Oligomerization is a specific requirement for apical sorting of glycosyl-phosphatidylinositol-anchored proteins but not for non-raft-associated apical proteins.
Abstract
Protein apical sorting in polarized epithelial cells is mediated by two different mechanisms, raft dependent and raft independent. In Madin-Darby canine kidney (MDCK) cells, an essential step for apical sorting of glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) is their coalescence into high-molecular-weight (HMW) oligomers. Here we show that this mechanism is also functional in Fischer rat thyroid cells, which possess a different sorting phenotype compared with MDCK cells. We demonstrate that, as in MDCK cells, both apical and basolateral GPI-APs associate with detergent-resistant microdomains, but that only the apical proteins are able to oligomerize into HMW complexes during their passage through the medial Golgi. We also show that oligomerization is a specific requirement for apical sorting of GPI-APs and is not used by transmembrane, non-raft-associated apical proteins.