S. Allan, P. Tyrrell, and N. Rothwell, Interleukin-1 and neuronal injury, Nature Reviews Immunology, vol.23, issue.8, pp.629-640, 2005.
DOI : 10.1016/S0304-3940(98)00537-0

R. Ambasta, P. Kumar, K. Griendling, H. Schmidt, R. Busse et al., Direct Interaction of the Novel Nox Proteins with p22phox Is Required for the Formation of a Functionally Active NADPH Oxidase, Journal of Biological Chemistry, vol.279, issue.44, pp.45935-45941, 2004.
DOI : 10.1074/jbc.M406486200

H. Arai, T. Furuya, T. Yasuda, M. Miura, Y. Mizuno et al., Neurotoxic Effects of Lipopolysaccharide on Nigral Dopaminergic Neurons Are Mediated by Microglial Activation, Interleukin-1??, and Expression of Caspase-11 in Mice, Journal of Biological Chemistry, vol.279, issue.49, pp.51647-51653, 2004.
DOI : 10.1074/jbc.M407328200

B. Bánfi, R. Clark, K. Steger, and K. Krause, Two Novel Proteins Activate Superoxide Generation by the NADPH Oxidase NOX1, Journal of Biological Chemistry, vol.278, issue.6, pp.3510-3513, 2003.
DOI : 10.1074/jbc.C200613200

K. Bedard and K. Krause, The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology, Physiological Reviews, vol.87, issue.1, pp.245-313, 2007.
DOI : 10.1152/physrev.00044.2005

V. Bianca, S. Dusi, E. Bianchini, D. Prà, I. Rossi et al., ??-Amyloid Activates the O-2 Forming NADPH Oxidase in Microglia, Monocytes, and Neutrophils: A POSSIBLE INFLAMMATORY MECHANISM OF NEURONAL DAMAGE IN ALZHEIMER'S DISEASE, Journal of Biological Chemistry, vol.274, issue.22, pp.15493-15499, 1999.
DOI : 10.1074/jbc.274.22.15493

V. Bindokas, J. Jordán, C. Lee, and R. Miller, Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine, J Neurosci, vol.16, pp.1324-1336, 1996.

M. Block, L. Zecca, and J. Hong, Microglia-mediated neurotoxicity: uncovering the molecular mechanisms, Nature Reviews Neuroscience, vol.13, issue.1, pp.57-69, 2007.
DOI : 10.1523/JNEUROSCI.4306-04.2005

Z. Cai, Y. Pang, S. Lin, and P. Rhodes, Differential roles of tumor necrosis factor-?? and interleukin-1 ?? in lipopolysaccharide-induced brain injury in the neonatal rat, Brain Research, vol.975, issue.1-2, pp.37-47, 2003.
DOI : 10.1016/S0006-8993(03)02545-9

Y. Campion, M. Paclet, A. Jesaitis, B. Marques, A. Grichine et al., New insights into the membrane topology of the phagocyte NADPH oxidase: Characterization of an anti-gp91-phox conformational monoclonal antibody, Biochimie, vol.89, issue.9, pp.1145-1158, 2007.
DOI : 10.1016/j.biochi.2007.01.010

URL : https://hal.archives-ouvertes.fr/hal-00384098

H. Choi, J. Ryu, S. Kim, and J. Mclarnon, Modulation of the Purinergic P2X7 Receptor Attenuates Lipopolysaccharide-Mediated Microglial Activation and Neuronal Damage in Inflamed Brain, Journal of Neuroscience, vol.27, issue.18, pp.4957-4968, 2007.
DOI : 10.1523/JNEUROSCI.5417-06.2007

J. Craft, D. Watterson, E. Hirsch, V. Eldik, and L. , Interleukin 1 receptor antagonist knockout mice show enhanced microglial activation and neuronal damage induced by intracerebroventricular infusion of human beta-amyloid, Journal of Neuroinflammation, vol.2, issue.1, p.15, 2005.
DOI : 10.1186/1742-2094-2-15

F. Deleo, J. Burritt, L. Yu, A. Jesaitis, M. Dinauer et al., Processing and Maturation of Flavocytochrome b558 Include Incorporation of Heme as a Prerequisite for Heterodimer Assembly, Journal of Biological Chemistry, vol.275, issue.18, pp.13986-13993, 2000.
DOI : 10.1074/jbc.275.18.13986

W. Dröge, Free Radicals in the Physiological Control of Cell Function, Physiological Reviews, vol.82, issue.1, pp.47-95, 2002.
DOI : 10.1152/physrev.00018.2001

A. Ferreira and M. Rapoport, The synapsins: beyond the regulation of neurotransmitter release, Cellular and Molecular Life Sciences (CMLS), vol.59, issue.4, pp.589-595, 2002.
DOI : 10.1007/s00018-002-8451-5

B. Fiebich, R. Butcher, and P. Gebicke-haerter, Protein kinase C-mediated regulation of inducible nitric oxide synthase expression in cultured microglial cells, Journal of Neuroimmunology, vol.92, issue.1-2, pp.170-178, 1998.
DOI : 10.1016/S0165-5728(98)00201-X

G. Gavazzi, B. Banfi, C. Deffert, L. Fiette, M. Schappi et al., Decreased blood pressure in NOX1-deficient mice, FEBS Letters, vol.112, issue.2, pp.497-504, 2006.
DOI : 10.1016/j.febslet.2005.12.049

URL : https://hal.archives-ouvertes.fr/hal-00400060

B. Halliwell, Oxidative stress and neurodegeneration: where are we now?, Journal of Neurochemistry, vol.11, issue.6, pp.1634-1658, 2006.
DOI : 10.1056/NEJMp058312

U. Hanisch and H. Kettenmann, Microglia: active sensor and versatile effector cells in the normal and pathologic brain, Nature Neuroscience, vol.24, issue.11, pp.1387-1394, 2007.
DOI : 10.1038/nn1997

T. Harrigan, I. Abdullaev, D. Mongin, and A. , Activation of microglia with zymosan promotes excitatory amino acid release via volume-regulated anion channels: the role of NADPH oxidases, Journal of Neurochemistry, vol.18, issue.6, pp.2449-2462, 2008.
DOI : 10.1111/j.1471-4159.2008.05553.x

K. Hill, L. Zollinger, H. Watt, N. Carlson, and J. Rose, Inducible nitric oxide synthase in chronic active multiple sclerosis plaques: distribution, cellular expression and association with myelin damage, Journal of Neuroimmunology, vol.151, issue.1-2, pp.171-179, 2004.
DOI : 10.1016/j.jneuroim.2004.02.005

T. Hunter, Signaling???2000 and Beyond, Cell, vol.100, issue.1, pp.113-127, 2000.
DOI : 10.1016/S0092-8674(00)81688-8

URL : http://doi.org/10.1016/s0092-8674(00)81688-8

M. Ibi, K. Matsuno, D. Shiba, M. Katsuyama, K. Iwata et al., Reactive Oxygen Species Derived from NOX1/NADPH Oxidase Enhance Inflammatory Pain, Journal of Neuroscience, vol.28, issue.38, pp.9486-9494, 2008.
DOI : 10.1523/JNEUROSCI.1857-08.2008

M. Iravani, K. Kashefi, P. Mander, S. Rose, and P. Jenner, Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration, Neuroscience, vol.110, issue.1, pp.49-58, 2002.
DOI : 10.1016/S0306-4522(01)00562-0

S. Jung, J. Aliberti, P. Graemmel, M. Sunshine, G. Kreutzberg et al., Analysis of Fractalkine Receptor CX3CR1 Function by Targeted Deletion and Green Fluorescent Protein Reporter Gene Insertion, Molecular and Cellular Biology, vol.20, issue.11, pp.4106-4114, 2000.
DOI : 10.1128/MCB.20.11.4106-4114.2000

T. Kawahara, D. Ritsick, G. Cheng, and J. Lambeth, Point Mutations in the Proline-rich Region of p22phox Are Dominant Inhibitors of Nox1- and Nox2-dependent Reactive Oxygen Generation, Journal of Biological Chemistry, vol.280, issue.36, pp.31859-31869, 2005.
DOI : 10.1074/jbc.M501882200

J. Lambeth, T. Kawahara, and B. Diebold, Regulation of Nox and Duox enzymatic activity and expression, Free Radical Biology and Medicine, vol.43, issue.3, pp.319-331, 2007.
DOI : 10.1016/j.freeradbiomed.2007.03.028

S. Lehnardt, L. Massillon, P. Follett, F. Jensen, R. Ratan et al., Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway, Proceedings of the National Academy of Sciences, vol.100, issue.14, pp.8514-8519, 2003.
DOI : 10.1073/pnas.1432609100

J. Li, O. Baud, T. Vartanian, J. Volpe, and P. Rosenberg, Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes, Proceedings of the National Academy of Sciences, vol.102, issue.28, pp.9936-9941, 2005.
DOI : 10.1073/pnas.0502552102

L. Lue, L. Brachova, W. Civin, and R. J. , Inflammation, A?? Deposition, and Neurofibrillary Tangle Formation as Correlates of Alzheimer's Disease Neurodegeneration, Journal of Neuropathology and Experimental Neurology, vol.55, issue.10, pp.1083-1088, 1996.
DOI : 10.1097/00005072-199655100-00008

X. Ma, P. Gottschall, L. Chen, M. Wiranowska, and C. Phelps, Role and Mechanisms of Interleukin-1 in the Modulation of Neurotoxicity, Neuroimmunomodulation, vol.10, issue.4, pp.199-207, 2002.
DOI : 10.1159/000068322

P. Mander, A. Jekabsone, and G. Brown, Microglia Proliferation Is Regulated by Hydrogen Peroxide from NADPH Oxidase, The Journal of Immunology, vol.176, issue.2, pp.1046-1052, 2006.
DOI : 10.4049/jimmunol.176.2.1046

J. Marden, M. Harraz, A. Williams, K. Nelson, M. Luo et al., Redox modifier genes in amyotrophic lateral sclerosis in mice, Journal of Clinical Investigation, vol.117, issue.10, pp.2913-2919, 2007.
DOI : 10.1172/JCI31265DS1

J. Marín-teva, I. Dusart, C. C. Gervais, A. Van-rooijen, N. Mallat et al., Microglia Promote the Death of Developing Purkinje Cells, Neuron, vol.41, issue.4, pp.535-547, 2004.
DOI : 10.1016/S0896-6273(04)00069-8

R. Medeiros, R. Prediger, G. Passos, P. Pandolfo, F. Duarte et al., Connecting TNF-?? Signaling Pathways to iNOS Expression in a Mouse Model of Alzheimer's Disease: Relevance for the Behavioral and Synaptic Deficits Induced by Amyloid ?? Protein, Journal of Neuroscience, vol.27, issue.20, pp.5394-5404, 2007.
DOI : 10.1523/JNEUROSCI.5047-06.2007

A. Miletic, D. Graham, V. Montgrain, K. Fujikawa, T. Kloeppel et al., Vav proteins control MyD88-dependent oxidative burst, Blood, vol.109, issue.8, pp.3360-3368, 2007.
DOI : 10.1182/blood-2006-07-033662

W. Nauseef, How human neutrophils kill and degrade microbes: an integrated view, Immunological Reviews, vol.175, issue.1, pp.88-102, 2007.
DOI : 10.1073/pnas.0337370100

O. Neill, L. Bowie, and A. , The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling, Nature Reviews Immunology, vol.19, issue.5, pp.353-364, 2007.
DOI : 10.1038/nri2079

C. Parkos, M. Dinauer, A. Jesaitis, S. Orkin, and J. Curnutte, Absence of both the 91kD and 22kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease, Blood, vol.73, pp.1416-1420, 1989.

S. Pawate, Q. Shen, F. Fan, and N. Bhat, Redox regulation of glial inflammatory response to lipopolysaccharide and interferon?, Journal of Neuroscience Research, vol.23, issue.4, pp.540-551, 2004.
DOI : 10.1002/jnr.20180

S. Philippe, C. Sarkis, M. Barkats, H. Mammeri, C. Ladroue et al., Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo, Proceedings of the National Academy of Sciences, vol.103, issue.47, pp.17684-17689, 2006.
DOI : 10.1073/pnas.0606197103

URL : https://hal.archives-ouvertes.fr/hal-00166677

J. Pollock, D. Williams, M. Gifford, L. Li, X. Du et al., Mouse model of X???linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production, Nature Genetics, vol.57, issue.2, pp.202-209, 1995.
DOI : 10.1038/349257a0

B. Qin, L. Cartier, M. Dubois-dauphin, B. Li, L. Serrander et al., A key role for the microglial NADPH oxidase in APP-dependent killing of neurons, Neurobiology of Aging, vol.27, issue.11, pp.1577-1587, 2006.
DOI : 10.1016/j.neurobiolaging.2005.09.036

L. Qin, Y. Liu, T. Wang, S. Wei, M. Block et al., NADPH Oxidase Mediates Lipopolysaccharide-induced Neurotoxicity and Proinflammatory Gene Expression in Activated Microglia, Journal of Biological Chemistry, vol.279, issue.2, pp.1415-1421, 2004.
DOI : 10.1074/jbc.M307657200

L. Qin, G. Li, X. Qian, Y. Liu, X. Wu et al., Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation, Glia, vol.19, issue.1, pp.78-84, 2005.
DOI : 10.1002/glia.20225

S. Qin, C. Colin, I. Hinners, A. Gervais, C. Cheret et al., System Xc- and Apolipoprotein E Expressed by Microglia Have Opposite Effects on the Neurotoxicity of Amyloid-beta Peptide 1-40, Journal of Neuroscience, vol.26, issue.12, pp.3345-3356, 2006.
DOI : 10.1523/JNEUROSCI.5186-05.2006

E. Reeves, H. Lu, H. Jacobs, C. Messina, S. Bolsover et al., Killing activity of neutrophils is mediated through activation of proteases by K+??flux, Nature, vol.81, issue.6878, pp.291-297, 2002.
DOI : 10.1038/416291a

R. Rock, G. Gekker, S. Hu, W. Sheng, M. Cheeran et al., Role of Microglia in Central Nervous System Infections, Clinical Microbiology Reviews, vol.17, issue.4, pp.942-964, 2004.
DOI : 10.1128/CMR.17.4.942-964.2004

S. Sankarapandi, J. Zweier, G. Mukherjee, M. Quinn, and D. Huso, Measurement and Characterization of Superoxide Generation in Microglial Cells: Evidence for an NADPH Oxidase-Dependent Pathway, Archives of Biochemistry and Biophysics, vol.353, issue.2, pp.312-321, 1998.
DOI : 10.1006/abbi.1998.0658

L. Serrander, L. Cartier, K. Bedard, B. Banfi, B. Lardy et al., NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation, Biochemical Journal, vol.406, issue.1, pp.105-114, 2007.
DOI : 10.1042/BJ20061903

URL : https://hal.archives-ouvertes.fr/hal-00400481

J. Stolk, T. Hiltermann, J. Dijkman, and A. Verhoeven, Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol., American Journal of Respiratory Cell and Molecular Biology, vol.11, issue.1, pp.95-102, 1994.
DOI : 10.1165/ajrcmb.11.1.8018341

D. Stuehr, O. Fasehun, N. Kwon, S. Gross, J. Gonzalez et al., Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs, FASEB J, vol.5, pp.98-103, 1991.

Y. Suh, R. Arnold, B. Lassegue, J. Shi, X. Xu et al., Cell transformation by the superoxidegenerating oxidase Mox1, Nature, vol.401, pp.79-82, 1999.

C. Szabó, H. Ischiropoulos, and R. Radi, Peroxynitrite: biochemistry, pathophysiology and development of therapeutics, Nature Reviews Drug Discovery, vol.49, issue.8, pp.662-680, 2007.
DOI : 10.1038/nrd2222

R. Terry, E. Masliah, D. Salmon, N. Butters, R. Deteresa et al., Physical basis of cognitive alterations in alzheimer's disease: Synapse loss is the major correlate of cognitive impairment, Annals of Neurology, vol.3, issue.4, pp.572-580, 1991.
DOI : 10.1002/ana.410300410

D. Tew, Inhibition of cytochrome P450 reductase by the diphenyliodonium cation. Kinetic analysis and covalent modifications, Biochemistry, vol.32, issue.38, pp.10209-10215, 1993.
DOI : 10.1021/bi00089a042

C. Théry, B. Chamak, and M. Mallat, Cytotoxic Effect of Brain Macrophages on Developing Neurons, European Journal of Neuroscience, vol.174, issue.11, pp.1155-1164, 1991.
DOI : 10.1016/0006-8993(89)91550-3

M. Tomás-camardiel, I. Rite, A. Herrera, R. De-pablos, J. Cano et al., Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood???brain barrier, and damage in the nigral dopaminergic system, Neurobiology of Disease, vol.16, issue.1, pp.190-201, 2004.
DOI : 10.1016/j.nbd.2004.01.010

F. Torreilles, S. Salman-tabcheh, M. Guérin, and J. Torreilles, Neurodegenerative disorders: the role of peroxynitrite, Brain Research Reviews, vol.30, issue.2, pp.153-163, 1999.
DOI : 10.1016/S0165-0173(99)00014-4

E. Veal, A. Day, and B. Morgan, Hydrogen Peroxide Sensing and Signaling, Molecular Cell, vol.26, issue.1, pp.1-14, 2007.
DOI : 10.1016/j.molcel.2007.03.016

M. Vercellino, A. Merola, C. Piacentino, B. Votta, E. Capello et al., Altered Glutamate Reuptake in Relapsing-Remitting and Secondary Progressive Multiple Sclerosis Cortex: Correlation With Microglia Infiltration, Demyelination, and Neuronal and Synaptic Damage, Journal of Neuropathology & Experimental Neurology, vol.66, issue.8, pp.732-739, 2007.
DOI : 10.1097/nen.0b013e31812571b0

S. Wakselman, C. Béchade, A. Roumier, D. Bernard, A. Triller et al., Developmental Neuronal Death in Hippocampus Requires the Microglial CD11b Integrin and DAP12 Immunoreceptor, Journal of Neuroscience, vol.28, issue.32, pp.8138-8143, 2008.
DOI : 10.1523/JNEUROSCI.1006-08.2008

C. Walder, S. Green, W. Darbonne, J. Mathias, R. J. Dinauer et al., Ischemic Stroke Injury Is Reduced in Mice Lacking a Functional NADPH Oxidase, Stroke, vol.28, issue.11, pp.2252-2258, 1997.
DOI : 10.1161/01.STR.28.11.2252

B. Wilkinson, J. Koenigsknecht-talboo, C. Grommes, C. Lee, and G. Landreth, Fibrillar beta-Amyloid-stimulated Intracellular Signaling Cascades Require Vav for Induction of Respiratory Burst and Phagocytosis in Monocytes and Microglia, Journal of Biological Chemistry, vol.281, issue.30, pp.20842-20850, 2006.
DOI : 10.1074/jbc.M600627200

D. Wu, P. Teismann, K. Tieu, M. Vila, V. Jackson-lewis et al., NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease, Proceedings of the National Academy of Sciences, vol.100, issue.10, pp.6145-6150, 2003.
DOI : 10.1073/pnas.0937239100

D. Wu, D. Ré, M. Nagai, H. Ischiropoulos, and S. Przedborski, The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice, Proceedings of the National Academy of Sciences, vol.103, issue.32, pp.12132-12137, 2006.
DOI : 10.1073/pnas.0603670103

Z. Xie, M. Wei, T. Morgan, P. Fabrizio, D. Han et al., Peroxynitrite mediates neurotoxicity of amyloid -peptide1? 42-and lipopolysaccharide-activated microglia, J Neurosci, vol.22, pp.3484-3492, 2002.

A. Zaidi and M. Michaelis, Effects of reactive oxygen species on brain synaptic plasma membrane Ca2+-ATPase, Free Radical Biology and Medicine, vol.27, issue.7-8, pp.810-821, 1999.
DOI : 10.1016/S0891-5849(99)00128-8

W. Zhang, T. Wang, P. Z. Miller, D. Wu, X. Block et al., Aggregated ??-synuclein activates microglia: a process leading to disease progression in Parkinson's disease, The FASEB Journal, vol.19, issue.6, pp.533-542, 2005.
DOI : 10.1096/fj.04-2751com

M. Zito, L. Koennecke, M. Mcauliffe, B. Mcnally, N. Van-rooijen et al., Depletion of systemic macrophages by liposome-encapsulated clodronate attenuates striatal macrophage invasion and neurodegeneration following local endotoxin infusion in gerbils, Brain Research, vol.892, issue.1, pp.13-26, 2001.
DOI : 10.1016/S0006-8993(00)03135-8