The c-Myc target gene Rcl (C6orf108) encodes a novel enzyme, deoxynucleoside 5'-monophosphate N-glycosidase.
Abstract
RCL is a c-Myc target with tumorigenic potential. Genome annotation predicted that RCL belonged to the N-deoxyribosyltransferase family. However, its putative relationship to this class of enzymes did not lead to its precise biochemical function. The purified native or N-terminal His-tagged recombinant rat RCL protein expressed in Escherichia coli exhibits the same enzyme activity, deoxynucleoside 5'-monophosphate N-glycosidase, never before described. dGMP appears to be the best substrate. RCL opens a new route in the nucleotide catabolic pathways by cleaving the N-glycosidic bond of deoxynucleoside 5'-monophosphates to yield two reaction products, deoxyribose 5-phosphate and purine or pyrimidine base. Biochemical studies show marked differences in the terms of the structure and catalytic mechanism between RCL and of its closest enzyme family neighbor, N-deoxyribosyltransferase. The reaction products of this novel enzyme activity have been implicated in purine or pyrimidine salvage, glycolysis, and angiogenesis, and hence are all highly relevant for tumorigenesis.