D. Mabey, A. Solomon, and A. Foster, Trachoma, The Lancet, vol.362, issue.9379, pp.223-229, 2003.
DOI : 10.1016/S0140-6736(03)13914-1

W. Stamm, Infections: Progress and Problems, The Journal of Infectious Diseases, vol.179, issue.s2, pp.380-383, 1999.
DOI : 10.1086/513844

L. Campbell and C. Kuo, Chlamydia pneumoniae ??? an infectious risk factor for atherosclerosis?, Nature Reviews Microbiology, vol.92, issue.1, pp.23-32, 2004.
DOI : 10.1001/jama.288.21.2724

J. Bannantine, R. Griffiths, W. Viratyosin, W. Brown, and D. Rockey, A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane, Cellular Microbiology, vol.60, issue.1, pp.35-47, 2000.
DOI : 10.1001/jama.257.15.2070

A. Subtil, C. Parsot, and A. Dautry-varsat, Secretion of predicted Inc proteins of Chlamydia pneumoniae by a heterologous type III machinery, Molecular Microbiology, vol.65, issue.3, pp.792-800, 2001.
DOI : 10.1016/S1286-4579(00)00335-X

K. Fields and T. Hackstadt, The Chlamydial Inclusion: Escape from the Endocytic Pathway, Annual Review of Cell and Developmental Biology, vol.18, issue.1, pp.221-245, 2002.
DOI : 10.1146/annurev.cellbio.18.012502.105845

M. Scidmore, E. Fischer, and T. Hackstadt, Restricted Fusion of Chlamydia trachomatis Vesicles with Endocytic Compartments during the Initial Stages of Infection, Infection and Immunity, vol.71, issue.2, pp.973-984, 2003.
DOI : 10.1128/IAI.71.2.973-984.2003

R. Carabeo, D. Mead, and T. Hackstadt, The Chlamydial inclusion preferentially interacts with the Golgi-dependent pathway of cholesterol and sphingomyelin transport, Mol Biol Cell, vol.13, pp.404-404, 2002.

T. Hackstadt, M. Scidmore, and D. Rockey, Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion., Proceedings of the National Academy of Sciences, vol.92, issue.11, pp.4877-4881, 1995.
DOI : 10.1073/pnas.92.11.4877

W. Beatty, Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis, Journal of Cell Science, vol.119, issue.2, pp.350-359, 2006.
DOI : 10.1242/jcs.02733

R. Jahn and R. Scheller, SNAREs ??? engines for membrane fusion, Nature Reviews Molecular Cell Biology, vol.12, issue.9, pp.631-643, 2006.
DOI : 10.1038/362318a0

D. Fasshauer, R. Sutton, A. Brunger, and R. Jahn, Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs, Proceedings of the National Academy of Sciences, vol.95, issue.26, pp.15781-15786, 1998.
DOI : 10.1073/pnas.95.26.15781

O. Varlamov, A. Volchuk, V. Rahimian, C. Doege, and F. Paumet, i-SNAREs, The Journal of Cell Biology, vol.113, issue.1, pp.79-88, 2004.
DOI : 10.1074/jbc.M102786200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171956

J. Chen, K. De-felipe, M. Clarke, H. Lu, and O. Anderson, Legionella Effectors That Promote Nonlytic Release from Protozoa, Science, vol.303, issue.5662, pp.1358-1361, 2004.
DOI : 10.1126/science.1094226

C. Delevoye, M. Nilges, A. Dautry-varsat, and A. Subtil, Conservation of the Biochemical Properties of IncA from Chlamydia trachomatis and Chlamydia caviae: OLIGOMERIZATION OF IncA MEDIATES INTERACTION BETWEEN FACING MEMBRANES, Journal of Biological Chemistry, vol.279, issue.45, pp.46896-46906, 2004.
DOI : 10.1074/jbc.M407227200

URL : https://hal.archives-ouvertes.fr/pasteur-00166945

C. Chen, D. Chen, J. Sharma, W. Cheng, and Y. Zhong, The Hypothetical Protein CT813 Is Localized in the Chlamydia trachomatis Inclusion Membrane and Is Immunogenic in Women Urogenitally Infected with C. trachomatis, Infection and Immunity, vol.74, issue.8, pp.4826-4840, 2006.
DOI : 10.1128/IAI.00081-06

T. Hackstadt, M. Scidmore-carlson, E. Shaw, and E. Fischer, The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion, Cellular Microbiology, vol.175, issue.2, pp.119-130, 1999.
DOI : 10.1126/science.282.5389.754

D. Rockey, W. Viratyosin, J. Bannantine, R. Suchland, and W. Stamm, Diversity within inc genes of clinical Chlamydia trachomatis variant isolates that occupy non-fusogenic inclusions a, Microbiology, vol.148, issue.8, pp.2497-2505, 2002.
DOI : 10.1099/00221287-148-8-2497

M. Xia, R. Suchland, R. Bumgarner, T. Peng, and D. Rockey, Variant with Nonfusing Inclusions: Growth Dynamic and Host???Cell Transcriptional Response, The Journal of Infectious Diseases, vol.192, issue.7, pp.1229-1236, 2005.
DOI : 10.1086/444394

URL : http://jid.oxfordjournals.org/cgi/content/short/192/7/1229

B. Grosshans, D. Ortiz, and P. Novick, Rabs and their effectors: Achieving specificity in membrane traffic, Proceedings of the National Academy of Sciences, vol.103, issue.32, pp.11821-11827, 2006.
DOI : 10.1073/pnas.0601617103

K. Rzomp, A. Moorhead, and M. Scidmore, The GTPase Rab4 Interacts with Chlamydia trachomatis Inclusion Membrane Protein CT229, Infection and Immunity, vol.74, issue.9, pp.5362-5373, 2006.
DOI : 10.1128/IAI.00539-06

C. Cortes, M. Rzomp, A. Tvinnereim, M. Scidmore, and B. Wizel, Chlamydia pneumoniae Inclusion Membrane Protein Cpn0585 Interacts with Multiple Rab GTPases, Infection and Immunity, vol.75, issue.12, pp.5586-5596, 2007.
DOI : 10.1128/IAI.01020-07

W. Antonin, D. Fasshauer, S. Becker, R. Jahn, and T. Schneider, Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs, Nature Structural Biology, vol.9, issue.2, pp.107-111, 2002.
DOI : 10.1038/nsb746

M. Dorer, D. Kirton, J. Bader, and R. Isberg, RNA Interference Analysis of Legionella in Drosophila Cells: Exploitation of Early Secretory Apparatus Dynamics, PLoS Pathogens, vol.63, issue.4, pp.315-327, 2006.
DOI : 10.1371/journal.ppat.0020034.st001

M. Horn, A. Collingro, S. Schmitz-esser, C. Beier, and U. Purkhold, Illuminating the Evolutionary History of Chlamydiae, Science, vol.304, issue.5671, pp.728-730, 2004.
DOI : 10.1126/science.1096330

A. Volchuk, M. Ravazzola, A. Perrelet, W. Eng, D. Liberto et al., Countercurrent Distribution of Two Distinct SNARE Complexes Mediating Transport within the Golgi Stack, Molecular Biology of the Cell, vol.15, issue.4, pp.1506-1518, 2004.
DOI : 10.1091/mbc.E03-08-0625

F. Paumet, V. Rahimian, D. Liberto, M. Rothman, and J. , Concerted Auto-regulation in Yeast Endosomal t-SNAREs, Journal of Biological Chemistry, vol.280, issue.22, pp.21137-21143, 2005.
DOI : 10.1074/jbc.M500841200

T. Weber, B. Zemelman, J. Mcnew, B. Westermann, and M. Gmachl, SNAREpins: Minimal Machinery for Membrane Fusion, Cell, vol.92, issue.6, pp.759-772, 1998.
DOI : 10.1016/S0092-8674(00)81404-X

G. Raposo, M. Kleijmeer, G. Posthuma, J. Slot, and H. Geuze, Immunogold labeling of ultrathin cryosection: application in immunology, pp.1-11, 1997.

L. Kall, A. Krogh, and E. Sonnhammer, A Combined Transmembrane Topology and Signal Peptide Prediction Method, Journal of Molecular Biology, vol.338, issue.5, pp.1027-1036, 2004.
DOI : 10.1016/j.jmb.2004.03.016

M. Delorenzi and T. Speed, An HMM model for coiled-coil domains and a comparison with PSSM-based predictions, Bioinformatics, vol.18, issue.4, pp.617-625, 2002.
DOI : 10.1093/bioinformatics/18.4.617

T. Smith and M. Waterman, Identification of common molecular subsequences, Journal of Molecular Biology, vol.147, issue.1, pp.195-197, 1981.
DOI : 10.1016/0022-2836(81)90087-5

M. Schaefer, C. Bartels, F. Leclerc, and M. Karplus, Effective atom volumes for implicit solvent models: comparison between Voronoi volumes and minimum fluctuation volumes, Journal of Computational Chemistry, vol.51, issue.15, pp.1857-1879, 2001.
DOI : 10.1002/jcc.1137

N. Calimet, M. Schaefer, and T. Simonson, Protein molecular dynamics with the generalized born/ACE solvent model, Proteins: Structure, Function, and Genetics, vol.3, issue.2, pp.144-158, 2001.
DOI : 10.1002/prot.1134

F. Mallard, B. Tang, T. Galli, D. Tenza, and A. Saint-pol, Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform, The Journal of Cell Biology, vol.109, issue.4, pp.653-664, 2002.
DOI : 10.1091/mbc.10.7.2251

T. Galli, T. Chilcote, O. Mundigl, T. Binz, and H. Niemann, Tetanus toxin-mediated cleavage of cellubrevin impairs exocytosis of transferrin receptor-containing vesicles in CHO cells, The Journal of Cell Biology, vol.125, issue.5, pp.1015-1024, 1994.
DOI : 10.1083/jcb.125.5.1015

V. Proux-gillardeaux, R. Rudge, and T. Galli, The Tetanus Neurotoxin-Sensitive and Insensitive Routes to and from the Plasma Membrane: Fast and Slow Pathways?, Traffic, vol.2, issue.2 Pt 1, pp.366-373, 2005.
DOI : 10.1111/j.1600-0854.2005.00288.x

S. Breton, N. Nsumu, T. Galli, I. Sabolic, and P. Smith, Tetanus toxinmediated cleavage of cellubrevin inhibits proton secretion in the male reproductive tract, American Journal Of Physiology-Renal Physiology, vol.278, pp.717-725, 2000.

M. Steegmaier, J. Klumperman, D. Foletti, J. Yoo, and R. Scheller, Vesicle-associated Membrane Protein 4??is Implicated in Trans-Golgi Network Vesicle Trafficking, Molecular Biology of the Cell, vol.10, issue.6, pp.1957-1972, 1999.
DOI : 10.1091/mbc.10.6.1957

T. Tran, Q. Zeng, and W. Hong, VAMP4 cycles from the cell surface to the trans-Golgi network via sorting and recycling endosomes, Journal of Cell Science, vol.120, issue.6, pp.1028-1041, 2007.
DOI : 10.1242/jcs.03387

D. Brandhorst, D. Zwilling, S. Rizzoli, U. Lippert, and T. Lang, Homotypic fusion of early endosomes: SNAREs do not determine fusion specificity, Proceedings of the National Academy of Sciences, vol.103, issue.8, pp.2701-2706, 2006.
DOI : 10.1073/pnas.0511138103

P. Bostrom, L. Andersson, M. Rutberg, J. Perman, and U. Lidberg, SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity, Nature Cell Biology, vol.172, issue.11, pp.1286-1139, 2007.
DOI : 10.1038/ncb1648

P. Pryor, B. Mullock, N. Bright, M. Lindsay, and S. Gray, Combinatorial SNARE complexes with VAMP7 or VAMP8 define different late endocytic fusion events, EMBO reports, vol.12, issue.6, pp.590-595, 2004.
DOI : 10.1074/jbc.M010838200

P. Alberts, R. Rudge, I. Hinners, A. Muzerelle, and S. Martinez-arca, Cross Talk between Tetanus Neurotoxin-insensitive Vesicle-associated Membrane Protein-mediated Transport and L1-mediated Adhesion, Molecular Biology of the Cell, vol.14, issue.10, pp.4207-4220, 2003.
DOI : 10.1091/mbc.E03-03-0147

S. Rao, C. Huynh, V. Proux-gillardeaux, T. Galli, and N. Andrews, Identification of SNAREs Involved in Synaptotagmin VII-regulated Lysosomal Exocytosis, Journal of Biological Chemistry, vol.279, issue.19, pp.20471-20479, 2004.
DOI : 10.1074/jbc.M400798200

W. Antonin, C. Holroyd, R. Tikkanen, S. Honing, and R. Jahn, The R-SNARE Endobrevin/VAMP-8 Mediates Homotypic Fusion of Early Endosomes and Late Endosomes, Molecular Biology of the Cell, vol.11, issue.10, pp.3289-3298, 2000.
DOI : 10.1091/mbc.11.10.3289

W. Antonin, C. Holroyd, D. Fasshauer, S. Pabst, V. Mollard et al., A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function, The EMBO Journal, vol.19, issue.23, pp.6453-6464, 2000.
DOI : 10.1093/emboj/19.23.6453

L. Burri, O. Varlamov, C. Doege, K. Hofmann, and T. Beilharz, A SNARE required for retrograde transport to the endoplasmic reticulum, Proceedings of the National Academy of Sciences, vol.100, issue.17, pp.9873-9877, 2003.
DOI : 10.1073/pnas.1734000100

I. Paek, L. Orci, M. Ravazzola, H. Erdjumentbromage, and M. Amherdt, ERS-24, a Mammalian v-SNARE Implicated in Vesicle Traffic between the ER and the Golgi, The Journal of Cell Biology, vol.3, issue.5, pp.1017-1028, 1997.
DOI : 10.1083/jcb.117.3.531