W. M. Yokoyama, S. Kim, and A. R. French, The Dynamic Life of Natural Killer Cells, Annual Review of Immunology, vol.22, issue.1, pp.405-429, 2004.
DOI : 10.1146/annurev.immunol.22.012703.104711

S. M. Vidal and L. L. Lanier, NK Cell Recognition of Mouse Cytomegalovirus-Infected Cells, Curr. Top. Microbiol. Immunol, vol.298, pp.183-206, 2006.
DOI : 10.1007/3-540-27743-9_10

C. A. Stewart, E. Vivier, and M. Colonna, Strategies of Natural Killer Cell Recognition and Signaling, Curr. Top. Microbiol. Immunol, vol.298, pp.1-21, 2006.
DOI : 10.1007/3-540-27743-9_1

URL : https://hal.archives-ouvertes.fr/hal-00080799

M. E. Mcnerney and V. Kumar, The CD2 Family of Natural Killer Cell Receptors, Curr. Top. Microbiol. Immunol, vol.298, pp.91-120, 2006.
DOI : 10.1007/3-540-27743-9_5

M. Kondo, I. L. Weissman, and K. Akashi, Identification of Clonogenic Common Lymphoid Progenitors in Mouse Bone Marrow, Cell, vol.91, issue.5, pp.661-672, 1997.
DOI : 10.1016/S0092-8674(00)80453-5

R. E. Mebius, T. Miyamoto, J. Christensen, J. Domen, T. Cupedo et al., The Fetal Liver Counterpart of Adult Common Lymphoid Progenitors Gives Rise to All Lymphoid Lineages, CD45+CD4+CD3- Cells, As Well As Macrophages, The Journal of Immunology, vol.166, issue.11, pp.6593-6601, 2001.
DOI : 10.4049/jimmunol.166.11.6593

R. H. Lian and V. Kumar, Murine natural killer cell progenitors and their requirements for development, Seminars in Immunology, vol.14, issue.6, pp.453-460, 2002.
DOI : 10.1016/S1044532302000805

T. Kouro, V. Kumar, and P. W. Kincade, Relationships between early B- and NK-lineage lymphocyte precursors in bone marrow, Blood, vol.100, issue.10, pp.3672-3680, 2002.
DOI : 10.1182/blood-2002-02-0653

H. Rodewald, P. Moingeon, J. L. Lucich, C. Dosiou, P. Lopez et al., A population of early fetal thymocytes expressing Fc??RIIIII contains precursors of T lymphocytes and natural killer cells, Cell, vol.69, issue.1, pp.139-150, 1992.
DOI : 10.1016/0092-8674(92)90125-V

J. R. Carlyle, A. M. Mitchie, C. Furlonger, R. Nakano, M. J. Lenardo et al., Identification of a Novel Developmental Stage Marking Lineage Commitment of Progenitor Thymocytes, The Journal of Experimental Medicine, vol.158, issue.2, pp.173-182, 1997.
DOI : 10.1084/jem.184.3.903

T. Ikawa, H. Kawamoto, S. Fujimoto, and Y. Katsura, Commitment of Common T/Natural Killer (Nk) Progenitors to Unipotent T and Nk Progenitors in the Murine Fetal Thymus Revealed by a Single Progenitor Assay, The Journal of Experimental Medicine, vol.129, issue.11, pp.1617-1627, 1999.
DOI : 10.1016/S1074-7613(00)80638-X

M. Lu, R. Tayu, R. Ikawa, K. Masuda, I. Matsumoto et al., The Earliest Thymic Progenitors in Adults Are Restricted to T, NK, and Dendritic Cell Lineage and Have a Potential to Form More Diverse TCR?? Chains than Fetal Progenitors, The Journal of Immunology, vol.175, issue.9, pp.5848-5856, 2005.
DOI : 10.4049/jimmunol.175.9.5848

H. Spits, F. Couwenberg, A. Q. Bakker, K. Weijer, and C. H. Uittenbogaart, Stem Cells into Predendritic Cell (Pre-Dc)2 but Not into Pre-Dc1, The Journal of Experimental Medicine, vol.162, issue.12, pp.1775-1783, 2000.
DOI : 10.1016/S1074-7613(00)80421-5

C. A. Vosshenrich, M. F. Garcia-ojed, S. I. Samson-villeger, V. Pasqualetto, L. Enault et al., Erratum: A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127, Nature Immunology, vol.7, issue.12, pp.1217-1224, 2006.
DOI : 10.1038/ni1206-1343b

E. E. Rosmaraki, I. Douagi, C. Roth, F. Colucci, A. Cumano et al., Identification of committed NK cell progenitors in adult murine bone marrow, European Journal of Immunology, vol.30, issue.6, pp.1900-1909, 2001.
DOI : 10.1002/1521-4141(200106)31:6<1900::AID-IMMU1900>3.0.CO;2-M

S. Kim, K. Iizuka, H. S. Kang, A. Dokun, A. R. French et al., In vivo developmental stages in murine natural killer cell maturation, vivo developmental stages in murine natural killer cell maturation, pp.523-528, 2002.
DOI : 10.1038/ni796

L. L. Veinotte, B. T. Wilhelm, D. L. Mager, and F. Takei, Acquisition of MHC-Specific Receptors on Murine Natural Killer Cells, Critical Reviews in Immunology, vol.23, issue.4, pp.251-266, 2003.
DOI : 10.1615/CritRevImmunol.v23.i4.10

J. P. Disanto, W. Muller, D. Guy-grand, A. Fischer, and K. Rajewsky, Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain., Proc. Natl. Acad. Sci. USA, pp.377-381, 1995.
DOI : 10.1073/pnas.92.2.377

A. Boone and . Ma, Interleukin (IL)-15R?-defi cient natural killer cells survive in normal but not IL-15R?-defi cient mice, J. Exp. Med, vol.197, pp.977-984, 2003.

P. R. Burkett, R. Koka, M. Chien, S. Chai, D. L. Boone et al., T Cell Homeostasis, The Journal of Experimental Medicine, vol.50, issue.7, pp.825-834, 2004.
DOI : 10.1002/eji.200324545

M. K. Kennedy, M. Glaccum, S. N. Brown, E. A. Butz, J. L. Viney et al., Reversible Defects in Natural Killer and Memory Cd8 T Cell Lineages in Interleukin 15???Deficient Mice, The Journal of Experimental Medicine, vol.10, issue.5, pp.771-780, 2000.
DOI : 10.1093/intimm/9.9.1367

C. A. Vosshenrich, T. Ranson, S. I. Samson, E. Corcuff, F. Colucci et al., Roles for Common Cytokine Receptor ??-Chain-Dependent Cytokines in the Generation, Differentiation, and Maturation of NK Cell Precursors and Peripheral NK Cells in Vivo, The Journal of Immunology, vol.174, issue.3, pp.1213-1221, 2005.
DOI : 10.4049/jimmunol.174.3.1213

H. Suzuki, G. S. Dunca, H. Takimoto, and T. W. Mak, Abnormal Development of Intestinal Intraepithelial Lymphocytes and Peripheral Natural Killer Cells in Mice Lacking the IL-2 Receptor ?? Chain, The Journal of Experimental Medicine, vol.14, issue.3, pp.499-505, 1997.
DOI : 10.1002/eji.1830260942

J. P. Lodolce, D. L. Boone, S. Chai, R. E. Swain, T. Dassopoulos et al., IL-15 Receptor Maintains Lymphoid Homeostasis by Supporting Lymphocyte Homing and Proliferation, Immunity, vol.9, issue.5, pp.669-676, 1998.
DOI : 10.1016/S1074-7613(00)80664-0

K. Barton, N. Muthusamy, C. Fischer, C. N. Ting, T. L. Walunas et al., The Ets-1 Transcription Factor Is Required for the Development of Natural Killer Cells in Mice, Immunity, vol.9, issue.4, pp.555-563, 1998.
DOI : 10.1016/S1074-7613(00)80638-X

F. Colucci, S. I. Samson, R. P. Dekoter, O. Lantz, H. Singh et al., Differential requirement for the transcription factor PU.1 in the generation of natural killer cells versus B and T cells, Blood, vol.97, issue.9, pp.2625-2632, 2001.
DOI : 10.1182/blood.V97.9.2625

Y. Yokota, A. Mansouri, S. Mori, S. Sugawara, S. Adachi et al., Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2, Nature, vol.397, issue.6721, pp.702-706, 1999.
DOI : 10.1038/17812

T. Ikawa, S. Fujimoto, H. Kawamoto, Y. Katsura, and Y. Yokota, Commitment to natural killer cells requires the helix-loop-helix inhibitor Id2, Proc. Natl. Acad. Sci. USA, pp.5164-5169, 2001.
DOI : 10.1073/pnas.091537598

S. Fukuyama, T. Hiroi, Y. Yokota, P. D. Rennert, M. Yanagita et al., Initiation of NALT Organogenesis Is Independent of the IL-7R, LT??R, and NIK Signaling Pathways but Requires the Id2 Gene and CD3???CD4+CD45+ Cells, Immunity, vol.17, issue.1, pp.31-40, 2002.
DOI : 10.1016/S1074-7613(02)00339-4

G. Eberl, S. Marmon, M. J. Sunshine, P. D. Rennert, Y. Choi et al., An essential function for the nuclear receptor ROR??t in the generation of fetal lymphoid tissue inducer cells, Nature Immunology, vol.5, issue.1, pp.64-73, 2004.
DOI : 10.1038/ni1022

Y. Yokota, S. Mori, S. I. Nishikawa, A. Mansouri, P. Gruss et al., The helix-loop-helix inhibitor Id2 and cell diff erentiation control, Curr. Top. Microbiol. Immunol, vol.251, pp.35-41, 2000.

B. L. Kee, Helix-Loop-Helix Proteins in Lymphocyte Lineage Determination, Curr. Top. Microbiol. Immunol, vol.290, pp.15-27, 2005.
DOI : 10.1007/3-540-26363-2_2

X. Sun, N. G. Copeland, N. A. Jenkins, and D. Baltimore, Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins., Molecular and Cellular Biology, vol.11, issue.11, pp.5603-5611, 1991.
DOI : 10.1128/MCB.11.11.5603

G. Bain, E. C. Maandag, D. J. Izon, D. Amsen, A. M. Kruisbeek et al., E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements, Cell, vol.79, issue.5, pp.885-892, 1994.
DOI : 10.1016/0092-8674(94)90077-9

Y. Zhuang, P. Soriano, and H. Weintraub, The helix-loop-helix gene E2A is required for B cell formation, Cell, vol.79, issue.5, pp.875-884, 1994.
DOI : 10.1016/0092-8674(94)90076-0

C. S. Seet, R. L. Brumbaugh, and B. L. Kee, Early B Cell Factor Promotes B Lymphopoiesis with Reduced Interleukin 7 Responsiveness in the Absence of E2A, The Journal of Experimental Medicine, vol.15, issue.12, pp.1689-1700, 2004.
DOI : 10.1084/jem.194.5.645

S. L. Nutt, B. Heavey, A. G. Rolink, and M. Busslinger, Commitment to the B-lymphoid lineage depends on the transcription factor Pax5, Nature, vol.401, pp.556-562, 1999.

A. Iavarone, P. Garg, A. Lasorella, and M. A. Israel, The helix-loop-helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein., Genes & Development, vol.8, issue.11, pp.1270-1284, 1994.
DOI : 10.1101/gad.8.11.1270

A. Iavarone, E. King, X. M. Dai, G. Leone, E. R. Stanley et al., Retinoblastoma promotes definitive erythropoiesis by repressing Id2 in fetal liver macrophages, Nature, vol.75, issue.7020, pp.1040-1045, 2004.
DOI : 10.1038/nature01417

J. Stinson, T. Inoue, P. Yates, A. Clancy, J. D. Norton et al., Regulation of TCF ETS-domain transcription factors by helix-loop-helix motifs, Nucleic Acids Research, vol.31, issue.16, pp.4717-4728, 2003.
DOI : 10.1093/nar/gkg689

R. E. Mebius, Organogenesis of lymphoid tissues, Nature Reviews Immunology, vol.3, issue.4, pp.292-303, 2003.
DOI : 10.1038/nri1054

A. Lasorella, M. Noseda, M. Beyna, Y. Yokota, and A. Iavarone, Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins, Nature, vol.407, pp.592-598, 2000.

M. H. Heemskerk, B. Blom, G. Nolan, A. P. Stegmann, A. Q. Bakker et al., Inhibition of T Cell and Promotion of Natural Killer Cell Development by the Dominant Negative Helix Loop Helix Factor Id3, Journal of Experimental Medicine, vol.17, issue.8, pp.1597-1602, 1997.
DOI : 10.1016/S0952-7915(96)80056-2

J. R. Carlyle and J. C. Zuniga-pfl-ucker, Lineage commitment and differentiation of T and natural killer lymphocytes in the fetal mouse, Immunological Reviews, vol.158, issue.1, pp.63-74, 1998.
DOI : 10.1084/jem.186.9.1597

K. Langlands, X. Yin, G. Anand, and E. V. Prochownik, Differential Interactions of Id Proteins with Basic-Helix-Loop-Helix Transcription Factors, Journal of Biological Chemistry, vol.272, issue.32, pp.19785-19793, 1997.
DOI : 10.1074/jbc.272.32.19785

X. H. Sun and D. Baltimore, An inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers, Cell, vol.64, issue.2, pp.459-470, 1991.
DOI : 10.1016/0092-8674(91)90653-G

A. Miyamoto, X. Cui, L. Naumovski, and M. L. Cleary, Helix-loop-helix proteins LYL1 and E2a form heterodimeric complexes with distinctive DNA-binding properties in hematolymphoid cells., Molecular and Cellular Biology, vol.16, issue.5, pp.2394-2401, 1996.
DOI : 10.1128/MCB.16.5.2394

B. L. Kee, Id3 Induces Growth Arrest and Caspase-2-Dependent Apoptosis in B Lymphocyte Progenitors, The Journal of Immunology, vol.175, issue.7, pp.4518-4527, 2005.
DOI : 10.4049/jimmunol.175.7.4518

I. Engel and C. Murre, Ectopic expression of E47 or E12 promotes the death of E2A-defi cient lymphomas, Proc. Natl. Acad. Sci. USA, pp.996-1001, 1999.

J. P. Disanto, NATURAL KILLER CELL DEVELOPMENTAL PATHWAYS: A Question of Balance, Annual Review of Immunology, vol.24, issue.1, pp.257-286, 2006.
DOI : 10.1146/annurev.immunol.24.021605.090700

T. Cupedo and R. E. Mebius, Cellular Interactions in Lymph Node Development, The Journal of Immunology, vol.174, issue.1, pp.21-25, 2005.
DOI : 10.4049/jimmunol.174.1.21

K. M. Ansel, V. N. Ngo, P. L. Hyman, S. A. Luther, R. Forster et al., A chemokine-driven positive feedback loop organizes lymphoid follicles, Nature, vol.406, pp.309-314, 2000.

X. Cao, E. W. Shores, J. Hu-li, M. R. Anver, B. L. Kelsail et al., Defective lymphoid development in mice lacking expression of the common cytokine receptor ?? chain, Immunity, vol.2, issue.3, pp.223-238, 1995.
DOI : 10.1016/1074-7613(95)90047-0