M. Vicente-manzanares and F. Sanchez-madrid, Role of the cytoskeleton during leukocyte responses, Nature Reviews Immunology, vol.10, issue.2, pp.110-132, 2004.
DOI : 10.1093/emboj/16.9.2397

B. Geiger, D. Rosen, and G. Berke, Spatial relationships of microtubule-organizing centers and the contact area of cytotoxic T lymphocytes and target cells, The Journal of Cell Biology, vol.95, issue.1, pp.137-180, 1982.
DOI : 10.1083/jcb.95.1.137

J. Ryser, E. Rungger-brändle, C. Chaponier, J. Gabblani, and P. Vassalli, The area of attachement of cytotoxic T lymphocytes to their target cells shows high motility and polarization of actin, but not myosin, J Immunol, vol.128, pp.1159-62, 1982.

A. Kupfer and G. Dennert, Reorientation of the microtubule organizing center and the Golgi apparatus in cloned cytotoxic lymphocytes triggered by binding to lysable target cells, J Immunol, vol.133, pp.2762-2768, 1984.

A. Kupfer, S. Swain, J. Jr, C. Singer, and S. , The specific direct interaction of helper T cells and antigen-presenting B cells., Proceedings of the National Academy of Sciences, vol.83, issue.16, pp.6080-6083, 1986.
DOI : 10.1073/pnas.83.16.6080

A. Kupfer and S. Singer, The specific interaction of helper T cells and antigen-presenting B cells. IV. Membrane and cytoskeletal reorganizations in the bound T cell as a function of antigen dose, Journal of Experimental Medicine, vol.170, issue.5, pp.1697-713, 1989.
DOI : 10.1084/jem.170.5.1697

A. Kupfer and S. Singer, Cell Biology of Cytotoxic and Helper T Cell Functions: Immunofluorescence Microscopic Studies of Single Cells and Cell Couples, Annual Review of Immunology, vol.7, issue.1, pp.309-346, 1989.
DOI : 10.1146/annurev.iy.07.040189.001521

A. Kupfer, T. Mosmann, and H. Kupfer, Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells., Proceedings of the National Academy of Sciences, vol.88, issue.3, pp.775-784, 1991.
DOI : 10.1073/pnas.88.3.775

H. Kupfer, C. Monks, and A. Kupfer, Small splenic B cells that bind to antigen-specific T helper (Th) cells and face the site of cytokine production in the Th cells selectively proliferate: immunofluorescence microscopic studies of Th-B antigen- presenting cell interactions, Journal of Experimental Medicine, vol.179, issue.5, pp.1507-1522, 1994.
DOI : 10.1084/jem.179.5.1507

J. Yanelly, J. Sullivan, J. Mandell, V. Egelhard, C. Monks et al., Reorientation and fusion of cytotoxic T lymphocyte granules after interaction with targer cells as determined by high resolution cinemigrography Three-dimensional segregation of supramolecular activation clusters in T cells The immunological synapse: a molecular machine controling T cell activation Formation and function of the immunological synapse, J Immunol Nature Science Curr Op Immunol, vol.136, issue.14, pp.377-388, 1986.

G. Bossi and G. Griffiths, CTL secretory lysosomes: biogenesis and secretion of a harmful organelle, Seminars in Immunology, vol.17, issue.1, pp.87-94, 2005.
DOI : 10.1016/j.smim.2004.09.007

J. Huppa and M. Davis, T-cell-antigen recognition and the immunological synapse, Nature Reviews Immunology, vol.3, issue.12, pp.973-83, 2003.
DOI : 10.1038/nri1245

J. Lin, M. Miller, and A. Shaw, The c-SMAC, The Journal of Cell Biology, vol.138, issue.2, pp.177-82, 2005.
DOI : 10.4049/jimmunol.168.9.4287

J. Jacobelli, P. Andres, J. Boisvert, and M. Krummel, New views of the immunological synapse: variations in assembly and function, Current Opinion in Immunology, vol.16, issue.3, pp.345-52, 2004.
DOI : 10.1016/j.coi.2004.03.008

M. Dustin, A dynamic view of the immunological synapse, Seminars in Immunology, vol.17, issue.6, pp.400-410, 2005.
DOI : 10.1016/j.smim.2005.09.002

A. Trautmann and S. Valitutti, The diversity of immunological synapses, Current Opinion in Immunology, vol.15, issue.3, pp.249-54, 2003.
DOI : 10.1016/S0952-7915(03)00040-2

D. Davis, T. Igakura, and F. Mccann, The protean immune cell synapse: a supramolecular structure with many functions, Seminars in Immunology, vol.15, issue.6, pp.317-341, 2003.
DOI : 10.1016/j.smim.2003.09.005

M. Dustin, S. Tseng, R. Varma, and G. Campi, T cell???dendritic cell immunological synapses, Current Opinion in Immunology, vol.18, issue.4, pp.512-518, 2006.
DOI : 10.1016/j.coi.2006.05.017

C. Brossard, V. Feuillet, and A. Schmitt, Multifocal structure of the T cell - dendritic cell synapse, European Journal of Immunology, vol.342, issue.6, pp.1741-53, 2005.
DOI : 10.1002/eji.200425857

D. Sancho, M. Vicente-manzanares, and M. Mittelbrunn, Regulation of microtubule-organizing center orientation and actomyosin cytoskeleton rearrangement during immune interactions, Immunological Reviews, vol.179, issue.1, pp.84-97, 2002.
DOI : 10.1016/S1074-7613(01)00112-1

P. Negulescu, T. Krasieva, A. Khan, H. Kerschbaum, and M. Cahalan, Polarity of T Cell Shape, Motility, and Sensitivity to Antigen, Immunity, vol.4, issue.5, pp.421-451, 1996.
DOI : 10.1016/S1074-7613(00)80409-4

X. Wei, B. Tromberg, and M. Cahalan, Mapping the sensitivity of T cells with an optical trap: Polarity and minimal number of receptors for Ca2+ signaling, Proceedings of the National Academy of Sciences, vol.96, issue.15, pp.8471-8477, 1999.
DOI : 10.1073/pnas.96.15.8471

J. Stinchcombe, G. Bossi, S. Booth, and G. Griffiths, The Immunological Synapse of CTL Contains a Secretory Domain and Membrane Bridges, Immunity, vol.15, issue.5, pp.751-61, 2001.
DOI : 10.1016/S1074-7613(01)00234-5

J. Kuhn and M. Poenie, Dynamic Polarization of the Microtubule Cytoskeleton during CTL-Mediated Killing, Immunity, vol.16, issue.1, pp.111-132, 2002.
DOI : 10.1016/S1074-7613(02)00262-5

J. Stinchcombe, E. Majorovits, G. Bossi, S. Fuller, and G. Griffiths, Centrosome polarization delivers secretory granules to the immunological synapse, Nature, vol.17, issue.7110, pp.462-467, 2006.
DOI : 10.1038/nature05071

N. Blanchard, D. Bartolo, V. Hivroz, and C. , In the Immune Synapse, ZAP-70 Controls T Cell Polarization and Recruitment of Signaling Proteins but Not Formation of the Synaptic Pattern, Immunity, vol.17, issue.4, pp.389-99, 2002.
DOI : 10.1016/S1074-7613(02)00421-1

URL : https://hal.archives-ouvertes.fr/hal-00138115

B. Lowin-kropf, V. Smith-shapiro, and A. Weiss, Cytoskeletal Polarization of T Cells Is Regulated by an Immunoreceptor Tyrosine-based Activation Motif???dependent Mechanism, The Journal of Cell Biology, vol.137, issue.4, pp.861-71, 1998.
DOI : 10.1084/jem.160.5.1284

N. Martin-cofreces, D. Sancho, and E. Fernandez, Role of Fyn in the Rearrangement of Tubulin Cytoskeleton Induced through TCR, The Journal of Immunology, vol.176, issue.7, pp.4201-4208, 2006.
DOI : 10.4049/jimmunol.176.7.4201

URL : https://hal.archives-ouvertes.fr/pasteur-00164640

M. Kuhné, J. Lin, and D. Yablonski, Linker for Activation of T Cells, ??-Associated Protein-70, and Src Homology 2 Domain-Containing Leukocyte Protein-76 are Required for TCR-Induced Microtubule-Organizing Center Polarization, The Journal of Immunology, vol.171, issue.2, pp.860-866, 2003.
DOI : 10.4049/jimmunol.171.2.860

M. Dustin, M. Olszowy, and A. Holdorf, A Novel Adaptor Protein Orchestrates Receptor Patterning and Cytoskeletal Polarity in T-Cell Contacts, Cell, vol.94, issue.5, pp.667-77, 1998.
DOI : 10.1016/S0092-8674(00)81608-6

X. Chen, D. Allan, and K. Krzewski, CD28-stimulated ERK2 phosphorylation is required for polarization of the microtubule organizing center and granules in YTS NK cells, Proceedings of the National Academy of Sciences, vol.103, issue.27, pp.10346-51, 2006.
DOI : 10.1073/pnas.0604236103

L. Stowers, D. Yelon, L. Berg, and J. Chant, Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42., Proceedings of the National Academy of Sciences, vol.92, issue.11, pp.5027-5058, 1995.
DOI : 10.1073/pnas.92.11.5027

T. Gomez, K. Kumar, and R. Medeiros, Formins Regulate the Actin-Related Protein 2/3 Complex-Independent Polarization of the Centrosome to the Immunological Synapse, Immunity, vol.26, issue.2, pp.177-90, 2007.
DOI : 10.1016/j.immuni.2007.01.008

D. Billadeau, J. Nolz, and T. Gomez, Regulation of T-cell activation by the cytoskeleton, Nature Reviews Immunology, vol.116, issue.2, pp.131-174, 2007.
DOI : 10.1038/nri2021

S. Etienne-manneville and A. Hall, Cell polarity: Par6, aPKC and cytoskeletal crosstalk, Current Opinion in Cell Biology, vol.15, issue.1, pp.67-72, 2003.
DOI : 10.1016/S0955-0674(02)00005-4

S. Etienne-manneville and A. Hall, Integrin-Mediated Activation of Cdc42 Controls Cell Polarity in Migrating Astrocytes through PKC??, Cell, vol.106, issue.4, pp.489-98, 2001.
DOI : 10.1016/S0092-8674(01)00471-8

A. Palazzo, H. Joseph, and Y. Chen, Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization, Current Biology, vol.11, issue.19, pp.1356-541, 2001.
DOI : 10.1016/S0960-9822(01)00475-4

J. Combs, S. Kim, and S. Tan, Recruitment of dynein to the Jurkat immunological synapse, Proceedings of the National Academy of Sciences, vol.103, issue.40, pp.14883-14891, 2006.
DOI : 10.1073/pnas.0600914103

A. Marie-cardin, H. Kirchgessner, C. Eckerskorn, S. Meur, and B. Schraven, Human T lymphocyte activation induces tyrosine phosphorylation of ??-tubulin and its association with the SH2 domain of the p59fyn protein tyrosine kinase, European Journal of Immunology, vol.268, issue.12, pp.3290-3297, 1995.
DOI : 10.1002/eji.1830251214

S. Ley, W. Verbi, and D. Pappin, Tyrosine phosphorylation of ?? tubulin in human T lymphocytes, European Journal of Immunology, vol.356, issue.1, pp.99-106, 1994.
DOI : 10.1002/eji.1830240116

S. Le-gouvello, V. Manceau, and A. Sobel, Serine 16 of stathmin as a cytosolic target for Ca2+/Calmodulin-dependent kinase II after CD2 triggering of human T lymphocytes, J Immunol, vol.161, pp.1113-1135, 1998.

C. Rubin and G. Atweh, The role of stathmin in the regulation of the cell cycle, Journal of Cellular Biochemistry, vol.25, issue.2, pp.242-50, 2004.
DOI : 10.1002/jcb.20187

J. Serrador, J. Cabrero, and D. Sancho, HDAC6 Deacetylase Activity Links the Tubulin Cytoskeleton with Immune Synapse Organization, Immunity, vol.20, issue.4, pp.417-445, 2004.
DOI : 10.1016/S1074-7613(04)00078-0

S. Etienne-manneville, Cdc42 - the centre of polarity, Journal of Cell Science, vol.117, issue.8, pp.1291-300, 2004.
DOI : 10.1242/jcs.01115

M. Montoya, D. Sancho, and G. Bonello, Role of ICAM-3 in the initial interaction of T lymphocytes and APCs, Nature Immunology, vol.3, issue.2, pp.159-68, 2001.
DOI : 10.1038/ni753

V. Das, B. Nal, and A. Roumier, Membrane-cytoskeleton interactions during the formation of the immunological synapse and subsequent T-cell activation, Immunological Reviews, vol.112, issue.1, pp.123-158, 2002.
DOI : 10.1046/j.1462-5822.2001.00155.x

URL : https://hal.archives-ouvertes.fr/hal-00137570

S. Bunnell, V. Kapoor, R. Trible, W. Zhang, L. Samelson et al., Dynamic Actin Polymerization Drives T Cell Receptor???Induced Spreading, Immunity, vol.14, issue.3, pp.315-344, 2000.
DOI : 10.1016/S1074-7613(01)00112-1

B. Nal, P. Carroll, and E. Mohr, Coronin-1 expression in T lymphocytes: insights into protein function during T cell development and activation, International Immunology, vol.16, issue.2, pp.231-271, 2004.
DOI : 10.1093/intimm/dxh022

S. Charrin and A. Alcover, Role of ERM (ezrin-radixin-moesin) proteins in T lymphocyte polarization, immune synapse formation and in T cell receptor-mediated signaling, Frontiers in Bioscience, vol.11, issue.1, pp.1987-97, 2006.
DOI : 10.2741/1940

URL : https://hal.archives-ouvertes.fr/hal-00138079

R. Weil, K. Schwanborn, and A. Alcover, Induction of the NF-??B Cascade by Recruitment of the Scaffold Molecule NEMO to the T Cell Receptor, Immunity, vol.18, issue.1, pp.13-26, 2003.
DOI : 10.1016/S1074-7613(02)00506-X

M. Groysman, I. Hornstein, A. Alcover, and S. Katzav, Vav1 and Ly-GDI Two Regulators of Rho GTPases, Function Cooperatively as Signal Transducers in T Cell Antigen Receptor-induced Pathways, Journal of Biological Chemistry, vol.277, issue.51, pp.50121-50151, 2002.
DOI : 10.1074/jbc.M204299200

E. Tomas, T. Chau, and J. Madrenas, Clustering of a lipid-raft associated pool of ERM proteins at the immunological synapse upon T cell receptor or CD28 ligation, Immunology Letters, vol.83, issue.2, pp.143-150, 2002.
DOI : 10.1016/S0165-2478(02)00075-5

T. Yokosuka, K. Sakata-sogawa, and W. Kobayashi, Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76, Nature Immunology, vol.235, issue.12, pp.1253-62, 2005.
DOI : 10.1038/ni1272

M. Cahalan and I. Parker, Imaging the choreography of lymphocyte trafficking and the immune response, Current Opinion in Immunology, vol.18, issue.4, pp.476-82, 2006.
DOI : 10.1016/j.coi.2006.05.013

M. Dustin, S. Tseng, R. Varma, and G. Campi, T cell???dendritic cell immunological synapses, Current Opinion in Immunology, vol.18, issue.4, pp.512-518, 2006.
DOI : 10.1016/j.coi.2006.05.017

D. Sedwick, M. Morgan, and L. Jusino, LFA-1, and CD28 play unique and complementary roles in signaling T cell cytoskeletal reorganization, J Immunol, vol.162, pp.1367-75, 1999.

M. Krause, A. Sechi, and M. Konradt, Fyn-Binding Protein (Fyb)/Slp-76???Associated Protein (Slap), Ena/Vasodilator-Stimulated Phosphoprotein (Vasp) Proteins and the Arp2/3 Complex Link T Cell Receptor (Tcr) Signaling to the Actin Cytoskeleton, The Journal of Cell Biology, vol.15, issue.1, pp.181-94, 2000.
DOI : 10.1016/S1074-7613(00)80606-8

J. Grasis, C. Browne, and C. Tsoukas, Inducible T Cell Tyrosine Kinase Regulates Actin-Dependent Cytoskeletal Events Induced by the T Cell Antigen Receptor, The Journal of Immunology, vol.170, issue.8, pp.3971-3977, 2003.
DOI : 10.4049/jimmunol.170.8.3971

D. Dombroski, R. Houghtling, and C. Labno, Kinase-Independent Functions for Itk in TCR-Induced Regulation of Vav and the Actin Cytoskeleton, The Journal of Immunology, vol.174, issue.3, pp.1385-92, 2005.
DOI : 10.4049/jimmunol.174.3.1385

I. Tskvitaria-fuller, A. Seth, and N. Mistry, Specific patterns of Cdc42 activity are related to distinct elements of T cell polarization Regulation of actin dynamics by WASP and WAVE family proteins WASP recruitment to the T cell:APC contact site occurs independently of Cdc42 activation, J Immunol Trends Cell Biol Immunity, vol.177, issue.15, pp.1708-1728, 2001.

R. Zeng, J. Cannon, and R. Abraham, SLP-76 Coordinates Nck-Dependent Wiskott-Aldrich Syndrome Protein Recruitment with Vav-1/Cdc42-Dependent Wiskott-Aldrich Syndrome Protein Activation at the T Cell-APC Contact Site, The Journal of Immunology, vol.171, issue.3, pp.1360-1368, 2003.
DOI : 10.4049/jimmunol.171.3.1360

M. Barda-saad, A. Braiman, and R. Titerence, Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton, Nature Immunology, vol.34, issue.1, pp.80-89, 2005.
DOI : 10.1038/ni1143

D. Gil, W. Schamel, M. Montoya, F. Sanchez-madrid, and B. Alarcon, Recruitment of Nck by CD3?? Reveals a Ligand-Induced Conformational Change Essential for T Cell Receptor Signaling and Synapse Formation, Cell, vol.109, issue.7, pp.901-913, 2002.
DOI : 10.1016/S0092-8674(02)00799-7

J. Houtman, M. Barda-saad, and L. Samelson, Examining multiprotein signaling complexes from all angles. The use of complementary techniques to characterize complex formation at the adapter protein, linker for activation of T cells, FEBS Journal, vol.11, issue.21, pp.5426-5461, 2005.
DOI : 10.1016/S0960-9822(02)01038-2

S. Bunnell, D. Hong, and J. Kardon, T cell receptor ligation induces the formation of dynamically regulated signaling assemblies, The Journal of Cell Biology, vol.115, issue.7, pp.1263-75, 2002.
DOI : 10.1016/S1074-7613(00)80606-8

G. Campi, R. Varma, M. Dustin, K. Badour, J. Zhang et al., Actin and agonist MHC???peptide complex???dependent T cell receptor microclusters as scaffolds for signaling, The Journal of Experimental Medicine, vol.114, issue.8, pp.1031-1037, 2003.
DOI : 10.1038/nature03391

J. Cannon and J. Burkhardt, Differential Roles for Wiskott-Aldrich Syndrome Protein in Immune Synapse Formation and IL-2 Production, The Journal of Immunology, vol.173, issue.3, pp.1658-62, 2004.
DOI : 10.4049/jimmunol.173.3.1658

C. Silvin, B. Belisle, and A. Abo, A Role for Wiskott-Aldrich Syndrome Protein in T-cell Receptor-mediated Transcriptional Activation Independent of Actin Polymerization, Journal of Biological Chemistry, vol.276, issue.24, pp.21450-21457, 2001.
DOI : 10.1074/jbc.M010729200

S. Snapper, F. Rosen, and E. Mizoguchi, Wiskott-Aldrich Syndrome Protein-Deficient Mice Reveal a Role for WASP in T but Not B Cell Activation, Immunity, vol.9, issue.1, pp.81-91, 1998.
DOI : 10.1016/S1074-7613(00)80590-7

M. Gallego, M. Santamaria, J. Pena, and I. Molina, Defective actin reorganization and polymerization of Wiskott-Aldrich T cells in response to CD3-mediated stimulation, Blood, vol.90, pp.3089-97, 1997.

L. Dupre, A. Aiuti, and S. Trifari, Wiskott-Aldrich Syndrome Protein Regulates Lipid Raft Dynamics during Immunological Synapse Formation, Immunity, vol.17, issue.2, pp.157-66, 2002.
DOI : 10.1016/S1074-7613(02)00360-6

D. Savoy, D. Billadeau, and P. Leibson, Cutting Edge: WIP, a Binding Partner for Wiskott-Aldrich Syndrome Protein, Cooperates with Vav in the Regulation of T Cell Activation, The Journal of Immunology, vol.164, issue.6, pp.2866-70, 2000.
DOI : 10.4049/jimmunol.164.6.2866

I. Anton, W. Lu, B. Mayer, R. N. Geha, and R. , The Wiskott-Aldrich Syndrome Protein-interacting Protein (WIP) Binds to the Adaptor Protein Nck, Journal of Biological Chemistry, vol.273, issue.33, pp.20992-20997, 1998.
DOI : 10.1074/jbc.273.33.20992

I. Anton, M. De-la-fuente, and T. Sims, WIP Deficiency Reveals a Differential Role for WIP and the Actin Cytoskeleton in T and B Cell Activation, Immunity, vol.16, issue.2, pp.193-204, 2002.
DOI : 10.1016/S1074-7613(02)00268-6

S. Tsukita, S. Yonemura, S. Tsukita, D. Louvard, and M. Arpin, ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction, Current Opinion in Cell Biology, vol.9, issue.1, pp.70-75, 1997.
DOI : 10.1016/S0955-0674(97)80154-8

J. Delon, K. Kaibuchi, and R. Germain, Exclusion of CD43 from the Immunological Synapse Is Mediated by Phosphorylation-Regulated Relocation of the Cytoskeletal Adaptor Moesin, Immunity, vol.15, issue.5, pp.691-701, 2001.
DOI : 10.1016/S1074-7613(01)00231-X

E. Allenspach, P. Cullinan, and J. Tong, ERM-Dependent Movement of CD43 Defines a Novel Protein Complex Distal to the Immunological Synapse, Immunity, vol.15, issue.5, pp.739-50, 2001.
DOI : 10.1016/S1074-7613(01)00224-2

S. Faure, L. Salazar-fontana, and M. Semichon, ERM proteins regulate cytoskeleton relaxation promoting T cell???APC conjugation, Nature Immunology, vol.7, issue.3, pp.272-281, 2004.
DOI : 10.1038/ni1039

K. Itoh, M. Sakakibara, and S. Yamasaki, Cutting Edge: Negative Regulation of Immune Synapse Formation by Anchoring Lipid Raft to Cytoskeleton Through Cbp-EBP50-ERM Assembly, The Journal of Immunology, vol.168, issue.2, pp.541-545, 2002.
DOI : 10.4049/jimmunol.168.2.541

K. Lee, S. Meuer, and Y. Samstag, Cofilin: a missing link between T cell co-stimulation and rearrangement of the actin cytoskeleton, European Journal of Immunology, vol.30, issue.3, pp.892-901, 2000.
DOI : 10.1002/1521-4141(200003)30:3<892::AID-IMMU892>3.0.CO;2-U

S. Eibert, K. Lee, and R. Pipkorn, Cofilin peptide homologs interfere with immunological synapse formation and T cell activation, Proceedings of the National Academy of Sciences, vol.101, issue.7, pp.1957-62, 2004.
DOI : 10.1073/pnas.0308282100

D. Pradhan and J. Morrow, The Spectrin-Ankyrin Skeleton Controls CD45 Surface Display and Interleukin-2 Production, Immunity, vol.17, issue.3, pp.303-318, 2002.
DOI : 10.1016/S1074-7613(02)00396-5

J. Nolz, T. Gomez, and P. Zhu, The WAVE2 Complex Regulates Actin Cytoskeletal Reorganization and CRAC-Mediated Calcium Entry during T Cell Activation, Current Biology, vol.16, issue.1, pp.24-34, 2006.
DOI : 10.1016/j.cub.2005.11.036

K. Hayashi and A. Altman, Filamin A Is Required for T Cell Activation Mediated by Protein Kinase C-??, The Journal of Immunology, vol.177, issue.3, pp.1721-1729, 2006.
DOI : 10.4049/jimmunol.177.3.1721

R. Tavano, R. Contento, and S. Baranda, CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse, Nature Cell Biology, vol.28, issue.11, pp.1270-1276, 2006.
DOI : 10.1038/ncb1492

T. Stossel, J. Condeelis, and L. Cooley, Filamins as integrators of cell mechanics and signalling, Nature Reviews Molecular Cell Biology, vol.2, issue.2, pp.138-183, 2001.
DOI : 10.1038/35052082

A. Kruchten and M. Mcniven, Dynamin as a mover and pincher during cell migration and invasion, Journal of Cell Science, vol.119, issue.9, pp.1683-90, 2006.
DOI : 10.1242/jcs.02963

T. Gomez, M. Hamann, and S. Mccarney, Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse, Nature Immunology, vol.166, issue.3, pp.261-70, 2005.
DOI : 10.1016/S1074-7613(01)00178-9

T. Gomez, S. Mccarney, and E. Carrizosa, HS1 Functions as an Essential Actin-Regulatory Adaptor Protein at the Immune Synapse, Immunity, vol.24, issue.6, pp.741-52, 2006.
DOI : 10.1016/j.immuni.2006.03.022

A. Monjas, A. Alcover, and B. Alarcón, Engaged and Bystander T Cell Receptors Are Down-modulated by Different Endocytotic Pathways, Journal of Biological Chemistry, vol.279, issue.53, pp.55376-84, 2004.
DOI : 10.1074/jbc.M409342200

M. Mcgavin, K. Badour, and L. Hardy, The Intersectin 2 Adaptor Links Wiskott Aldrich Syndrome Protein (WASp)-mediated Actin Polymerization to T Cell Antigen Receptor Endocytosis, The Journal of Experimental Medicine, vol.57, issue.12, pp.1777-87, 2001.
DOI : 10.1083/jcb.148.5.1047

K. Lee, A. Dinner, and C. Tu, The Immunological Synapse Balances T Cell Receptor Signaling and Degradation, Science, vol.302, issue.5648, pp.1218-1240, 2003.
DOI : 10.1126/science.1086507

L. Bras, S. Foucault, I. Foussat, and A. , Recruitment of the Actin-binding Protein HIP-55 to the Immunological Synapse Regulates T Cell Receptor Signaling and Endocytosis, Journal of Biological Chemistry, vol.279, issue.15, pp.15550-60, 2004.
DOI : 10.1074/jbc.M312659200

D. Depoil, R. Zaru, and M. Guiraud, Immunological Synapses Are Versatile Structures Enabling Selective T Cell Polarization, Immunity, vol.22, issue.2, pp.185-94, 2005.
DOI : 10.1016/j.immuni.2004.12.010

M. Huse, B. Lillemeier, M. Kuhns, D. Chen, and M. Davis, T cells use two directionally distinct pathways for cytokine secretion, Nature Immunology, vol.419, issue.3, pp.247-55, 2006.
DOI : 10.1038/ni1304

R. Clark, J. Stinchcombe, and A. Day, Adaptor protein 3???dependent microtubule-mediated movement of lytic granules to the immunological synapse, Nature Immunology, vol.4, issue.11, pp.1111-11120, 2003.
DOI : 10.1038/ni1000

R. Clark and G. Griffiths, Lytic granules, secretory lysosomes and disease, Current Opinion in Immunology, vol.15, issue.5, pp.516-537, 2003.
DOI : 10.1016/S0952-7915(03)00113-4

J. Feldmann, I. Callebaut, and G. Raposo, Munc13-4 Is Essential for Cytolytic Granules Fusion and Is Mutated in a Form of Familial Hemophagocytic Lymphohistiocytosis (FHL3), Cell, vol.115, issue.4, pp.461-73, 2003.
DOI : 10.1016/S0092-8674(03)00855-9

G. Menasche, E. Pastural, and J. Feldmann, Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome, Nat Genet, vol.25, pp.173-179, 2000.

J. Stinchcombe, D. Barral, and E. Mules, Rab27a Is Required for Regulated Secretion in Cytotoxic T Lymphocytes, The Journal of Cell Biology, vol.110, issue.4, pp.825-859, 2001.
DOI : 10.1073/pnas.140212797

M. Menager, G. Menasche, and M. Romao, Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4, Nature Immunology, vol.4, issue.3, pp.257-67, 2007.
DOI : 10.1002/(SICI)1097-0320(19960101)23:1<15::AID-CYTO3>3.0.CO;2-L

A. Wiedemann, D. Depoil, M. Faroudi, and S. Valitutti, Cytotoxic T lymphocytes kill multiple targets simultaneously via spatiotemporal uncoupling of lytic and stimulatory synapses, Proceedings of the National Academy of Sciences, vol.103, issue.29, pp.10985-90, 2006.
DOI : 10.1073/pnas.0600651103

V. Das, B. Nal, and A. Dujeancourt, Activation-Induced Polarized Recycling Targets T Cell Antigen Receptors to the Immunological Synapse, Immunity, vol.20, issue.5, pp.577-88, 2004.
DOI : 10.1016/S1074-7613(04)00106-2

URL : https://hal.archives-ouvertes.fr/pasteur-00137478

P. Linsley, J. Bradshaw, and J. Greene, Intracellular Trafficking of CTLA-4 and Focal Localization Towards Sites of TCR Engagement, Immunity, vol.4, issue.6, pp.535-578, 1996.
DOI : 10.1016/S1074-7613(00)80480-X

L. Ehrlich, P. Ebert, M. Krummel, A. Weiss, and M. Davis, Dynamics of p56lck Translocation to the T Cell Immunological Synapse following Agonist and Antagonist Stimulation, Immunity, vol.17, issue.6, pp.809-831, 2002.
DOI : 10.1016/S1074-7613(02)00481-8

G. Bonello, N. Blanchard, and M. Montoya, Dynamic recruitment of the adaptor protein LAT: LAT exists in two distinct intracellular pools and controls its own recruitment, Journal of Cell Science, vol.117, issue.7, pp.1009-1025, 2003.
DOI : 10.1242/jcs.00968

R. Varma, G. Campi, T. Yokosuka, T. Saito, and M. Dustin, T Cell Receptor-Proximal Signals Are Sustained in Peripheral Microclusters and Terminated in the Central Supramolecular Activation Cluster, Immunity, vol.25, issue.1, pp.117-144, 2006.
DOI : 10.1016/j.immuni.2006.04.010

K. Mossman, G. Campi, J. Groves, and M. Dustin, Altered TCR Signaling from Geometrically Repatterned Immunological Synapses, Science, vol.310, issue.5751, pp.1191-1194, 2005.
DOI : 10.1126/science.1119238

S. Bunnell, A. Singer, and D. Hong, Persistence of Cooperatively Stabilized Signaling Clusters Drives T-Cell Activation, Molecular and Cellular Biology, vol.26, issue.19, pp.7155-66, 2006.
DOI : 10.1128/MCB.00507-06

M. Thoulouze, N. Sol-foulon, and F. Blanchet, Human Immunodeficiency Virus Type-1 Infection Impairs the Formation of the Immunological Synapse, Immunity, vol.24, issue.5, pp.547-61, 2006.
DOI : 10.1016/j.immuni.2006.02.016

URL : https://hal.archives-ouvertes.fr/pasteur-00137479

S. Ley, M. Marsh, C. Bebbington, K. Proudfoot, and P. Jordan, Distinct intracellular localization of Lck and Fyn protein tyrosine kinases in human T lymphocytes, The Journal of Cell Biology, vol.125, issue.3, pp.639-688, 1994.
DOI : 10.1083/jcb.125.3.639

D. Sancho, M. Nieto, and M. Llano, The tyrosine kinase PYK2/RAFTK regulates natural killer (NK) cell cytotoxic response, and is translocated and activated upon specific target cell recognition and killing, J Cell Biol, vol.6, pp.1249-61, 2000.

J. Rodriguez-fernandez, M. Gomez, and A. Luque, The Interaction of Activated Integrin Lymphocyte Function-associated Antigen 1??with Ligand Intercellular Adhesion Molecule 1??Induces Activation and Redistribution of Focal Adhesion Kinase and Proline-rich Tyrosine Kinase 2??in T Lymphocytes, Molecular Biology of the Cell, vol.10, issue.6, pp.1891-907, 1999.
DOI : 10.1091/mbc.10.6.1891

Y. Volkov, A. Long, and D. Kelleher, Inside the crawling T cell: leukocyte functionassociated antigen 1 cross-linking is associated with microtubule-directed translocation of protein kinase C isoenzymes ?(I) and ?, J Immunol, vol.161, pp.6487-95, 1998.

Y. Volkov, A. Long, S. Mcgrath, D. Eidin, and D. Kelleher, Crucial importance of PKC?(I ), Nature Immunology, vol.274, issue.6, pp.508-522, 2001.
DOI : 10.1038/88700

D. Sancho, M. Montoya, and A. Monjas, TCR Engagement Induces Proline-Rich Tyrosine Kinase-2 (Pyk2) Translocation to the T Cell-APC Interface Independently of Pyk2 Activity and in an Immunoreceptor Tyrosine-Based Activation Motif-Mediated Fashion, The Journal of Immunology, vol.169, issue.1, pp.292-300, 2002.
DOI : 10.4049/jimmunol.169.1.292

L. Herreros, J. Rodriguez-fernandez, and M. Brown, Paxillin Localizes to the Lymphocyte Microtubule Organizing Center and Associates with the Microtubule Cytoskeleton, Journal of Biological Chemistry, vol.275, issue.34, pp.26436-26476, 2000.
DOI : 10.1074/jbc.M003970200

H. Ostergaard, O. Lou, C. Arendt, and N. Berg, Paxillin Phosphorylation and Association with Lck and Pyk2 in Anti-CD3- or Anti-CD45-stimulated T Cells, Journal of Biological Chemistry, vol.273, issue.10, pp.5692-5698, 1998.
DOI : 10.1074/jbc.273.10.5692

S. Goff, Host factors exploited by retroviruses, Nature Reviews Microbiology, vol.100, issue.4, pp.253-63, 2007.
DOI : 10.1038/nrmicro1541

M. Stevenson, HIV-1 pathogenesis, Nature Medicine, vol.9, issue.7, pp.853-60, 2003.
DOI : 10.1038/nm0703-853

S. Williams and W. Greene, Host factors regulating post-integration latency of HIV, Trends in Microbiology, vol.13, issue.4, pp.137-146, 2005.
DOI : 10.1016/j.tim.2005.02.006

A. Simmons, V. Aluvihare, and A. Mcmichael, Nef Triggers a Transcriptional Program in T Cells Imitating Single-Signal T Cell Activation and Inducing HIV Virulence Mediators, Immunity, vol.14, issue.6, pp.763-77, 2001.
DOI : 10.1016/S1074-7613(01)00158-3

Y. Wu and J. Marsh, Selective Transcription and Modulation of Resting T Cell Activity by Preintegrated HIV DNA, Science, vol.293, issue.5534, pp.1503-1509, 2001.
DOI : 10.1126/science.1061548

G. Renkema and K. Saksela, Interactions of HIV-1 NEF with cellular signal transducing proteins, Frontiers in Bioscience, vol.5, issue.1, pp.268-83, 2000.
DOI : 10.2741/Renkema

S. Das and S. Jameel, Biology of the HIV Nef protein, Indian J Med Res, vol.121, pp.315-347, 2005.

H. Kestler, D. Ringler, and K. Mori, Importance of the nef gene for maintenance of high virus loads and for development of AIDS, Cell, vol.65, issue.4, pp.651-62, 1991.
DOI : 10.1016/0092-8674(91)90097-I

C. Spina, T. Kwoh, M. Chowers, J. Guatelli, and D. Richman, The importance of nef in the induction of human immunodeficiency virus type 1 replication from primary quiescent CD4 lymphocytes, Journal of Experimental Medicine, vol.179, issue.1, pp.115-138, 1994.
DOI : 10.1084/jem.179.1.115

O. Fackler, W. Luo, M. Geyer, A. Alberts, and B. Peterlin, Activation of Vav by Nef Induces Cytoskeletal Rearrangements and Downstream Effector Functions, Molecular Cell, vol.3, issue.6, pp.729-768, 1999.
DOI : 10.1016/S1097-2765(01)80005-8

B. Smith, B. Krushelnycky, D. Mochly-rosen, and P. Berg, The HIV nef protein associates with protein kinase C theta, J Biol Chem, vol.271, pp.16753-16760, 1996.

J. Schrager, D. Minassian, V. Marsh, and J. , HIV Nef Increases T Cell ERK MAP Kinase Activity, Journal of Biological Chemistry, vol.277, issue.8, pp.6137-6179, 2002.
DOI : 10.1074/jbc.M107322200

G. Renkema, A. Manninen, D. Mann, M. Harris, and K. Saksela, Identification of the Nef-associated kinase as p21-activated kinase 2, Current Biology, vol.9, issue.23, pp.1407-1417, 1999.
DOI : 10.1016/S0960-9822(00)80086-X

R. Trible, L. Emert-sedlak, and T. Smithgall, HIV-1 Nef Selectively Activates Src Family Kinases Hck, Lyn, and c-Src through Direct SH3 Domain Interaction, Journal of Biological Chemistry, vol.281, issue.37, pp.27029-27067, 2006.
DOI : 10.1074/jbc.M601128200

M. Geyer, O. Fackler, and B. Peterlin, Structure-function relationships in HIV-1 Nef, EMBO reports, vol.189, issue.7, pp.580-585, 2001.
DOI : 10.1093/embo-reports/kve141

J. Wang, E. Kiyokawa, E. Verdin, and D. Trono, The Nef protein of HIV-1 associates with rafts and primes T cells for activation, Proceedings of the National Academy of Sciences, vol.97, issue.1, pp.394-403, 2000.
DOI : 10.1073/pnas.97.1.394

A. Baur, E. Sawai, and P. Dazin, HIV-1 nef leads to inhibition or activation of T cells depending on its intracellular localization, Immunity, vol.1, issue.5, pp.373-84, 1994.
DOI : 10.1016/1074-7613(94)90068-X

H. Brady, D. Pennington, C. Miles, and E. Dzierzak, CD4 cell surface downregulation in HIV-1 Nef transgenic mice is a consequence of intracellular sequestration, Embo J, vol.12, pp.4923-4955, 1993.

T. Swigut, N. Shohdy, and J. Skowronski, Mechanism for down-regulation of CD28 by Nef, The EMBO Journal, vol.20, issue.7, pp.1593-604, 2001.
DOI : 10.1093/emboj/20.7.1593

V. Piguet, L. Wan, and C. Borel, HIV-1 Nef protein binds to the cellular protein PACS- 1 to downregulate class I major histocompatibility complexes, Nat Cell Biol, vol.2, pp.163-170, 2000.

P. Stumptner-cuvelette, S. Morchoisne, and M. Dugast, HIV-1 Nef impairs MHC class II antigen presentation and surface expression, Proceedings of the National Academy of Sciences, vol.98, issue.21, pp.12144-12153, 2001.
DOI : 10.1073/pnas.221256498

URL : https://hal.archives-ouvertes.fr/pasteur-01372717

R. Madrid, K. Janvier, and D. Hitchin, Nef-induced Alteration of the Early/Recycling Endosomal Compartment Correlates with Enhancement of HIV-1 Infectivity, Journal of Biological Chemistry, vol.280, issue.6, pp.5032-5076, 2005.
DOI : 10.1074/jbc.M401202200

N. Michel, I. Allespach, S. Venzke, O. Fackler, and O. Keppler, The Nef Protein of Human Immunodeficiency Virus Establishes Superinfection Immunity by a Dual Strategy to Downregulate Cell-Surface CCR5 and CD4, Current Biology, vol.15, issue.8, pp.714-737, 2005.
DOI : 10.1016/j.cub.2005.02.058

N. Sol-foulon, A. Moris, and C. Nobile, HIV-1 Nef-Induced Upregulation of DC-SIGN in Dendritic Cells Promotes Lymphocyte Clustering and Viral Spread, Immunity, vol.16, issue.1, pp.145-55, 2002.
DOI : 10.1016/S1074-7613(02)00260-1

URL : https://hal.archives-ouvertes.fr/pasteur-01107753

V. Piguet, L. Schwartz, S. Gall, and D. Trono, The downregulation of CD4 and MHC-I by primate lentiviruses: a paradigm for the modulation of cell surface receptors, Immunological Reviews, vol.271, issue.1, pp.51-63, 1999.
DOI : 10.1083/jcb.136.4.811

URL : https://hal.archives-ouvertes.fr/pasteur-01372749

J. Turner, M. Brodsky, and B. Irving, Interaction of the unique N-terminal region of tyrosine kinase p56lck with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs, Cell, vol.60, issue.5, pp.755-65, 1990.
DOI : 10.1016/0092-8674(90)90090-2

D. Fenard, W. Yonemoto, and C. De-noronha, Nef Is Physically Recruited into the Immunological Synapse and Potentiates T Cell Activation Early after TCR Engagement, The Journal of Immunology, vol.175, issue.9, pp.6050-6057, 2005.
DOI : 10.4049/jimmunol.175.9.6050

O. Fackler and H. Krausslich, Interactions of human retroviruses with the host cell cytoskeleton, Current Opinion in Microbiology, vol.9, issue.4, pp.409-424, 2006.
DOI : 10.1016/j.mib.2006.06.010

P. Matarrese and W. Malorni, Human immunodeficiency virus (HIV)-1 proteins and cytoskeleton: partners in viral life and host cell death, Cell Death and Differentiation, vol.7, issue.1, pp.932-973, 2005.
DOI : 10.1038/sj.cdd.4401582

A. Janardhan, T. Swigut, B. Hill, M. Myers, and J. Skowronski, HIV-1 Nef Binds the DOCK2???ELMO1 Complex to Activate Rac and Inhibit Lymphocyte Chemotaxis, PLoS Biology, vol.194, issue.1, p.6, 2004.
DOI : 10.1371/journal.pbio.0020006.g009

C. Haller, S. Rauch, and N. Michel, The HIV-1 Pathogenicity Factor Nef Interferes with Maturation of Stimulatory T-lymphocyte Contacts by Modulation of N-Wasp Activity, Journal of Biological Chemistry, vol.281, issue.28, pp.19618-19648, 2006.
DOI : 10.1074/jbc.M513802200

O. Fackler, A. Alcover, and O. Schwartz, Modulation of the immunological synapse: a key to HIV-1 pathogenesis?, Nature Reviews Immunology, vol.15, issue.4, pp.310-317, 2007.
DOI : 10.1038/nri2041

URL : https://hal.archives-ouvertes.fr/hal-00139409

A. Valenzuela-fernandez, S. Alvarez, and M. Gordon-alonso, Histone Deacetylase 6 Regulates Human Immunodeficiency Virus Type 1 Infection, Molecular Biology of the Cell, vol.16, issue.11, pp.5445-54, 2005.
DOI : 10.1091/mbc.E05-04-0354

H. Fickenscher and B. Fleckenstein, Herpesvirus saimiri, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.356, issue.1408, pp.545-67, 2001.
DOI : 10.1098/rstb.2000.0780

M. Brinkmann and T. Schulz, Regulation of intracellular signalling by the terminal membrane proteins of members of the Gammaherpesvirinae, Journal of General Virology, vol.87, issue.5, pp.1047-74, 2006.
DOI : 10.1099/vir.0.81598-0

S. Duboise, J. Guo, S. Czajak, R. Desrosiers, and J. Jung, STP and Tip are essential for herpesvirus saimiri oncogenicity, J Virol, vol.72, pp.1308-1321, 1998.

N. Cho, P. Feng, and S. Lee, Inhibition of T Cell Receptor Signal Transduction by Tyrosine Kinase???interacting Protein of Herpesvirus saimiri, The Journal of Experimental Medicine, vol.114, issue.5, pp.681-688, 2004.
DOI : 10.1016/S1074-7613(00)80415-X

N. Cho, D. Kingston, and H. Chang, Association of Herpesvirus Saimiri Tip with Lipid Raft Is Essential for Downregulation of T-Cell Receptor and CD4 Coreceptor, Journal of Virology, vol.80, issue.1, pp.108-126, 2006.
DOI : 10.1128/JVI.80.1.108-118.2006

J. Jung, S. Lang, and T. Jun, Downregulation of Lck-mediated signal transduction by tip of herpesvirus saimiri, J Virol, vol.69, pp.7814-7836, 1995.

J. Park, N. Cho, and J. Choi, Distinct Roles of Cellular Lck and p80 Proteins in Herpesvirus Saimiri Tip Function on Lipid Rafts, Journal of Virology, vol.77, issue.16, pp.9041-51, 2003.
DOI : 10.1128/JVI.77.16.9041-9051.2003

J. Park, B. Lee, and J. Choi, Herpesviral Protein Targets a Cellular WD Repeat Endosomal Protein to Downregulate T Lymphocyte Receptor Expression, Immunity, vol.17, issue.2, pp.221-254, 2002.
DOI : 10.1016/S1074-7613(02)00368-0

E. Meinl, T. Derfuss, and R. Pirzer, Herpesvirus saimiri Replaces ZAP-70 for CD3- and CD2-mediated T Cell Activation, Journal of Biological Chemistry, vol.276, issue.40, pp.36902-36910, 2001.
DOI : 10.1074/jbc.M102668200

S. Lee, Y. Chung, and N. Cho, Modulation of T-Cell Receptor Signal Transduction by Herpesvirus Signaling Adaptor Protein, Molecular and Cellular Biology, vol.24, issue.12, pp.5369-82, 2004.
DOI : 10.1128/MCB.24.12.5369-5382.2004

Z. Yao, E. Maraskovsky, and M. Spriggs, Herpesvirus saimiri open reading frame 14, a protein encoded by T lymphotropic herpesvirus, binds to MHC class II molecules and stimulates T cell proliferation, J Immunol, vol.156, pp.3260-3266, 1996.

J. Albrecht, B. Biesinger, and I. Muller-fleckenstein, Herpesvirus Ateles Tio Can Replace Herpesvirus Saimiri StpC and Tip Oncoproteins in Growth Transformation of Monkey and Human T Cells, Journal of Virology, vol.78, issue.18, pp.9814-9823, 2004.
DOI : 10.1128/JVI.78.18.9814-9819.2004

J. Albrecht, U. Friedrich, and C. Kardinal, Herpesvirus ateles gene product Tio interacts with nonreceptor protein tyrosine kinases, J Virol, vol.73, pp.4631-4640, 1999.

M. Furukawa, M. Yasukawa, Y. Yakushijin, and S. Fujita, Distinct effects of human herpesvirus 6 and human herpesvirus 7 on surface molecule expression and function of CD4+ T cells, J Immunol, vol.152, pp.5768-75, 1994.

P. Secchiero, D. Gibellini, and L. Flamand, Human herpesvirus 7 induces the downregulation of CD4 antigen in lymphoid T cells without affecting p56lck levels, J Immunol, vol.159, pp.3412-3435, 1997.

M. Schindler, J. Munch, and O. Kutsch, Nef-Mediated Suppression of T Cell Activation Was Lost in a Lentiviral Lineage that Gave Rise to HIV-1, Cell, vol.125, issue.6, pp.1055-67, 2006.
DOI : 10.1016/j.cell.2006.04.033

D. Johnson and M. Huber, Directed Egress of Animal Viruses Promotes Cell-to-Cell Spread, Journal of Virology, vol.76, issue.1, pp.1-8, 2002.
DOI : 10.1128/JVI.76.1.1-8.2002

T. Igakura, J. Stinchcombe, and P. Goon, Spread of HTLV-I Between Lymphocytes by Virus-Induced Polarization of the Cytoskeleton, Science, vol.299, issue.5613, pp.1713-1719, 2003.
DOI : 10.1126/science.1080115

C. Jolly, K. Kashefi, M. Hollinshead, and Q. Sattentau, HIV-1 Cell to Cell Transfer across an Env-induced, Actin-dependent Synapse, The Journal of Experimental Medicine, vol.151, issue.2, pp.283-93, 2004.
DOI : 10.1073/pnas.95.20.11880

C. Jolly and Q. Sattentau, Retroviral Spread by Induction of Virological Synapses, Traffic, vol.114, issue.19, pp.643-50, 2004.
DOI : 10.1111/j.1600-0854.2004.00209.x

V. Piguet and Q. Sattentau, Dangerous liaisons at the virological synapse, Journal of Clinical Investigation, vol.114, issue.5, pp.605-615, 2004.
DOI : 10.1172/JCI22812

P. Gupta, R. Balachandran, M. Ho, A. Enrico, and C. Rinaldo, Cell-to-cell transmission of human immunodeficiency virus type 1 in the presence of azidothymidine and neutralizing antibody, J Virol, vol.63, pp.2361-2366, 1989.

J. Carr, H. Hocking, P. Li, and C. Burrell, Rapid and Efficient Cell-to-Cell Transmission of Human Immunodeficiency Virus Infection from Monocyte-Derived Macrophages to Peripheral Blood Lymphocytes, Virology, vol.265, issue.2, pp.319-348, 1999.
DOI : 10.1006/viro.1999.0047

A. Alfsen, H. Yu, A. Magerus-chatinet, A. Schmitt, and M. Bomsel, HIV-1-infected Blood Mononuclear Cells Form an Integrin- and Agrin-dependent Viral Synapse to Induce Efficient HIV-1 Transcytosis across Epithelial Cell Monolayer, Molecular Biology of the Cell, vol.16, issue.9, pp.4267-79, 2005.
DOI : 10.1091/mbc.E05-03-0192

M. Bomsel, Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier, Nature Medicine, vol.98, issue.1, pp.42-49, 1997.
DOI : 10.1083/jcb.113.2.275

D. Mcdonald, L. Wu, and S. Bohks, Recruitment of HIV and Its Receptors to Dendritic Cell-T Cell Junctions, Science, vol.300, issue.5623, pp.1295-1302, 2003.
DOI : 10.1126/science.1084238

N. Yamamoto, M. Okada, Y. Koyanagi, M. Kannagi, and Y. Hinuma, Transformation of human leukocytes by cocultivation with an adult T cell leukemia virus producer cell line, Science, vol.217, issue.4561, pp.737-746, 1982.
DOI : 10.1126/science.6980467

M. Popovic, P. Sarin, and M. Robert-gurroff, Isolation and transmission of human retrovirus (human t-cell leukemia virus), Science, vol.219, issue.4586, pp.856-865, 1983.
DOI : 10.1126/science.6600519

C. Bangham, The immune control and cell-to-cell spread of human T-lymphotropic virus type 1, Journal of General Virology, vol.84, issue.12, pp.3177-89, 2003.
DOI : 10.1099/vir.0.19334-0

K. Okochi, H. Sato, and Y. Hinuma, A Retrospective Study on Transmission of Adult T Cell Leukemia Virus by Blood Transfusion: Seroconversion in Recipients, Vox Sanguinis, vol.9, issue.supp., pp.245-53, 1984.
DOI : 10.1111/j.1423-0410.1984.tb00083.x

D. Dimitrov, R. Willey, and H. Sato, Quantitation of human immunodeficiency virus type 1 infection kinetics, J Virol, vol.67, pp.2182-90, 1993.

M. Sourisseau, N. Sol-foulon, F. Porrot, F. Blanchet, and O. Schwartz, Inefficient Human Immunodeficiency Virus Replication in Mobile Lymphocytes, Journal of Virology, vol.81, issue.2, pp.1000-1012, 2007.
DOI : 10.1128/JVI.01629-06

URL : https://hal.archives-ouvertes.fr/pasteur-00292736

N. Sol-foulon, M. Sourisseau, and F. Porrot, ZAP-70 kinase regulates HIV cell-to-cell spread and virological synapse formation, The EMBO Journal, vol.61, issue.2, pp.512-538, 2007.
DOI : 10.1038/sj.emboj.7601509

URL : https://hal.archives-ouvertes.fr/pasteur-00292789

M. Nejmeddine, A. Barnard, Y. Tanaka, G. Taylor, and C. Bangham, Human T-lymphotropic Virus, Type 1, Tax Protein Triggers Microtubule Reorientation in the Virological Synapse, Journal of Biological Chemistry, vol.280, issue.33, pp.29653-60, 2005.
DOI : 10.1074/jbc.M502639200

D. Ghez, Y. Lepelletier, and S. Lambert, Neuropilin-1 Is Involved in Human T-Cell Lymphotropic Virus Type 1 Entry, Journal of Virology, vol.80, issue.14, pp.6844-54, 2006.
DOI : 10.1128/JVI.02719-05

A. Barnard, T. Igakura, Y. Tanaka, G. Taylor, and C. Bangham, Engagement of specific T-cell surface molecules regulates cytoskeletal polarization in HTLV-1-infected lymphocytes, Blood, vol.106, issue.3, pp.988-95, 2005.
DOI : 10.1182/blood-2004-07-2850

S. Kim, A. Nair, S. Fernandez, L. Mathes, and M. Lairmore, Enhancement of LFA-1-Mediated T Cell Adhesion by Human T Lymphotropic Virus Type 1 p12, The Journal of Immunology, vol.176, issue.9, pp.5463-70, 2006.
DOI : 10.4049/jimmunol.176.9.5463

N. Manel, F. Kim, and S. Kinet, The Ubiquitous Glucose Transporter GLUT-1 Is a Receptor for HTLV, Cell, vol.115, issue.4, pp.449-59, 2003.
DOI : 10.1016/S0092-8674(03)00881-X

J. Pinon, P. Klasse, and S. Jassal, Human T-Cell Leukemia Virus Type 1 Envelope Glycoprotein gp46 Interacts with Cell Surface Heparan Sulfate Proteoglycans, Journal of Virology, vol.77, issue.18, pp.9922-9952, 2003.
DOI : 10.1128/JVI.77.18.9922-9930.2003

K. Jones, C. Petrow-sadowski, D. Bertolette, Y. Huang, and F. Ruscetti, Heparan Sulfate Proteoglycans Mediate Attachment and Entry of Human T-Cell Leukemia Virus Type 1 Virions into CD4+ T Cells, Journal of Virology, vol.79, issue.20, pp.12692-702, 2005.
DOI : 10.1128/JVI.79.20.12692-12702.2005

K. Jones, K. Fugo, and C. Petrow-sadowski, Human T-Cell Leukemia Virus Type 1 (HTLV-1) and HTLV-2 Use Different Receptor Complexes To Enter T Cells, Journal of Virology, vol.80, issue.17, pp.8291-302, 2006.
DOI : 10.1128/JVI.00389-06

N. Takenouchi, K. Jones, and I. Lisinski, GLUT1 Is Not the Primary Binding Receptor but Is Associated with Cell-to-Cell Transmission of Human T-Cell Leukemia Virus Type 1, Journal of Virology, vol.81, issue.3, pp.1506-1516, 2007.
DOI : 10.1128/JVI.01522-06

A. Yamamoto, H. Hara, and T. Kobayashi, Induction of the expression of gag protein in HTLV-I infected lymphocytes by anti-ICAM 1 antibody in vitro, Journal of the Neurological Sciences, vol.151, issue.2, pp.121-127, 1997.
DOI : 10.1016/S0022-510X(97)00121-4

Y. Koyanagi, Y. Itoyama, and N. Nakamura, In Vivo Infection of Human T-Cell Leukemia Virus Type I in Non-T Cells, Virology, vol.196, issue.1, pp.25-33, 1993.
DOI : 10.1006/viro.1993.1451

M. Okada, Y. Koyanagi, and N. Kobayashi, In vitro infection of human B lymphocytes with adult T-cell leukemia virus, Cancer Letters, vol.22, issue.1, pp.11-21, 1984.
DOI : 10.1016/0304-3835(84)90038-7

S. Macatonia, J. Cruickshank, P. Rudge, and S. Knight, Dendritic Cells from Patients with Tropical Spastic Paraparesis Are Infected with HTLV-1 and Stimulate Autologous Lymphocyte Proliferation, AIDS Research and Human Retroviruses, vol.8, issue.9, pp.1699-706, 1992.
DOI : 10.1089/aid.1992.8.1699

J. Hoxie, D. Matthews, and D. Cines, Infection of human endothelial cells by human T-cell leukemia virus type I., Proceedings of the National Academy of Sciences, vol.81, issue.23, pp.7591-7596, 1984.
DOI : 10.1073/pnas.81.23.7591

V. Zacharopoulos and D. Phillips, Cell-mediated HTLV-I infection of a cervix-derived epithelial cell line, Microbial Pathogenesis, vol.23, issue.4, pp.225-258, 1997.
DOI : 10.1006/mpat.1997.0151

V. Zacharopoulos, M. Perotti, and D. Phillips, Lymphocyte-facilitated infection of epithelia by human T-cell lymphotropic virus type I, J Virol, vol.66, pp.4601-4606, 1992.

E. Garcia, M. Pion, and A. Pelchen-matthews, HIV-1 Trafficking to the Dendritic Cell-T-Cell Infectious Synapse Uses a Pathway of Tetraspanin Sorting to the Immunological Synapse, Traffic, vol.97, issue.6, pp.488-501, 2005.
DOI : 10.1111/j.1600-0854.2005.00293.x

R. Pearce-pratt, D. Malamud, and D. Phillips, Role of the cytoskeleton in cell-to-cell transmission of human immunodeficiency virus, J Virol, vol.68, pp.2898-905, 1994.

M. Boes, J. Cerny, and R. Massol, T-cell engagement of dendritic cells rapidly rearranges MHC class II transport, Nature, vol.80, issue.6901, pp.983-991, 2002.
DOI : 10.1126/science.288.5465.522

O. Pornillos, J. Garrus, and W. Sundquist, Mechanisms of enveloped RNA virus budding, Trends in Cell Biology, vol.12, issue.12, pp.569-79, 2002.
DOI : 10.1016/S0962-8924(02)02402-9

E. Morita and W. Sundquist, RETROVIRUS BUDDING, Annual Review of Cell and Developmental Biology, vol.20, issue.1, pp.395-425, 2004.
DOI : 10.1146/annurev.cellbio.20.010403.102350

G. Garrus, V. Schwedler, U. Pornillos, and O. , Tsg101 and the Vacuolar Protein Sorting Pathway Are Essential for HIV-1 Budding, Cell, vol.107, issue.1, pp.55-65, 2001.
DOI : 10.1016/S0092-8674(01)00506-2

G. Heidecker, P. Lloyd, K. Fox, K. Nagashima, and D. Derse, Late Assembly Motifs of Human T-Cell Leukemia Virus Type 1 and Their Relative Roles in Particle Release, Journal of Virology, vol.78, issue.12, pp.6636-6684, 2004.
DOI : 10.1128/JVI.78.12.6636-6648.2004

R. Fisher, H. Chung, and Q. Zhai, Structural and Biochemical Studies of ALIX/AIP1 and Its Role in Retrovirus Budding, Cell, vol.128, issue.5, pp.841-52, 2007.
DOI : 10.1016/j.cell.2007.01.035

B. Strack, A. Calistri, S. Craig, E. Popova, and H. Gottlinger, AIP1/ALIX Is a Binding Partner for HIV-1 p6 and EIAV p9 Functioning in Virus Budding, Cell, vol.114, issue.6, pp.689-99, 2003.
DOI : 10.1016/S0092-8674(03)00653-6

S. Lee, A. Joshi, K. Nagashima, E. Freed, and J. Hurley, Structural basis for viral late-domain binding to Alix, Nature Structural & Molecular Biology, vol.68, issue.3, pp.194-203, 2007.
DOI : 10.1073/pnas.85.24.9580

U. Schwedler, M. Stuchell, and B. Muller, The Protein Network of HIV Budding, Cell, vol.114, issue.6, pp.701-714, 2003.
DOI : 10.1016/S0092-8674(03)00714-1

V. Blot, F. Perugi, and B. Gay, Nedd4.1-mediated ubiquitination and subsequent recruitment of Tsg101 ensure HTLV-1 Gag trafficking towards the multivesicular body pathway prior to virus budding, Journal of Cell Science, vol.117, issue.11, pp.2357-67, 2004.
DOI : 10.1242/jcs.01095

H. Wang, N. Machesky, and L. Mansky, Both the PPPY and PTAP Motifs Are Involved in Human T-Cell Leukemia Virus Type 1 Particle Release, Journal of Virology, vol.78, issue.3, pp.1503-1515, 2004.
DOI : 10.1128/JVI.78.3.1503-1512.2004

F. Bouamr, J. Melillo, and M. Wang, PPPYVEPTAP Motif Is the Late Domain of Human T-Cell Leukemia Virus Type 1 Gag and Mediates Its Functional Interaction with Cellular Proteins Nedd4 and Tsg101, Journal of Virology, vol.78, issue.8, pp.11882-95, 2003.
DOI : 10.1128/JVI.78.8.4383.2004

J. Gruenberg and H. Stenmark, Opinion: The biogenesis of multivesicular endosomes, Nature Reviews Molecular Cell Biology, vol.5, issue.4, pp.317-340, 2004.
DOI : 10.1038/nrm1360

E. Gottwein and H. Krausslich, Analysis of Human Immunodeficiency Virus Type 1 Gag Ubiquitination, Journal of Virology, vol.79, issue.14, pp.9134-9178, 2005.
DOI : 10.1128/JVI.79.14.9134-9144.2005

X. Dong, H. Li, and A. Derdowski, AP-3 Directs the Intracellular Trafficking of HIV-1 Gag and Plays a Key Role in Particle Assembly, Cell, vol.120, issue.5, pp.663-74, 2005.
DOI : 10.1016/j.cell.2004.12.023

D. Katzmann, G. Odorizzi, and S. Emr, Receptor downregulation and multivesicular-body sorting, Nature Reviews Molecular Cell Biology, vol.8, issue.12, pp.893-905, 2002.
DOI : 10.1038/nrm973

R. Owens, J. Dubay, E. Hunter, and R. Compans, Human immunodeficiency virus envelope protein determines the site of virus release in polarized epithelial cells., Proceedings of the National Academy of Sciences, vol.88, issue.9, pp.3987-91, 1991.
DOI : 10.1073/pnas.88.9.3987

R. Lodge, H. Gottlinger, D. Gabuzda, E. Cohen, and G. Lemay, The intracytoplasmic domain of gp41 mediates polarized budding of human immunodeficiency virus type 1 in MDCK cells, J Virol, vol.68, pp.4857-61, 1994.

G. Cervantes-acosta, R. Lodge, G. Lemay, and E. Cohen, Influence of human immunodeficiency virus type 1 envelope glycoprotein YXXL endocytosis/polarization signal on viral accessory protein functions, J Hum Virol, vol.4, pp.249-59, 2001.

J. Deschambeault, J. Lalonde, and G. Cervantes-acosta, Polarized human immunodeficiency virus budding in lymphocytes involves a tyrosine-based signal and favors cell-to-cell viral transmission, J Virol, vol.73, pp.5010-5017, 1999.

R. Wubbolts, R. Leckie, and P. Veenhuizen, Proteomic and Biochemical Analyses of Human B Cell-derived Exosomes: POTENTIAL IMPLICATIONS FOR THEIR FUNCTION AND MULTIVESICULAR BODY FORMATION, Journal of Biological Chemistry, vol.278, issue.13, pp.10963-72, 2003.
DOI : 10.1074/jbc.M207550200

J. Escola, M. Kleijmeer, and W. Stoorvogel, Selective Enrichment of Tetraspan Proteins on the Internal Vesicles of Multivesicular Endosomes and on Exosomes Secreted by Human B-lymphocytes, Journal of Biological Chemistry, vol.273, issue.32, pp.20121-20128, 1998.
DOI : 10.1074/jbc.273.32.20121

A. Pelchen-matthews, G. Raposo, and M. Marsh, Endosomes, exosomes and Trojan viruses, Trends in Microbiology, vol.12, issue.7, pp.310-316, 2004.
DOI : 10.1016/j.tim.2004.05.004

G. Van-niel, I. Porto-carreiro, S. Simoes, and G. Raposo, Exosomes: A Common Pathway for a Specialized Function, Journal of Biochemistry, vol.140, issue.1, pp.13-21, 2006.
DOI : 10.1093/jb/mvj128

A. Pelchen-matthews, B. Kramer, and M. Marsh, Infectious HIV-1 assembles in late endosomes in primary macrophages, The Journal of Cell Biology, vol.2, issue.3, pp.443-55, 2003.
DOI : 10.1128/JVI.75.6.2982-2992.2001

E. Chertova, O. Chertov, and L. Coren, Proteomic and Biochemical Analysis of Purified Human Immunodeficiency Virus Type 1 Produced from Infected Monocyte-Derived Macrophages, Journal of Virology, vol.80, issue.18, pp.9039-52, 2006.
DOI : 10.1128/JVI.01013-06

M. Perotti, X. Tan, and D. Phillips, Directional budding of human immunodeficiency virus from monocytes, J Virol, vol.70, pp.5916-5937, 1996.

J. Bhattacharya, A. Repik, and P. Clapham, Gag Regulates Association of Human Immunodeficiency Virus Type 1 Envelope with Detergent-Resistant Membranes, Journal of Virology, vol.80, issue.11, pp.5292-300, 2006.
DOI : 10.1128/JVI.01469-05

S. Nydegger, S. Khurana, D. Krementsov, M. Foti, and M. Thali, Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1, The Journal of Cell Biology, vol.8, issue.5, pp.795-807, 2006.
DOI : 10.1083/jcb.200404100

L. Miranda, B. Schaefer, A. Kupfer, Z. Hu, and A. Franzusoff, Cell surface expression of the HIV-1 envelope glycoproteins is directed from intracellular CTLA-4-containing regulated secretory granules, Proceedings of the National Academy of Sciences, vol.99, issue.12, pp.8031-8037, 2002.
DOI : 10.1073/pnas.122696599

Q. Leng, Z. Bentwich, E. Magen, A. Kalinkovich, and G. Borkow, CTLA-4 upregulation during HIV infection: association with anergy and possible target for therapeutic intervention, AIDS, vol.16, issue.4, pp.519-548, 2002.
DOI : 10.1097/00002030-200203080-00002

A. Booth, Y. Fang, and J. Fallon, Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane, The Journal of Cell Biology, vol.53, issue.6, pp.923-958, 2006.
DOI : 10.1016/S0092-8674(03)00714-1

C. Jolly and Q. Sattentau, Human Immunodeficiency Virus Type 1 Virological Synapse Formation in T Cells Requires Lipid Raft Integrity, Journal of Virology, vol.79, issue.18, pp.12088-94, 2005.
DOI : 10.1128/JVI.79.18.12088-12094.2005

J. Timar, K. Nagy, D. Robertson, P. Clapham, and R. Weiss, Ultrastructure and Immunoelectron Microscopy of Human T-cell Leukaemia Virus Type I-producing Lymphoid and Non-lymphoid Human Tumour Cells, Journal of General Virology, vol.68, issue.4, pp.1011-1031, 1987.
DOI : 10.1099/0022-1317-68-4-1011

B. Poiesz, F. Ruscetti, and A. Gazdar, Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma, Proceedings of the National Academy of Sciences, vol.77, issue.12, pp.7415-7424, 1980.
DOI : 10.1073/pnas.77.12.7415

B. Hemonnot, C. Cartier, and B. Gay, The Host Cell MAP Kinase ERK-2 Regulates Viral Assembly and Release by Phosphorylating the p6gag Protein of HIV-1, Journal of Biological Chemistry, vol.279, issue.31, pp.32426-32460, 2004.
DOI : 10.1074/jbc.M313137200

URL : https://hal.archives-ouvertes.fr/inserm-00381846

B. Hemonnot, D. Molle, and M. Bardy, Phosphorylation of the HTLV-1 matrix L-domain-containing protein by virus-associated ERK-2 kinase, Virology, vol.349, issue.2, pp.430-439, 2006.
DOI : 10.1016/j.virol.2006.02.043

D. Mazurov, G. Heidecker, and D. Derse, The Inner Loop of Tetraspanins CD82 and CD81 Mediates Interactions with Human T Cell Lymphotrophic Virus Type 1 Gag Protein, Journal of Biological Chemistry, vol.282, issue.6, pp.3896-903, 2006.
DOI : 10.1074/jbc.M607322200

D. Mazurov, G. Heidecker, and D. Derse, HTLV-1 Gag protein associates with CD82 tetraspanin microdomains at the plasma membrane, Virology, vol.346, issue.1, pp.194-204, 2006.
DOI : 10.1016/j.virol.2005.10.033

F. Martin, D. Roth, and D. Jans, Tetraspanins in Viral Infections: a Fundamental Role in Viral Biology?, Journal of Virology, vol.79, issue.17, pp.10839-51, 2005.
DOI : 10.1128/JVI.79.17.10839-10851.2005

M. Gordon-alonso, M. Yanez-mo, and O. Barreiro, Tetraspanins CD9 and CD81 Modulate HIV-1-Induced Membrane Fusion, The Journal of Immunology, vol.177, issue.8, pp.5129-5166, 2006.
DOI : 10.4049/jimmunol.177.8.5129

M. Tardif and M. Tremblay, Tetraspanin CD81 Provides a Costimulatory Signal Resulting in Increased Human Immunodeficiency Virus Type 1 Gene Expression in Primary CD4+ T Lymphocytes through NF-??B, NFAT, and AP-1 Transduction Pathways, Journal of Virology, vol.79, issue.7, pp.4316-4344, 2005.
DOI : 10.1128/JVI.79.7.4316-4328.2005

C. Pique, C. Lagaudrière-gesbert, and L. Delamarre, Interaction of CD82 Tetraspanin Proteins with HTLV-1 Envelope Glycoproteins Inhibits Cell-to-Cell Fusion and Virus Transmission, Virology, vol.276, issue.2, pp.455-65, 2000.
DOI : 10.1006/viro.2000.0538

H. Sasaki, H. Ozaki, H. Karaki, and Y. Nonomura, Actin filaments play an essential role for transport of nascent HIV-1 proteins in host cells, Biochemical and Biophysical Research Communications, vol.316, issue.2, pp.588-93, 2004.
DOI : 10.1016/j.bbrc.2004.02.088

S. Iyengar, J. Hildreth, and D. Schwartz, Actin-dependent receptor colocalization required for human immunodeficiency virus entry into host cells, J Virol, vol.72, pp.5251-5256, 1998.

S. Gallo, C. Finnegan, and M. Viard, The HIV Env-mediated fusion reaction, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1614, issue.1, pp.36-50, 2003.
DOI : 10.1016/S0005-2736(03)00161-5

A. Delaguillaumie, J. Harriague, and S. Kohanna, Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation, Journal of Cell Science, vol.117, issue.22, pp.5269-82, 2004.
DOI : 10.1242/jcs.01380

M. Sala-valdes, A. Ursa, and S. Charrin, EWI-2 and EWI-F Link the Tetraspanin Web to the Actin Cytoskeleton through Their Direct Association with Ezrin-Radixin-Moesin Proteins, Journal of Biological Chemistry, vol.281, issue.28, pp.19665-75, 2006.
DOI : 10.1074/jbc.M602116200