral hepatitis, J Virol J Immunol J Exp Med J Immunol, vol.811515016181, issue.183, pp.4963-724659, 1993.

S. Ha, E. West, K. Araki, K. Smith, and R. Ahmed, Manipulating both the inhibitory and stimulatory immune system towards the success of therapeutic vaccination against chronic viral infections, Immunological Reviews, vol.335, issue.1, pp.317-350, 2008.
DOI : 10.1111/j.1600-065X.2008.00638.x

D. Kim, T. Hoory, A. Monie, J. Ting, C. Hung et al., Enhancement of DNA vaccine 10 potency through coadministration of CIITA DNA with DNA vaccines via gene gun, J, vol.11

D. Kim, A. Monie, L. He, Y. Tsai, C. Hung et al., Role of IL-2 secreted by 13 PADRE-specific CD4+ T cells in enhancing E7-specific CD8+ T-cell immune responses

C. Hung, Y. Tsai, L. He, and T. Wu, DNA vaccines encoding Ii-PADRE generates 16 potent PADRE-specific CD4+ T-cell immune responses and enhances vaccine potency, Gene Ther Mol, vol.1523, issue.17, pp.677-87, 2008.

J. Radcliffe, J. Roddick, P. Friedmann, F. Stevenson, and S. Thirdborough, Prime-Boost with Alternating DNA Vaccines Designed to Engage Different Antigen Presentation Pathways Generates High Frequencies of Peptide-Specific CD8+ T Cells, The Journal of Immunology, vol.177, issue.10, pp.6626-6659, 2006.
DOI : 10.4049/jimmunol.177.10.6626

N. Shastri, S. Cardinaud, S. Schwab, T. Serwold, and J. Kunisawa, All the peptides that fit: the beginning, the middle, and the end of the MHC class I antigen-processing pathway, Immunological Reviews, vol.125, issue.1, p.24
DOI : 10.1007/s002510050595

S. Hervas-stubbs, A. Olivier, F. Boisgerault, N. Thieblemont, and C. Leclerc, TLR3 ligand stimulates fully functional memory CD8+ T cells in the absence of CD4+ T-cell help, Blood, vol.109, issue.12
DOI : 10.1182/blood-2006-10-053256

URL : https://hal.archives-ouvertes.fr/hal-00135749

D. Assudani, H. Cho, N. Devito, N. Bradley, and E. Celis, In vivo Expansion, Persistence, and Function of Peptide Vaccine-Induced CD8 T Cells Occur Independently of CD4 T Cells, Cancer Research, vol.68, issue.23
DOI : 10.1158/0008-5472.CAN-08-3134

D. Higgins, J. Marshall, P. Traquina, G. Van-nest, and B. Livingston, Immunostimulatory DNA as a vaccine adjuvant, Expert Review of Vaccines, vol.6, issue.5, pp.747-59, 2007.
DOI : 10.1586/14760584.6.5.747

P. Agnellini, M. Wiesel, K. Schwarz, P. Wolint, M. Bachmann et al., Kinetic and 9 mechanistic requirements for helping CD8 T cells Post-translational 11 modifications of naturally processed MHC-binding epitopes, J Immunol Feb Curr Opin Immunol, vol.1180, issue.10, pp.1517-1542, 2006.

F. Livingston, B. Crimi, C. Newman, M. Higashimoto, Y. Appella et al., A 14 rational strategy to design multiepitope immunogens based on multiple Th lymphocyte 15 epitopes, J Immunol, vol.18168, issue.111, pp.92-99, 2002.

R. Seder, P. Darrah, M. Roederer, G. Ishioka, J. Fikes et al., implications for vaccine design Utilization of 19 MHC class I transgenic mice for development of minigene DNA vaccines encoding multiple 20 HLA-restricted CTL epitopes Altered helper 22 T lymphocyte function associated with chronic hepatitis B virus infection and its role in 23 response to therapeutic vaccination in humans, Nat Rev Immunol J Immunol Apr J Immunol, vol.833162162, issue.175, pp.17247-583088, 1999.

A. Bertoletti and A. Gehring, The immune response during hepatitis B virus infection, Journal of General Virology, vol.87, issue.6
DOI : 10.1099/vir.0.81920-0