S. E. Bartlett, A. J. Reynolds, M. Weible, P. G. Noakes, and I. A. Hendry, Transport of endosomal early antigen 1 in the rat sciatic nerve and location in cultured neurons, Neuroreport, vol.12, issue.2, pp.281-284, 2001.
DOI : 10.1097/00001756-200102120-00020

F. Beranger, A. Mange, B. Goud, and S. Lehmann, Stimulation of PrPC Retrograde Transport toward the Endoplasmic Reticulum Increases Accumulation of PrPSc in Prion-infected Cells, Journal of Biological Chemistry, vol.277, issue.41, pp.38972-38977, 2002.
DOI : 10.1074/jbc.M205110200

M. Bogdanov and W. Dowhan, Lipid-assisted Protein Folding, Journal of Biological Chemistry, vol.274, issue.52, pp.36827-36830, 1999.
DOI : 10.1074/jbc.274.52.36827

D. R. Borchelt, A. Taraboulos, and S. B. Prusiner, Evidence for synthesis of scrapie prion proteins in the endocytic pathway, J. Biol. Chem, vol.267, pp.16188-16199, 1992.

D. A. Brown, B. Crise, R. , and J. K. , Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells, Science, vol.245, issue.4925, pp.1499-1501, 1989.
DOI : 10.1126/science.2571189

D. A. Brown and E. London, FUNCTIONS OF LIPID RAFTS IN BIOLOGICAL MEMBRANES, Annual Review of Cell and Developmental Biology, vol.14, issue.1, pp.111-136, 1998.
DOI : 10.1146/annurev.cellbio.14.1.111

D. A. Brown, R. , and J. H. , Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface, Cell, vol.68, issue.3, pp.533-544, 1992.
DOI : 10.1016/0092-8674(92)90189-J

S. Capellari, S. I. Zaidi, C. B. Urig, G. Perry, M. A. Smith et al., Prion Protein Glycosylation Is Sensitive to Redox Change, Journal of Biological Chemistry, vol.274, issue.49, pp.34846-34850, 1999.
DOI : 10.1074/jbc.274.49.34846

B. Caughey, R. , and G. J. , The scrapie-associated form of PrP is made from a cell surface precursor that is both protease-and phospholipasesensitive, J. Biol. Chem, vol.266, pp.18217-18223, 1991.

B. Caughey, G. J. Raymond, D. Ernst, and R. E. Race, N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implication regarding the site of conversion of PrP to the protease-resistant state, J. Virol, vol.65, pp.6597-6603, 1991.

J. Chabry, S. A. Priola, K. Wehrly, J. Nishio, J. Hope et al., Species-independent inhibition of abnormal prion protein (PrP) formation by a peptide containing a conserved PrP sequence, J. Virol, vol.73, pp.6245-6250, 1999.

L. P. Choo-smith and W. K. Surewicz, -containing membranes, FEBS Letters, vol.402, issue.2-3, pp.95-98, 1997.
DOI : 10.1016/S0014-5793(96)01504-9

URL : https://hal.archives-ouvertes.fr/hal-00567498

A. E. Cremesti, F. M. Goni, and R. Kolesnick, Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome?, FEBS Letters, vol.277, issue.1, pp.47-53, 2002.
DOI : 10.1016/S0014-5793(02)03489-0

N. Daude, S. Lehmann, H. , and D. A. , Identification of intermediate steps in the conversion of a mutant prion protein to a scrapie-like form in cultured cells, J. Biol. Chem, vol.272, pp.11604-11612, 1997.

S. Dhanvantari and Y. P. Loh, Lipid Raft Association of Carboxypeptidase E Is Necessary for Its Function as a Regulated Secretory Pathway Sorting Receptor, Journal of Biological Chemistry, vol.275, issue.38, pp.29887-29893, 2000.
DOI : 10.1074/jbc.M005364200

M. C. Erra, L. Iodice, L. V. Lotti, and S. Bonatti, CELL FRACTIONATION ANALYSIS OF HUMAN CD8 GLYCOPROTEIN TRANSPORT BETWEEN ENDOPLASMIC RETICULUM, INTERMEDIATE COMPARTMENT AND GOLGI COMPLEX IN TISSUE CULTURED CELLS, Cell Biology International, vol.23, issue.8, pp.571-577, 1999.
DOI : 10.1006/cbir.1999.0420

D. A. Harris, Cellular biology of prion diseases, Clin. Microbiol. Rev, vol.12, pp.429-444, 1999.

M. Horiuchi, C. , and B. , Specific binding of normal prion protein to the scrapie form via a localized domain initiates its conversion to the protease-resistant state, The EMBO Journal, vol.18, issue.12, pp.3193-3203, 1999.
DOI : 10.1093/emboj/18.12.3193

S. Ichikawa and Y. Hirabayashi, Glucosylceramide synthase and glycosphingolipid synthesis, Trends in Cell Biology, vol.8, issue.5, pp.198-202, 1998.
DOI : 10.1016/S0962-8924(98)01249-5

L. Ivanova, S. Barmada, T. Kummer, H. , and D. A. , Mutant Prion Proteins Are Partially Retained in the Endoplasmic Reticulum, Journal of Biological Chemistry, vol.276, issue.45, pp.42409-42421, 2001.
DOI : 10.1074/jbc.M106928200

M. Jeffrey, G. Mcgovern, C. M. Goodsir, K. L. Brown, and M. E. Bruce, Sites of prion protein accumulation in scrapie-infected mouse spleen revealed by immuno-electron microscopy, The Journal of Pathology, vol.352, issue.3, pp.323-332, 2000.
DOI : 10.1002/1096-9896(200007)191:3<323::AID-PATH629>3.0.CO;2-Z

M. Kauppi, A. Simonsen, B. Bremnes, A. Vieira, J. Callaghan et al., The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking, J. Cell Sci, vol.115, pp.899-911, 2002.

P. Keller and K. Simons, Cholesterol Is Required for Surface Transport of Influenza Virus Hemagglutinin, The Journal of Cell Biology, vol.822, issue.6, pp.1357-1367, 1998.
DOI : 10.1074/jbc.271.2.907

R. D. Klausner, J. G. Donaldson, and J. Lippincott-schwartz, Brefeldin A: insights into the control of membrane traffic and organelle structure, The Journal of Cell Biology, vol.116, issue.5, pp.1071-1080, 1992.
DOI : 10.1083/jcb.116.5.1071

T. R. Klein, D. Kirsch, R. Kaufmann, and D. Riesner, Prion Rods Contain Small Amounts of Two Host Sphingolipids as Revealed by Thin-Layer Chromatography and Mass Spectrometry, Biological Chemistry, vol.379, issue.6, pp.655-666, 1998.
DOI : 10.1515/bchm.1998.379.6.655

D. A. Kocisko, J. H. Come, S. A. Priola, B. Chesebro, G. J. Raymond et al., Cell-free formation of protease-resistant prion protein, Nature, vol.370, issue.6489, pp.471-474, 1994.
DOI : 10.1038/370471a0

T. V. Kuzchalia and R. G. Parton, Membrane microdomains and caveolae, Current Opinion in Cell Biology, vol.11, issue.4, pp.424-431, 1999.
DOI : 10.1016/S0955-0674(99)80061-1

L. Laszlo, Lysosomes as key organelles in the pathogenesis of prion encephalopathies, The Journal of Pathology, vol.106, issue.4, pp.333-341, 1992.
DOI : 10.1002/path.1711660404

S. Lehmann, H. , and D. A. , Two mutant prion proteins expressed in cultured cells acquire biochemical properties reminiscent of the scrapie isoform., Proc. Natl. Acad. Sci. USA 93, pp.5610-5614, 1996.
DOI : 10.1073/pnas.93.11.5610

S. Lehmann, H. , and D. A. , Mutant and Infectious Prion Proteins Display Common Biochemical Properties in Cultured Cells, Journal of Biological Chemistry, vol.271, issue.3, pp.1633-1637, 1996.
DOI : 10.1074/jbc.271.3.1633

S. Lehmann, H. , and D. A. , Blockade of Glycosylation Promotes Acquistion of Scrapie-like Properties by the Prion Protein in Cultured Cells, Journal of Biological Chemistry, vol.272, issue.34, pp.21479-21487, 1997.
DOI : 10.1074/jbc.272.34.21479

C. Lipardi, L. Nitsch, and C. Zurzolo, Detergent-insoluble GPI-anchored Proteins Are Apically Sorted in Fischer Rat Thyroid Cells, but Interference with Cholesterol or Sphingolipids Differentially Affects Detergent Insolubility and Apical Sorting, Molecular Biology of the Cell, vol.11, issue.2, pp.531-542, 2000.
DOI : 10.1091/mbc.11.2.531

J. Lippincott-schwartz, L. C. Yuan, J. S. Bonifacino, and R. D. Klausner, Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: Evidence for membrane cycling from Golgi to ER, Cell, vol.56, issue.5, pp.801-813, 1989.
DOI : 10.1016/0092-8674(89)90685-5

M. P. Lisanti, J. W. Caras, M. A. Davitz, and E. Rodriguez-boulan, A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells, The Journal of Cell Biology, vol.109, issue.5, pp.2145-2156, 1989.
DOI : 10.1083/jcb.109.5.2145

J. Ma and S. Lindquist, Wild-type and mutant associated with prion disease are subjected to retrograde transport and proteasome degradation, Proc. Natl. Acad. Sci. USA 98, pp.4955-4960, 2001.

J. Ma and S. Lindquist, Conversion of PrP to a Self-Perpetuating PrPSc-like Conformation in the Cytosol, Science, vol.298, issue.5599, pp.1785-1788, 2002.
DOI : 10.1126/science.1073619

J. Ma, R. Wollmann, and S. Lindquist, Neurotoxicity and Neurodegeneration When PrP Accumulates in the Cytosol, Science, vol.298, issue.5599, pp.1781-1785, 2002.
DOI : 10.1126/science.1073725

A. C. Magalhaes, J. A. Silva, K. S. Lee, V. R. Martins, V. F. Prado et al., Endocytic Intermediates Involved with the Intracellular Trafficking of a Fluorescent Cellular Prion Protein, Journal of Biological Chemistry, vol.277, issue.36, pp.33311-33318, 2002.
DOI : 10.1074/jbc.M203661200

R. Mahfoud, N. Garmy, M. Maresca, N. Yahi, A. Puigserver et al., Identification of a Common Sphingolipid-binding Domain in Alzheimer, Prion, and HIV-1 Proteins, Journal of Biological Chemistry, vol.277, issue.13, pp.11292-11296, 2002.
DOI : 10.1074/jbc.M111679200

S. Mayor, M. , and F. R. , Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment., Molecular Biology of the Cell, vol.6, issue.7, pp.929-944, 1995.
DOI : 10.1091/mbc.6.7.929

M. Muniz, P. Morsomme, and H. Riezman, Protein Sorting upon Exit from the Endoplasmic Reticulum, Cell, vol.104, issue.2, pp.313-320, 2001.
DOI : 10.1016/S0092-8674(01)00215-X

N. Nakamura, C. Rabouille, R. Watson, T. Nilsson, N. Hui et al., Characterization of a cis-Golgi matrix protein, GM130, The Journal of Cell Biology, vol.131, issue.6, pp.1715-1726, 1995.
DOI : 10.1083/jcb.131.6.1715

S. Narindrasorasak, P. Yao, and B. Sarkar, Protein disulfide isomerase, a multifunctional protein chaperone, shows copper-binding activity, Biochemical and Biophysical Research Communications, vol.311, issue.2, pp.311-405, 2003.
DOI : 10.1016/j.bbrc.2003.09.226

N. Naslavsky, H. Shmeeda, G. Friedlander, A. Yanai, A. H. Futerman et al., Sphingolipid Depletion Increases Formation of the Scrapie Prion Protein in Neuroblastoma Cells Infected with Prions, Journal of Biological Chemistry, vol.274, issue.30, pp.20763-20771, 1999.
DOI : 10.1074/jbc.274.30.20763

N. Naslavsky, R. Stein, A. Yanai, G. Friedlander, and A. Taraboulos, Characterization of Detergent-insoluble Complexes Containing the Cellular Prion Protein and Its Scrapie Isoform, Journal of Biological Chemistry, vol.272, issue.10, pp.6324-6331, 1997.
DOI : 10.1074/jbc.272.10.6324

S. K. Nigam, Subcellular distribution of small GTP binding proteins in pancreas: identification of small GTP binding proteins in the rough endoplasmic reticulum., Proc. Natl. Acad. Sci. USA, pp.1296-1299, 1990.
DOI : 10.1073/pnas.87.4.1296

J. Ohanian and V. Ohanian, Sphingolipids in mammalian cell signalling, Cellular and Molecular Life Sciences, vol.58, issue.14, pp.2053-2068, 2001.
DOI : 10.1007/PL00000836

R. G. Parton, Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae., Journal of Histochemistry & Cytochemistry, vol.42, issue.2, pp.155-166, 1994.
DOI : 10.1177/42.2.8288861

K. Paulsson, W. , and P. , Chaperones and folding of MHC class I molecules in the endoplasmic reticulum, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1641, issue.1, pp.1-12, 2003.
DOI : 10.1016/S0167-4889(03)00048-X

R. B. Petersen, P. Parchi, S. L. Richardson, C. B. Urig, and P. Gambetti, Effect of the D178N Mutation and the Codon 129 Polymorphism on the Metabolism of the Prion Protein, Journal of Biological Chemistry, vol.271, issue.21, pp.12661-12668, 1996.
DOI : 10.1074/jbc.271.21.12661

P. Piccardo, An antibody raised against a conserved sequence of the prion protein recognizes pathological isoforms in human and animal prion diseases, including Creutzfeldt-Jakob disease and bovine spongiform encephalopathy, Am. J. Pathol, vol.152, pp.1415-1420, 1998.

M. A. Prado, J. Alves-silva, A. C. Magalhaes, V. F. Prado, R. Linden et al., PrPc on the road: trafficking of the cellular prion protein, Journal of Neurochemistry, vol.20, issue.4, pp.769-781, 2004.
DOI : 10.1046/j.1471-4159.2003.02199.x

S. A. Priola, C. , and B. , Abnormal Properties of Prion Protein with Insertional Mutations in Different Cell Types, Journal of Biological Chemistry, vol.273, issue.19, pp.11980-11985, 1998.
DOI : 10.1074/jbc.273.19.11980

K. Prydz, S. H. Hansen, K. Sandvig, and B. Van-deurs, Effects of brefeldin A on endocytosis, transcytosis and transport to the Golgi complex in polarized MDCK cells, The Journal of Cell Biology, vol.119, issue.2, pp.259-272, 1992.
DOI : 10.1083/jcb.119.2.259

S. B. Prusiner, M. R. Scott, S. J. Dearmond, and F. E. Cohen, Prion Protein Biology, Cell, vol.93, issue.3, pp.337-348, 1998.
DOI : 10.1016/S0092-8674(00)81163-0

B. Reaves and G. Banting, Perturbation of the morphology of the trans-Golgi network following Brefeldin A treatment: redistribution of a TGN-specific integral membrane protein, TGN38, The Journal of Cell Biology, vol.116, issue.1, pp.85-94, 1992.
DOI : 10.1083/jcb.116.1.85

C. R. Sanders and J. K. Nagy, Misfolding of membrane proteins in health and disease: the lady or the tiger?, Current Opinion in Structural Biology, vol.10, issue.4, pp.438-442, 2000.
DOI : 10.1016/S0959-440X(00)00112-3

K. Sandhoff and T. Kolter, Biosynthesis and degradation of mammalian glycosphingolipids, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.358, issue.1433, pp.847-861, 2003.
DOI : 10.1098/rstb.2003.1265

N. Sanghera and T. J. Pinheiro, Binding of prion protein to lipid membranes and implications for prion conversion, Journal of Molecular Biology, vol.315, issue.5, pp.1241-1256, 2002.
DOI : 10.1006/jmbi.2001.5322

N. Sciaky, J. Presley, C. Smith, K. J. Zaal, N. Cole et al., Golgi Tubule Traffic and the Effects of Brefeldin A Visualized in Living Cells, The Journal of Cell Biology, vol.18, issue.5, pp.1137-1155, 1997.
DOI : 10.1016/S0092-8674(05)80089-3

D. Sevlever, S. Pickett, K. J. Mann, K. Sambamurti, M. E. Medof et al., Glycosylphosphatidylinositol-anchor intermediates associate with Triton-insoluble membranes in subcellular compartments that include the endoplasmic reticulum, Biochemical Journal, vol.343, issue.3, pp.627-635, 1999.
DOI : 10.1042/bj3430627

S. Shyng, J. E. Heuser, H. , and D. A. , A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits, The Journal of Cell Biology, vol.125, issue.6, pp.1239-1250, 1994.
DOI : 10.1083/jcb.125.6.1239

K. Simons and E. Ikonen, Functional rafts in cell membrane, Nature, vol.387, issue.6633, pp.569-572, 1997.
DOI : 10.1038/42408

C. Sutterlin, T. L. Doering, F. Schimmoller, S. Schroder, and H. Riezman, Specific requirements for the ER to Golgi transport of GPI-anchored proteins in yeast, J. Cell Sci, vol.110, pp.2703-2714, 1997.

T. Taguchi, M. Pypaert, W. , and G. , Biochemical Sub-Fractionation of the Mammalian Golgi Apparatus, Traffic, vol.104, issue.5, pp.344-352, 2003.
DOI : 10.1034/j.1600-0854.2003.00091.x

A. Taraboulos, A. J. Raeber, D. R. Borchelt, D. Serban, and S. B. Prusiner, Synthesis and trafficking of prion proteins in cultured cells., Molecular Biology of the Cell, vol.3, issue.8, pp.851-863, 1992.
DOI : 10.1091/mbc.3.8.851

A. Taraboulos, M. R. Scott, A. Semenov, D. Avraham, L. Laszlo et al., Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform [published erratum appears in J Cell Biol 1995 Jul;130(2):501], The Journal of Cell Biology, vol.129, issue.1, pp.121-132, 1995.
DOI : 10.1083/jcb.129.1.121

G. C. Telling, M. Scott, J. Mastrianni, R. Gabizon, M. Torchia et al., Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein, Cell, vol.83, issue.1, pp.79-90, 1995.
DOI : 10.1016/0092-8674(95)90236-8

N. R. Thotakura and O. P. Bahl, [28] Enzymatic deglycosylation of glycoproteins, Methods Enzymol, vol.138, pp.350-359, 1987.
DOI : 10.1016/0076-6879(87)38030-9

M. C. Tiveron, M. Nosten-bertrand, H. Jani, D. Garnett, E. M. Hirst et al., The mode of anchorage to the cell surface determines both the function and the membrane location of Thy-1 glycoprotein, J. Cell Sci, vol.107, pp.1783-1796, 1994.

F. G. Van-der-goot and T. Harder, Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack, Seminars in Immunology, vol.13, issue.2, pp.89-97, 2001.
DOI : 10.1006/smim.2000.0300

M. Vey, S. Pilkuhn, H. Wille, R. Nixon, S. J. Dearmond et al., Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains, Proc. Natl. Acad. Sci. USA 93, pp.14945-14949, 1996.
DOI : 10.1073/pnas.93.25.14945

M. Wagner, A. K. Rajasekanaran, D. K. Hanzel, S. Mayor, and E. Rodriguez-boulan, Brefeldin A causes structural and functional alterations of the trans-Golgi network of MDCK cells, J. Cell Sci, vol.107, pp.933-943, 1994.

A. R. Walmsley, F. Zeng, and N. M. Hooper, The N-terminal Region of the Prion Protein Ectodomain Contains a Lipid Raft Targeting Determinant, Journal of Biological Chemistry, vol.278, issue.39, pp.37241-37248, 2003.
DOI : 10.1074/jbc.M302036200

F. Winklhofer, J. Heske, U. Heller, A. Reintjes, W. Muranyi et al., Determinants of the in Vivo Folding of the Prion Protein: A BIPARTITE FUNCTION OF HELIX 1 IN FOLDING AND AGGREGATION, Journal of Biological Chemistry, vol.278, issue.17, pp.14961-14970, 2003.
DOI : 10.1074/jbc.M209942200

F. Wopfner, G. Weidenhofer, R. Schneider, A. Von-brunn, S. Gilch et al., Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein, Journal of Molecular Biology, vol.289, issue.5, pp.1163-1178, 1999.
DOI : 10.1006/jmbi.1999.2831

M. Ying, T. Flatmark, and J. Saraste, The p58-positive pre-golgi intermediates consist of distinct subpopulations of particles that show differential binding of COPI and COPII coats and contain vacuolar H(, 2000.

C. Zurzolo, M. P. Lisanti, I. W. Caras, L. Nitsch, and E. Rodriguez-boulan, Glycosylphosphatidylinositol-anchored proteins are preferentially targeted to the basolateral surface in Fischer rat thyroid epithelial cells, The Journal of Cell Biology, vol.121, issue.5, pp.1031-1039, 1993.
DOI : 10.1083/jcb.121.5.1031

. Vip21-/-caveolin, glycosphingolipid clusters and the sorting of glycosylphosphatidylinositol-anchored proteins in epithelial cells, EMBO J, vol.13, pp.42-53