D. Fasshauer, R. Sutton, A. Brunger, and R. Jahn, Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs, Proceedings of the National Academy of Sciences, vol.95, issue.26, pp.15781-15786, 1998.
DOI : 10.1073/pnas.95.26.15781

S. Low, S. Chapin, C. Wimmer, S. Whiteheart, and L. Kömüves, The SNARE Machinery Is Involved in Apical Plasma Membrane Trafficking in MDCK Cells, The Journal of Cell Biology, vol.269, issue.7, pp.1503-1513, 1998.
DOI : 10.1073/pnas.91.11.4688

T. Weber, B. Zemelman, J. Mcnew, B. Westermann, and M. Gmachl, SNAREpins: Minimal Machinery for Membrane Fusion, Cell, vol.92, issue.6, pp.759-772, 1998.
DOI : 10.1016/S0092-8674(00)81404-X

W. Nickel, T. Weber, J. Mcnew, F. Parlati, and T. Sollner, Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs, Proceedings of the National Academy of Sciences, vol.96, issue.22, pp.12571-12576, 1999.
DOI : 10.1073/pnas.96.22.12571

F. Parlati, T. Weber, J. Mcnew, B. Westermann, and T. Sollner, Rapid and efficient fusion of phospholipid vesicles by the alpha -helical core of a SNARE complex in the absence of an N-terminal regulatory domain, Proceedings of the National Academy of Sciences, vol.96, issue.22, pp.12565-12570, 1999.
DOI : 10.1073/pnas.96.22.12565

C. Schuette, K. Hatsuzawa, M. Margittai, A. Stein, and D. Riedel, Determinants of liposome fusion mediated by synaptic SNARE proteins, Proceedings of the National Academy of Sciences, vol.101, issue.9, pp.2858-2863, 2004.
DOI : 10.1073/pnas.0400044101

T. Weimbs, S. Low, S. Chapin, K. Mostov, and P. Bucher, A conserved domain is present in different families of vesicular fusion proteins: A new superfamily, Proceedings of the National Academy of Sciences, vol.94, issue.7, pp.3046-3051, 1997.
DOI : 10.1073/pnas.94.7.3046

J. Skehel and D. Wiley, Coiled Coils in Both Intracellular Vesicle and Viral Membrane Fusion, Cell, vol.95, issue.7, pp.871-874, 1998.
DOI : 10.1016/S0092-8674(00)81710-9

URL : http://doi.org/10.1016/s0092-8674(00)81710-9

T. Sollner, Intracellular and viral membrane fusion: a uniting mechanism, Current Opinion in Cell Biology, vol.16, issue.4, pp.429-435, 2004.
DOI : 10.1016/j.ceb.2004.06.015

K. Fields and T. Hackstadt, The Chlamydial Inclusion: Escape from the Endocytic Pathway, Annual Review of Cell and Developmental Biology, vol.18, issue.1, pp.221-245, 2002.
DOI : 10.1146/annurev.cellbio.18.012502.105845

S. Meresse, O. Steele-mortimer, E. Moreno, M. Desjardins, and B. Finlay, Controlling the maturation of pathogen-containing vacuoles: a matter of life and death, Nat Cell Biol, vol.1, pp.183-188, 1999.

D. Rockey, M. Scidmore, J. Bannantine, and W. Brown, Proteins in the chlamydial inclusion membrane, Microbes and Infection, vol.4, issue.3, pp.333-340, 2002.
DOI : 10.1016/S1286-4579(02)01546-0

S. Duclos and M. Desjardins, Subversion of a young phagosome: the survival strategies of intracellular pathogens. Microreview, Cellular Microbiology, vol.153, issue.5, pp.365-377, 2000.
DOI : 10.1146/annurev.micro.48.1.449

A. Dautry-varsat, M. Balañá, and B. Wyplosz, Chlamydia- Host Cell Interactions: Recent Advances on Bacterial Entry and Intracellular Development, Traffic, vol.5, issue.8, pp.561-570, 2004.
DOI : 10.1111/j.1398-9219.2004.00207.x

URL : https://hal.archives-ouvertes.fr/pasteur-00166950

S. Hashim, K. Mukherjee, M. Raje, S. Basu, and A. Mukhopadhyay, Live Salmonella Modulate Expression of Rab Proteins to Persist in a Specialized Compartment and Escape Transport to Lysosomes, Journal of Biological Chemistry, vol.275, issue.21, pp.16281-16288, 2000.
DOI : 10.1074/jbc.275.21.16281

Y. Oh and R. Straubinger, Intracellular fate of Mycobacterium avium: use of dual-label spectrofluorometry to investigate the influence of bacterial viability and opsonization on phagosomal pH and phagosome-lysosome interaction, Infect Immun, vol.64, pp.319-325, 1996.

I. Morozova, X. Qu, S. Shi, G. Asamani, and J. Greenberg, Comparative sequence analysis of the icm/dot genes in Legionella, Plasmid, vol.51, issue.2, pp.127-147, 2004.
DOI : 10.1016/j.plasmid.2003.12.004

C. Delevoye, M. Nilges, A. Dautry-varsat, and A. Subtil, Conservation of the Biochemical Properties of IncA from Chlamydia trachomatis and Chlamydia caviae: OLIGOMERIZATION OF IncA MEDIATES INTERACTION BETWEEN FACING MEMBRANES, Journal of Biological Chemistry, vol.279, issue.45, pp.46896-46906, 2004.
DOI : 10.1074/jbc.M407227200

URL : https://hal.archives-ouvertes.fr/pasteur-00166945

M. Barocchi, V. Masignani, and R. Rappuoli, Opinion: Cell entry machines: a common theme in nature?, Nature Reviews Microbiology, vol.17, issue.4, pp.349-358, 2005.
DOI : 10.1016/S0264-410X(02)00131-7

C. Delevoye, M. Nilges, P. Dehoux, F. Paumet, and S. Perrinet, SNARE Protein Mimicry by an Intracellular Bacterium, PLoS Pathogens, vol.137, issue.3, p.1000022, 2008.
DOI : 10.1371/journal.ppat.1000022.s006

URL : https://hal.archives-ouvertes.fr/pasteur-00332618

T. Hackstadt, M. Scidmore-carlson, E. Shaw, and E. Fischer, The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion, Cellular Microbiology, vol.175, issue.2, pp.119-130, 1999.
DOI : 10.1126/science.282.5389.754

K. Fields, E. Fisher, and T. Hackstadt, Inhibition of Fusion of Chlamydia trachomatis Inclusions at 32??C Correlates with Restricted Export of IncA, Infection and Immunity, vol.70, issue.7, pp.3816-3823, 2002.
DOI : 10.1128/IAI.70.7.3816-3823.2002

C. Roy, K. Berger, and R. Isberg, Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake, Molecular Microbiology, vol.28, issue.3, pp.663-674, 1998.
DOI : 10.1126/science.279.5352.873

T. Hackstadt, Redirection of Host Vesicle Trafficking Pathways by Intracellular Parasites, Traffic, vol.64, issue.2, pp.93-99, 2000.
DOI : 10.1034/j.1600-0854.2000.010201.x

B. Mullock, C. Smith, G. Ihrke, N. Bright, and M. Lindsay, Syntaxin 7 Is Localized to Late Endosome Compartments, Associates with Vamp 8, and Is Required for Late Endosome-Lysosome Fusion, Process Citation], pp.3137-3153, 2000.
DOI : 10.1091/mbc.11.9.3137

N. Nakamura, A. Yamamoto, Y. Wada, and M. Futai, Syntaxin 7 Mediates Endocytic Trafficking to Late Endosomes, Journal of Biological Chemistry, vol.275, issue.9, pp.6523-6529, 2000.
DOI : 10.1074/jbc.275.9.6523

M. Scidmore, E. Fischer, and T. Hackstadt, Restricted Fusion of Chlamydia trachomatis Vesicles with Endocytic Compartments during the Initial Stages of Infection, Infection and Immunity, vol.71, issue.2, pp.973-984, 2003.
DOI : 10.1128/IAI.71.2.973-984.2003

L. Eissenberg, P. Wyrick, C. Davis, and J. Rumpp, Chlamydia psittaci elementary body envelopes: ingestion and inhibition of phagolysosome fusion, Infect Immun, vol.40, pp.741-751, 1983.

R. Belland, G. Zhong, D. Crane, D. Hogan, and D. Sturdevant, Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis, Proceedings of the National Academy of Sciences, vol.100, issue.14, pp.8478-8483, 2003.
DOI : 10.1073/pnas.1331135100

K. De-felipe, . Glove-rr, X. Charpentier, O. Anderson, and M. Reyes, Legionella Eukaryotic-Like Type IV Substrates Interfere with Organelle Trafficking, PLoS Pathogens, vol.4, issue.8, p.1000117, 2008.
DOI : 10.1371/journal.ppat.1000117.s001

D. Rockey, D. Grosenbach, D. Hruby, M. Peacock, and R. Heinzen, Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion, Molecular Microbiology, vol.24, issue.1, pp.217-228, 1997.
DOI : 10.1046/j.1365-2958.1997.3371700.x

D. Rockey, W. Viratyosin, J. Bannantine, R. Suchland, and W. Stamm, Diversity within inc genes of clinical Chlamydia trachomatis variant isolates that occupy non-fusogenic inclusions a, Microbiology, vol.148, issue.8, pp.2497-2505, 2002.
DOI : 10.1099/00221287-148-8-2497

L. Lutz-wohlgroth, A. Becker, E. Brugnera, Z. Huat, and D. Zimmermann, Chlamydiales in Guinea-pigs and Their Zoonotic Potential, Journal of Veterinary Medicine Series A, vol.83, issue.4, pp.185-193, 2006.
DOI : 10.1128/JCM.40.2.519-523.2002

R. Sagi-eisenberg, The mast cell: where endocytosis and regulated exocytosis meet, Immunological Reviews, vol.12, issue.1, pp.292-303, 2007.
DOI : 10.1016/S0092-8674(01)00428-7

N. Puri and P. Roche, Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms, Proceedings of the National Academy of Sciences, vol.105, issue.7, pp.2580-2585, 2008.
DOI : 10.1073/pnas.0707854105

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2268179

F. Paumet, L. Mao, J. Martin, S. Galli, T. David et al., Soluble NSF Attachment Protein Receptors (SNAREs) in RBL-2H3 Mast Cells: Functional Role of Syntaxin 4 in Exocytosis and Identification of a Vesicle-Associated Membrane Protein 8-Containing Secretory Compartment, The Journal of Immunology, vol.164, issue.11, pp.5850-5857, 2000.
DOI : 10.4049/jimmunol.164.11.5850

M. Wu, T. Baumgart, S. Hammond, D. Holowka, and B. Baird, Differential targeting of secretory lysosomes and recycling endosomes in mast cells revealed by patterned antigen arrays, Journal of Cell Science, vol.120, issue.17, pp.3147-3154, 2007.
DOI : 10.1242/jcs.007260

P. Pryor, B. Mullock, N. Bright, M. Lindsay, and S. Gray, Combinatorial SNARE complexes with VAMP7 or VAMP8 define different late endocytic fusion events, EMBO reports, vol.12, issue.6, pp.590-595, 2004.
DOI : 10.1074/jbc.M010838200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299070

W. Geisler, R. Suchland, D. Rockey, and W. Stamm, Isolates That Occupy Nonfusogenic Inclusions, The Journal of Infectious Diseases, vol.184, issue.7, pp.879-884, 2001.
DOI : 10.1086/323340

URL : http://jid.oxfordjournals.org/cgi/content/short/184/7/879

M. Xia, R. Suchland, R. Bumgarner, T. Peng, and D. Rockey, Variant with Nonfusing Inclusions: Growth Dynamic and Host???Cell Transcriptional Response, The Journal of Infectious Diseases, vol.192, issue.7, pp.1229-1236, 2005.
DOI : 10.1086/444394

URL : http://jid.oxfordjournals.org/cgi/content/short/192/7/1229

J. Mcnew, F. Parlati, R. Fukuda, R. Johnston, and K. Paz, Compartmental specificity of cellular membrane fusion encoded in SNARE proteins, Nature, vol.407, pp.153-159, 2000.

F. Parlati, O. Varlamov, K. Paz, J. Mcnew, and D. Hurtado, Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity, Proceedings of the National Academy of Sciences, vol.99, issue.8, pp.5424-5429, 2002.
DOI : 10.1073/pnas.082100899

F. Paumet, B. Brugger, F. Parlati, J. Mcnew, and T. Sollner, A t-SNARE of the endocytic pathway must be activated for fusion, The Journal of Cell Biology, vol.110, issue.6, pp.961-968, 2001.
DOI : 10.1038/35052055

F. Paumet, V. Rahimian, D. Liberto, M. Rothman, and J. , Concerted Auto-regulation in Yeast Endosomal t-SNAREs, Journal of Biological Chemistry, vol.280, issue.22, pp.21137-21143, 2005.
DOI : 10.1074/jbc.M500841200

O. Varlamov, A. Volchuk, V. Rahimian, C. Doege, and F. Paumet, i-SNAREs, The Journal of Cell Biology, vol.113, issue.1, pp.79-88, 2004.
DOI : 10.1074/jbc.M102786200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171956

C. Stebbins and J. Galán, Structural mimicry in bacterial virulence, Nature, vol.16, issue.6848, pp.701-705, 2001.
DOI : 10.1038/35089000

F. Paumet, V. Rahimian, and J. Rothman, The specificity of SNARE-dependent fusion is encoded in the SNARE motif, Proceedings of the National Academy of Sciences, vol.101, issue.10, pp.3376-3380, 2004.
DOI : 10.1073/pnas.0400271101

T. Weber, F. Parlati, J. Mcnew, R. Johnston, and B. Westermann, Snarepins Are Functionally Resistant to Disruption by Nsf and ??SNAP, The Journal of Cell Biology, vol.15, issue.5, pp.1063-1072, 2000.
DOI : 10.1016/S0092-8674(00)81669-4

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174819

L. Schwartz, A. K. Wasserman, and S. , Immunologic release of b-hexosaminidase and b-glucuronidase from purified rat serosal mast cells, J Immunol, vol.123, pp.1445-1450, 1979.

M. Roa, F. Paumet, L. Mao, J. David, B. Blank et al., Involvement of the ras-like GTPase rab3d in RBL-2H3 mast cell exocytosis following stimulation via high affinity IgE receptors (Fc epsilonRI), J Immunol, vol.159, pp.2815-2823, 1997.