Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway.
Sandra Martin-Latil, Laurence Mousson, Arnaud Autret, Florence Colbère-Garapin, Bruno Blondel
Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway

Sandra Martin-Latil*, Laurence Mousson, Arnaud Autret, Florence Colbère-Garapin, and Bruno Blondel

Unité de Biologie des Virus Entériques, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris cedex 15, France

*Corresponding author:
Dr. Sandra Martin-Latil, Unité de Biologie des Virus Entériques, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France. Phone: (33) 1.40.61.35.90; Fax: (33) 1.40.61.34.21; E-mail: smartin@pasteur.fr

Running title: rotavirus induces Bax-dependent apoptosis

Word count abstract: 167
Word count manuscript without references, footnotes, figure legends: 4418
ABSTRACT

Rotaviruses are the leading cause of infantile viral gastroenteritis worldwide. Mature enterocytes of the small intestine infected by rotavirus undergo apoptosis and their replacement by less differentiated dividing cells probably leads to defective absorptive function of the intestinal epithelium, and this contributes to osmotic diarrhea and rotavirus pathogenesis.

Here, we show that the infection of MA104 cells by the simian rhesus rotavirus strain RRV induced caspase-3 activation, DNA fragmentation and cleavage of poly(ADP-ribose) polymerase (PARP); all three phenomena are features of apoptosis. RRV induced the release of cytochrome c from mitochondria to the cytosol indicating that the mitochondrial apoptotic pathway was activated. RRV infection of MA104 cells activated Bax, a proapoptotic member of the Bcl-2 family, as revealed by its conformational change. Most importantly, Bax-specific small interfering RNAs partially inhibited the cytochrome c release in RRV-infected cells. Thus, mitochondrial dysfunction induced by rotavirus is Bax-dependent. Apoptosis presumably leads to impaired intestinal functions, so our findings contribute to improve our understanding of rotavirus pathogenesis at the cellular level.
INTRODUCTION

Rotavirus is a nonenveloped, double-stranded RNA virus belonging to the *Reoviridae* family. It is the major etiologic agent of severe gastroenteritis in children under 5 years of age and causes 600,000 deaths per year (40). Rotavirus infection is mainly restricted to the small intestinal villus epithelium, resulting in villus atrophy. Diarrhea associated with rotavirus is a multifactorial process: it involves dysfunctions of both nutrient digestion and enterocyte absorption at the top of villi, and the secretion of water and electrolytes (29, 32, 43). The defective absorptive function and the increased intestinal permeability may be a consequence of the replacement of rotavirus-infected mature enterocytes by less differentiated cells and this could contribute to rotavirus pathogenesis. In a murine model, rotavirus-infected enterocytes undergo apoptosis and are therefore lost (4). It is therefore likely that apoptosis makes a major contribution to diarrhea associated with rotavirus infection.

Cell death by apoptosis is part of the normal development and maintenance of homeostasis (51) but is also involved in pathological situations associated with infections (16, 45) and other (3) causes. Apoptosis is characterized by chromatin condensation, cell shrinkage, membrane blebbing, and DNA fragmentation. It can be generally divided into two nonexclusive pathways, the death receptor pathway (extrinsic) and the mitochondrial pathway (intrinsic) (10, 13, 20). In the extrinsic pathway, stimulation of death receptors, such as Fas and TNF receptor 1, leads to formation of the death-inducing signaling complex (DISC) which allows the activation of caspase-8 and/or caspase-10, and then to that of downstream effector caspases, particularly caspase-3 (2, 34). The intrinsic pathway is initiated in response to diverse apoptotic stimuli and leads to the loss of mitochondrial transmembrane potential and the release of several pro-apoptotic proteins, including cytochrome c and Smac/Diablo, from the mitochondrial intermembrane space to the cytosol. Once released, cytochrome c
forms a complex with Apaf-1 and pro-caspase 9, resulting in activation of this initiator
caspase, and then of effector caspases (52). Smac/Diablo promotes caspase activation by
directly binding to and inhibiting the caspase inhibitors of the IAP family (50, 52). This
mitochondrial apoptotic pathway is tightly controlled by protein members of the Bcl-2 family.
Some, including Bcl-2 and Bcl-X_L, inhibit apoptosis, whereas others, including Bax and Bid,
induce apoptosis (9).

The extrinsic and intrinsic pathways may cross-talk through the pro-apoptotic protein Bid.
Indeed, caspase-8 can cleave Bid to generate a truncated form, tBid that targets mitochondria
and activates the pro-apoptotic protein Bax (26, 27, 30).

There have been very few studies of rotavirus-induced apoptosis in primate cells in vitro. An
ingly study in human carcinoma HT29 cells indicated that rotavirus induced peripheral
condensation of the chromatin and fragmentation of the nuclei, suggesting that apoptosis was
induced in infected cells (47). A more recent study in fully differentiated Caco-2 cells
indicated that rotavirus induced apoptosis in these cells, and did so through the mitochondrial
pathway (7). However, the precise signaling pathways leading to mitochondrial dysfunction
following rotavirus infection have not been investigated.

Here, we studied apoptosis induced by the Rhesus Rotavirus (RRV) strain in the monkey
kidney MA104 cells, the cellular model in which the rotavirus cycle has been best
characterized. We first confirmed that RRV-induced apoptosis in this model occurs through
the mitochondrial pathway as observed in Caco-2 cells. We then investigated the cascade of
events related to mitochondrial dysfunction. We report here that mitochondrial apoptotic
pathway in RRV-infected MA104 cells is Bax-dependent. It is, to our knowledge, the first
demonstration of Bax-dependent apoptosis in rotavirus-infected cells.
MATERIALS AND METHODS

Materials – Chemicals
Protein G (P3296), Staurosporine (S4400) and mouse anti-tubulin antibody (T5168) were obtained from Sigma-Aldrich. CompleteTM protease inhibitor mixture was obtained from Roche Applied Science. z-VAD-fmk (627610), z-DEVD-fmk (264155) and z-LEHD-fmk (218761) were purchased from Calbiochem. Mouse anti-CoxIV (A21347) antibody was purchased from Molecular Probes. Mouse anti-Bcl-2 (sc-509) and anti-Bax (clone 6A7, sc-23959) antibodies were purchased from Santa Cruz Biotechnology. Rabbit anti-Bax antibody (NT 06-499) and mouse anti-cytochrome c antibody (556433) were obtained from Upstate and BD Pharmingen, respectively. Rabbit anti-Smac/Diablo (2409) was purchased from ProSci incorporated. Anti-mouse (NA9310V) and anti-rabbit (NA9340V) HRP-conjugated secondary antibodies were obtained from Amersham Biosciences. Goat anti-Bid antibody (AF860) and donkey anti-goat (HAF109) HRP-conjugated antibody were purchased from Research & Diagnostic. Mouse anti-PARP antibody (clone C-2-10) was obtained from Biomol. Mouse anti-Caspase-3 (9668) and anti-caspase-8 (9746) antibodies, and Bax (6321) and non-targeted control (6201) siRNAs were purchased from Cell Signaling.

Cells and Virus
The monkey kidney MA104 cell line (MA104 cells) was cultured in minimum Eagle's medium (MEM) supplemented with 10% fetal bovine serum (FBS), 2 mM glutamine and 0.1 mM non-essential amino acids, in a 5% CO2 incubator. The rotavirus RRV strain was kindly provided by Didier Poncet (Gif-sur-Yvette, France). Virus stocks were generated in MA104 cells in a serum-free culture medium supplemented with trypsin (0.5 µg/ml). Viruses were activated by treatment with trypsin at 37°C for 30 min, and MA104 cell monolayers were
infected at a multiplicity of infection (m.o.i.) of 0.002 plaque-forming units/cell. After 1 h of adsorption at 37°C, the inoculum was removed and the infected cells were incubated in serum-free medium containing trypsin. When cytopathic effects were complete, the cultures were frozen and then thawed, and the cell debris was removed by centrifugation.

To infect MA104 cells, RRV was activated in serum-free medium with 0.5 µg/ml trypsin. Cells were washed twice in serum-free medium and then infected at an m.o.i of 10. The inoculum was removed 1 h later and replaced with medium containing 10% FBS. This time was defined as 0 h post-infection for all experiments.

Assessment of apoptosis by flow cytometry

The percentages of cells that were apoptotic was determined by flow cytometric analysis of aliquots of 2 x 10^6 cells incubated with acridine orange (AO), a metachromatic nuclear dye (λEx max: 500 nm, λEm max: 526 nm), for 15 min at 37°C. AO fluorescence was measured with a FACScan machine (Becton Dickinson). Two populations of cells were separated, one consisting of the living cells characterized by a bright fluorescence labeling, and the second being apoptotic cells with a characteristic distinct pattern of reduced fluorescence intensity (12). We analyzed at least 10,000 cells for each sample. Data were analyzed with Cellquest software (Becton Dickinson).

Quantification of oligonucleosomal DNA fragmentation

DNA fragmentation was assayed using a cell death detection ELISA kit (Roche Applied Science) with RRV-infected MA104 cells plated in 6-well culture dishes according to the manufacturer’s instructions; the test measures the cytosolic histone-associated mono- and oligonucleosome fragments. The concentration of nucleosomal fragments in cytosolic fractions was determined by a sandwich enzyme-linked immunosorbent assay, using histone-
specific antibodies preadsorbed onto microtiter plates and peroxidase-conjugated antibodies against DNA. Peroxidase activity was measured photometrically at 405 nm. The experiments were run in triplicate.

Detection of active caspase-8

Caspase-8 activation was detected using a carboxyfluorescein FLICA apoptosis detection kit (Immunochemistry Technologies, LLC) according to manufacturer's protocol. This assay is based on a fluorescein-labeled inhibitor (FAM-LETD-fmk) that binds specifically to active caspase-8. Apoptotic cells containing active caspase-8 were detected with a FACScan (Becton Dickinson) machine. We analyzed at least 10,000 cells for each sample. Data were analyzed with Cellquest software (Becton Dickinson).

Transfection of small interfering RNA (siRNA)

RNA interference was used to silence Bax gene expression in MA104 cells. Cells were plated in 6-well culture dishes with complete medium and allowed to grow for 24 h, so as to reach 50–80% confluence. The cells were then transfected with siRNA (6321, Cell Signaling) targeting Bax mRNA. An irrelevant siRNA (6201, Cell Signaling) that does not lead to the specific degradation of any cellular mRNA was used as a negative control. A mixture of OptiMEM medium and LipofectAMINE was incubated for 10 min at room temperature and was then incubated with siRNA (25 nM) for 20 min at room temperature to allow complex formation. This siRNA mixture was then added to each well following the manufacturer's suggested protocol. Twenty-four hours after transfection, the medium was changed and cells were infected with the virus 24 h later. Gene silencing was verified by testing for proteins by immunoblot analysis after transient transfection of MA104 cells with siRNA.
Whole cell extracts

Approximately 5.10^6 cells were collected and washed with PBS, then resuspended in lysis buffer (20 mM Tris pH 7.5, 135 mM NaCl, 2 mM EDTA, 1% Triton-X100, 10% glycerol) supplemented with a protease inhibitor mixture (Roche). The cells were homogenized on ice using dounce homogenizer and incubated for 10 min at 4°C in the lysis buffer. The lysates were clarified by centrifugation for 10 min at 1200 g. The supernatant was collected as the whole cell extract.

Subcellular fractionation

A subcellular proteome extraction kit (Calbiochem) was used to isolate cytosol and heavy membrane fractions of MA104 cells according to the manufacturer's instructions. Cells (5.10^6) were harvested, pelleted, washed twice, resuspended in the ice-cold Extraction I buffer containing a protease inhibitor mixture and incubated for 10 min at 4°C with gentle agitation. The suspension was centrifuged at 1000 g at 4°C for 10 min. The supernatant was used as the cytosol fraction. The pellet was resuspended in the ice-cold Extraction II buffer containing a protease inhibitor mixture and incubated for 30 min at 4°C with gentle agitation. It was then centrifuged at 6000 g for 10 min at 4°C, and the supernatant was used as the heavy membrane fraction.

Detection of Bax conformation change by immunoprecipitation

Cells were harvested, washed in PBS and suspended in lysis buffer (10 mM hepes pH 7.4, 150 mM NaCl, 1% Chaps) containing a mixture of protease inhibitors. The zwitterionic detergent Chaps was used because it does not affect Bax conformation (18). Cells were homogenized on ice with dounce homogenizer, incubated for 2 h in the lysis buffer and centrifuged for 30 min at 14000 g. The resulting supernatant was incubated overnight at 4°C.
with 20 µl of protein G and 2 µg of the anti-Bax antibody (6A7). The immunoprecipitates were collected by centrifugation at 14000 g (4°C, 5 min). The pellets were washed with immunoprecipitation buffer and suspended in 50 µl of Laemmli’s buffer containing reducing agent (Invitrogen).

Western-blot analysis
Protein concentrations were determined by using a Bio-Rad protein assay kit (Bio-Rad, Richmond, CA). Samples of equal protein content were resuspended in Laemmli’s electrophoresis sample buffer containing reducing agent, denatured by boiling for 5 min, subjected to SDS-PAGE (10-20% Tricine gels; Novex) and transferred to nitrocellulose membranes (Amersham Biosciences). Nonspecific sites were blocked by incubating the membranes for 1 h at room temperature with 5% nonfat milk and 0.1% Tween 20 in Phosphate-Buffered Saline (PBST, pH 7.4), and the membranes were incubated overnight at 4°C or 2 h at room temperature with the primary antibody. Membranes were then washed in PBST and treated with appropriate horse-radish peroxidase-conjugated secondary antibody for 1 h at room temperature. The immunoblots were washed in PBST and developed using an enhanced chemiluminescence detection kit (Amersham Biosciences). Anti-tubulin and Cox IV antibodies were used to verify equal protein loading.

Statistical Analysis
Data are expressed as means ± SEM of three independent experiments. Student’s test was used to compare experimental conditions and controls. A value of P<0.05 was considered significant.
RESULTS

RRV infection induces apoptosis in MA104 cells through the mitochondrial pathway.

Apoptosis induced by RRV in MA104 cells was investigated by following the kinetics of DNA fragmentation with the Cell Death ELISA kit (Roche) (Fig. 1A). Early p.i. (until 8h p.i.), DNA fragmentation was not significantly different in infected and uninfected cells. Enrichment of nucleosomal DNA fragments started by 12 h p.i. and increased until 20 h p.i. DNA fragmentation 20 h p.i. was 3-to 4-fold that of mock-infected cells and similar to that observed after 14 h of treatment with staurosporine, used as positive control for DNA fragmentation. These results confirm that rotavirus induced apoptosis in MA104 cells.

We then looked for activation of caspase-3, the central executioner in the apoptotic program, in RRV-infected MA104 cells. Cleavage of 32 kDa pro-caspase-3 revealed by the detection, in a whole cell lysate, of its 19 kDa cleavage product was substantial at about 14 h p.i. (Fig. 1B). To confirm the activation of caspase-3 in RRV-infected MA104 cells, we investigated the processing of one of its characteristic substrates, the poly(ADP-ribose) polymerase (PARP) (Fig. 1B). The amount of full-length PARP in a whole lysate of RRV-infected MA104 cells declined from 14 to 22 h p.i., thus paralleling the pattern of caspase-3 activation. These results show that rotavirus induced caspase executioner activation in MA104 cells. Furthermore, the peak of caspase-3 activation coincided with that of virus production during a single-cycle infection in the same experimental conditions (data not shown).

To assess the role of caspases in cell death resulting from RRV infection, infected cells were treated with a broad-spectrum caspase inhibitor, z-VAD-fmk (10 µM, Calbiochem). The roles of caspase-9 and caspase-3 were investigated with specific inhibitors, z-LEHD-fmk (10 µM, Calbiochem) and z-DEVD-fmk (10 µM, Calbiochem), respectively. Apoptosis was analyzed 14 h p.i., by measuring chromatin condensation and fragmentation by flow cytometry after
Acridine Orange (AO) staining (Fig. 1C). The three caspase inhibitors significantly reduced the percentage of apoptotic cells following RRV infection with respect to that in their untreated counterparts. (The same level of apoptosis inhibition was observed with z-VAD-fmk at a concentration of 100 μM, data not shown). These results indicate that caspases are, at least partly, involved in RRV-induced apoptosis. Furthermore, the decrease in apoptosis in cells treated with the caspase 9 inhibitor seems to indicate that the mitochondrial pathway is activated in RRV-infected cells.

To confirm that the mitochondrial pathway is activated during RRV infection in MA104 cells, we investigated the kinetics of cytochrome c and Smac/Diablo efflux from mitochondria into the cytosol. Infected cells were fractionated to separate the cytosolic fraction from the heavy membrane fraction containing mitochondria, at various times after infection, and the fractions were studied by western blotting (Fig. 2). Cytochrome c and Smac/Diablo were detected in the cytoplasm of infected MA104 cells from 9 h p.i. and 12 h p.i., respectively: they increased in amount in the the cytosol thereafter until the last time point investigated (18 h p.i.) whereas they decreased in amount in the heavy membrane fraction. These findings indicate that rotavirus causes the release of cytochrome c and Smac/Diablo into the cytosol in MA104 cells, consistent with apoptotic mitochondrial dysfunction.

RRV-induced mitochondrial apoptotic pathway is caspases- and Bid-independent.

We then looked for upstream signals that could trigger the activation of the mitochondrial apoptotic pathway following RRV infection. This pathway can be activated by the BH3-only protein Bid following its cleavage by caspase-8 (26, 30). First, the kinetics of the processing of procaspase-8 was analyzed in RRV-infected MA104 cells, by immunoblotting (Fig. 3A). The amounts of procaspase-8 decreased from 14 h p.i., relative to those in mock-infected cells, suggesting caspase-8 activation. Caspase-8 activation was confirmed at 14 h p.i. by flow
cytometry with a FLICA apoptosis detection kit, based on the specific binding of a fluorescein-labeled inhibitor (FAM-LET-D-fmk, Immunochemistry Technologies, LLC) to active caspase (Fig 3B). The kinetics of Bid processing was then analyzed in RRV-infected MA104 cells, by immunoblotting (Fig. 3A). The amounts of Bid and procaspase-8, decreased with respect to those in mock-infected cells, suggesting a cleavage of Bid mediated by activated caspase-8.

To determine whether caspase-8 and Bid were required for engaging mitochondrial pathway of apoptosis, we assessed cytochrome c release in the presence of the broad-spectrum caspase inhibitor, z-VAD-fmk. The release of cytochrome c from the mitochondria into the cytosol in RV-infected MA104 cells (14 h p.i.) was analyzed by western blotting following subcellular fractionation (Fig. 4). As expected, cleavage of both Bid and PARP were inhibited in the presence of the caspase inhibitor (Fig. 4A). In contrast, z-VAD-fmk was unable to prevent cytochrome c release (Fig. 4B), suggesting that mitochondrial dysfunction in RRV-infected MA104 cells is induced by a caspase- and Bid-independent mechanism. Thus, caspases seem to be involved in RRV-induced apoptosis at a position in the pathway downstream from the mitochondrial dysfunction.

Bax is activated during RRV infection by a caspase independent pathway.

The proapoptotic Bcl-2 family protein Bax is a pivotal regulator of cytochrome c release from mitochondria to the cytosol (1, 38, 53). In healthy cells, most Bax is in the cytoplasm and in an inactive form. Bax-mediated cell death occurs through a conformational change and its translocation to the mitochondrial outer membrane, resulting in the loss of mitochondrial membrane potential and the release of proapoptogenic factors including cytochrome c (18, 33, 54). We investigated kinetics of the conformational change of Bax in RRV-infected cells. Total cell lysates were prepared at the indicated times post-infection (p.i) (Fig. 5A) in a lysis
buffer (containing Chaps) that did not affect Bax conformation. Bax was then immunoprecipitated with an anti-Bax antibody (6A7) specific for the active conformation of Bax (18, 19) and visualized by western blotting (Fig. 5A). In mock-infected cells, no activated Bax was detected in the immunoprecipitates. From 12 h p.i, Bax was precipitated by antibody 6A7, indicating that RRV infection induced the conformational change of Bax as observed in STS-treated cells used as positive control (data not shown). Thus, rotavirus infection triggers a conformational change in Bax in MA104 cells. Furthermore, we showed that Bax activation still occurred in the presence of the broad-spectrum caspase inhibitor, z-VAD-fmk (100 µM, Calbiochem) (Fig. 5B), indicating that Bax activation during RRV infection is caspase independent.

MA104 cell infection by RRV increases the Bax/Bcl-2 ratio.

The Bcl-2-family, obviously, includes the antiapoptotic protein Bcl-2, which converges on mitochondria and competes with proapoptotic Bax to regulate the release of cytochrome c in response to apoptotic signal (1, 15, 44). As the ratio of pro- and anti-apoptotic proteins determines, at least in part, the susceptibility of cells to the death signal (38), we studied the time-dependent effects of RRV infection on Bax and Bcl-2 abundance in MA104 cells (Fig 5C). The amount of Bcl-2 decreased as the viral infection proceeded, whereas the total amount of Bax was unaffected. Thus rotavirus infection increased the Bax/Bcl-2 ratio and this could contribute to the mitochondrial apoptotic pathway by increasing the amount of free Bax thereby allowing its activation.

RRV-induced mitochondrial apoptotic pathway is Bax-dependent.

These various findings seem to indicate that RRV induces Bax-mediated apoptosis in MA104 cells. To assess the requirement for Bax in RRV-induced mitochondrial dysfunction, MA104
cells were transiently transfected with specific small interfering RNA (siRNA) to knock down Bax expression. Western blot analysis of MA104 cells transfected with the Bax siRNA (Cell Signaling) and with the irrelevant control siRNA (Cell Signaling) confirmed that the specific siRNA reduced significantly the abundance of Bax (50 %) (Fig 6A). We analyzed cytochrome c release 14 h after infection of MA104 cells previously transfected with siRNA. Bax siRNA partially inhibited cytochrome c release (52 %) in RRV-infected cells whereas the irrelevant control siRNA had no effect. Furthermore, a much larger proportion of cytochrome c remained in the membrane fraction containing mitochondria from RRV-infected cells treated with Bax siRNA than from those treated with the irrelevant control (Fig 6B). We also investigated RRV-induced apoptosis in MA104 cells, previously transfected with siRNA. The fraction of apoptotic cells analyzed at 14 h p.i., by flow cytometry after Acridine Orange (AO) staining, decreased in cells with reduced Bax expression (Fig. 6C). These results demonstrate that Bax plays a key role in rotavirus-induced mitochondrial pathway of apoptosis.

DISCUSSION

The pathophysiological mechanisms behind rotavirus-induced diarrhea have not been completely described. In mice, apoptosis may be associated with functional changes during rotavirus infection, particularly the modification of digestion and absorption functions. Evidence for apoptosis has been reported in intestinal cell lines following rotavirus infection in vitro (7, 47). However, the precise cellular and molecular mechanisms underlying rotavirus-induced apoptosis have not been defined. Here, we investigated the apoptosis induced by the RRV strain in MA104 cells, a monkey kidney epithelial cell line in which the rotavirus cycle has been best characterized.
We showed that several hallmarks of apoptosis, notably DNA fragmentation, caspase-3 activation and PARP cleavage, were detected following RRV infection of MA104 cells. DNA fragmentation was not observed in a previous study (6) in the same RRV-infected cells, probably because of differences in the sensitivity of the tests used. Moreover, we report the release of cytochrome c and Smac/DIABLO from mitochondria into the cytosol, implicating mitochondrial dysfunction in the apoptotic pathway. Cytochrome c release is known to be the pro-apoptotic signal causing the autocatalytic activation of procaspase-9 that triggers caspase-3 cleavage. We showed that specific inhibition of either caspase-3 or caspase-9 reduced the percentage of apoptotic cells following RRV infection. Thus, RRV-induced apoptosis is, at least partly, dependent on caspase activation. It is also possible that Smac/Diablo is associated with RRV-induced apoptosis through its action on cellular inhibitors of apoptosis proteins (IAPs), as observed notably during reovirus-induced apoptosis (22).

We then investigated events upstream from RRV-induced mitochondrial dysfunction. We focused on the Bcl-2 family proteins because they are central regulators of the mitochondrial apoptotic pathway (1, 15, 35, 44) and have been implicated in various models of virus-induced apoptosis (28, 36). Bax, one of the pro-apoptotic Bcl-2 family proteins, is the most downstream activator molecule known of cytochrome c release machinery (42). We showed that Bax is activated following RRV infection in MA104 cells: we detected its conformational modification involving the exposure of its N-terminal extremity required for insertion into mitochondrial membranes (18, 33). Once integrated into the outer mitochondrial membrane, Bax can trigger cytochrome c release leading to the activation of the effector caspase-3 and apoptotic cell death (11, 14, 23, 53). Our analysis of RRV-infected MA104 cells by using siRNA-mediated gene silencing indicates, for the first time, that the apoptotic mitochondrial pathway is activated through a Bax-dependent mechanism.
The inhibition of the prosurvival function of Bcl-2 is essential for the activation of Bax because Bcl-2 can compete with Bax to regulate the release of cytochrome c (1, 15, 44). The amount of antiapoptotic Bcl-2 protein decreased in RRV-infected cells without any change in the amount of Bax. This results in an increase in the Bax/Bcl-2 ratio in RRV-infected cells that could favor an increase in free Bax. Thus, one mechanism by which rotavirus may contribute to Bax activation is by decreasing the number of Bax/Bcl-2 complexes at the mitochondrial membrane.

Activated BH3-only proteins such as Bid can suppress the capacity of Bcl-2 to inhibit apoptosis by interacting with it to displace and subsequently activate Bax (24, 25). Bid can be activated by caspase-8, resulting in Bax activation and release of cytochrome c (23). We showed that Bid processing was inhibited by the broad caspase inhibitor z-VAD-fmk in RRV-infected cells; therefore rotavirus infection causes caspase-8 activation leading to Bid activation. However, the inhibitor did not inhibit Bax activation and cytochrome c release, suggesting that caspases and Bid do not play a crucial role in the Bax-dependent cytochrome c release pathway during RRV infection. Thus, caspases seem to be involved in RRV-induced apoptosis at a position in the pathway downstream from the mitochondrial dysfunction.

Several mechanisms for promoting Bax activation and mitochondrial dysfunction have been described. These mechanisms include a signal transduction cascade involving mitogen-activated protein kinases (MAPK) such as c-jun N-terminal protein kinase (JNK) and p38, as described in other models (21, 49). The regulation of mitochondrial dysfunction by JNK following virus infection was first demonstrated in reovirus-infected cells (8). Coulson et al. (17) recently showed that JNK and p38, are activated by rotavirus infection in MA104 cells. However the involvement of MAPK activation in Bax-dependent mitochondrial dysfunction has not yet been demonstrated in rotavirus-infected cells.
Rotavirus infection of cultured cells induces a progressive rise in the cytosolic Ca\(^{2+}\) concentration (5, 31, 46, 48). This increase may be involved in rotavirus-induced apoptosis, and indeed, the intracellular calcium ion chelator BAPTA-AM partially inhibits apoptosis (7). The rise in cytosolic Ca\(^{2+}\) concentration in rotavirus-infected cells results from a progressive increase in plasma membrane permeability to Ca\(^{2+}\) and a depletion of endoplasmic reticulum (ER) pools. Xu et al. showed that rotavirus infection leads to ER stress (55). This stress and ER Ca\(^{2+}\) depletion may lead to Bax activation (39). It would be valuable to determine in future studies whether rotavirus induces apoptosis by inducing both ER stress and ER Ca\(^{2+}\) depletion leading to mitochondrial dysfunction. Several anti- and pro-apoptotic members of the Bcl-2 family have been found, in addition to their mitochondrial localization, to be associated to the ER and have been implicated in controlling apoptosis by affecting cellular Ca\(^{2+}\) homeostasis (37, 39, 41). As demonstrated in this study, Bax is involved in mitochondrial dysfunction in RRV infected-cells, but it could also be involved in ER Ca\(^{2+}\) release and thus amplify the apoptotic signal in RRV-infected cells. It would therefore be interesting to investigate whether Bax plays a role in ER Ca\(^{2+}\) release.

Apoptosis of mature rotavirus-infected enterocytes induces the replacement of these cells by less differentiated dividing cells. This event may well be the cause of the defective absorptive functions of the intestinal epithelial and consequently diarrhea associated with rotavirus pathogenesis (4). Thus, the identification of the apoptotic signaling pathways in RRV-infected cells would improve our understanding of the mechanisms by which rotavirus infection causes functional alterations. Our demonstration of the activation of Bax during rotavirus infection and its involvement in mitochondrial apoptotic pathway provide new insights concerning rotavirus-induced pathogenesis.
ACKNOWLEDGEMENTS

We thank Didier Poncet (Gif-sur-Yvette, France) for the gift of MA104 cells and the rota virus RRV strain. We thank Isabelle Pelletier and Aure Saulnier for their help. This work was supported by the Institut Pasteur, Danone Research Centre Daniel Carasso and the Ministère de l'Education Nationale, de la Recherche et de la Technologie.

REFERENCES

FIGURE LEGENDS

Fig. 1. RRV induces apoptosis in MA104 cells.

A. DNA-fragmentation in RRV-infected MA104 cells. At the indicated times post-infection, DNA fragmentation was analyzed using the Cell Death Detection ELISA PLUS assay which detects the appearance of histone-associated low molecular weight DNA in the cytoplasm of cells. Mock-infected and staurosporine (STS)-treated MA104 cells were used as negative and positive controls, respectively. Enrichment Factor was calculated as the absorbance at 405/492 nm for treated cells divided by that of the corresponding untreated cells. Data are means ± S.D. of three experiments. *P<0.05 by Student t-test comparing RRV-infected MA104 cells to mock-infected MA104 cells.

B. RRV infection triggered caspase-3 activation and PARP processing in MA104 cells. At the indicated times post-infection, whole cell extracts were subjected to western blot analysis with anti-caspase-3 and anti-PARP antibodies. Mock-infected MA104 cells were used as negative controls. An asterisk (*) indicates a nonspecific protein band which was used as a protein loading control. Positions of markers of molecular weight are indicated at the left of panel.

C. RRV-induced apoptosis is dependent on caspases activation in MA104 cells. MA104 cells were treated or non-treated with the broad caspase inhibitor z-VAD-fmk (10 µM), the specific caspase-9 inhibitor z-LEHD-fmk (10 µM) or the specific caspase-3 inhibitor z-DEVD-fmk (10 µM) 2 h before RRV infection and maintained throughout the infection. Mock- and RRV-infected MA104 cells were analyzed 14 h post-infection (p.i) by flow cytometry after acridine orange nuclear dye staining and the fold increase of apoptosis was calculated as the ratio of the apoptotic cell percentages for RRV-infected MA104 cells to that for mock-infected MA104 cells. Data are expressed as means of three independent experiments. Error bars
represent the standard errors of the mean, *P<0.05 by Student t-test comparing non-treated MA104 cells to treated MA104 cells.

Fig. 2. Mitochondrial apoptotic pathway is activated in RRV-infected MA104 cells.

Time course of cytochrome c and Smac/Diablo release in RRV-infected MA104 cells. At the indicated times post-infection, cells were collected and subjected to subcellular fractionation as described in Material and Methods. The cytosolic (C) and heavy membrane (HM) fraction proteins were assayed by western blot analysis for cytochrome c and Smac/Diablo. Mock-infected MA104 cells were used as negative controls. Cox IV and tubulin were used as protein loading controls for heavy membrane and cytosolic fractions, respectively. Positions of markers of molecular weight are indicated at the left of panel. Cytochrome c and Smac/Diablo protein levels of heavy membrane and cytosolic fractions were determined by densitometry and plotted as ratios relative to the levels of Cox IV and tubulin, respectively (lower panel).

Fig. 3. RRV induces caspase-8 activation and Bid processing in MA104 cells.

A. Time course of caspase-8 activation and Bid processing in RRV-infected MA104 cells. At the indicated times post-infection, whole cell extracts were subjected to immunoblot analysis with anti-caspase-8 and anti-Bid antibodies. Mock-infected MA104 cells were used as negative controls. Tubulin was used as a control for protein loading. Positions of markers of molecular weight are indicated at the left of panel. Bid protein levels were determined by densitometry and plotted as ratios relative to the levels of tubulin (lower panel).

B. Caspase-8 activation was determined in mock- and RRV-infected MA104 cells (14 h p.i.) by flow cytometry using cell-permeable, fluorescein-labeled inhibitor (FAM-LETD-fmk), that binds specifically on active caspase-8, as described in Material and Methods. Histogram
representative of two independent experiments is shown. The percentage of cells positive for activated caspase-8 following RRV infection is indicated.

Fig. 4. Cytochrome c release in RRV-infected MA104 cells is caspase-independent.

A. The broad-spectrum caspase inhibitor z-VAD-fmk inhibits Bid and PARP processing in RRV-infected MA104 cells. Mock- and RRV-infected MA104 cells were pretreated or not pretreated with 100 µM z-VAD-fmk for 2 h before and during RRV infection. Whole cell extracts were prepared 14 h post-infection and Bid and PARP were assayed by western blot analysis. Mock-infected MA104 cells were used as negative controls. Tubulin was used as a control for protein loading. Positions of markers of molecular weight are indicated at the left of panel.

B. z-VAD-fmk did not inhibit cytochrome c release in RRV-infected MA104 cells. Mock- and RRV-infected MA104 cells were pretreated or not pretreated with 100 µM z-VAD-fmk for 2 h before and during infection. Fourteen hours after RRV infection, the cytosolic and heavy membrane fractions were assayed for cytochrome c by western blotting. Mock-infected MA104 cells were used as negative controls, Cox IV and tubulin were used as protein loading controls for heavy membrane and cytosolic fractions, respectively. Positions of markers of molecular weight are indicated at the left of panel.

Fig. 5. RRV induces Bax protein activation in MA104 cells.

A. RRV induced Bax conformational change in MA104 cells. At the indicated time post-infection (p.i), MA104 cells were lysed in immunoprecipitation buffer containing the zwitterionic detergent Chaps (which maintains Bax in its activated conformation). Anti-Bax 6A7 antibody was used to immunoprecipitate conformationally active Bax protein. The immunoprecipitates were analyzed by immunoblotting with anti-Bax antibody.
Immunoglobulin light chains are indicated with an asterisk (*). Mock-infected MA104 cells were used as negative control. Positions of markers of molecular weight are indicated at the left of panel.

B. z-VAD-fmk did not inhibit Bax conformational change in RRV-infected MA104 cells. RRV-infected MA104 cells were pretreated or not pretreated with 100 µM z-VAD-fmk for 2 h before and during infection. Whole cell lysates were immunoprecipitated with activated Bax antibody (clone 6A7) and then analyzed by immunoblotting with anti-Bax antibody. Mock-infected MA104 cells were used as negative control. Immunoglobulin light chains are indicated with an asterisk (*). Positions of markers of molecular weight are indicated at the left of panel.

C. RRV infection promoted Bcl-2 degradation in MA104 cells. At the indicated times post-infection, whole cell lysates were prepared. Bax and Bcl-2 proteins were detected by western blotting with anti-Bax and anti-Bcl-2 specific antibodies. Mock-infected MA104 cells were used as negative controls. Tubulin was used as a control for protein loading. Positions of markers of molecular weight are indicated at the left of panel.

Fig. 6. Cytochrome c release induced by RRV infection of MA104 cells is Bax-dependent.

A. Knock down of Bax expression in MA104 cells. Cells were transfected with specific Bax siRNA or irrelevant siRNA. Bax protein was then assayed in whole cell lysates from by immunoblotting. Levels of tubulin were used as protein loading controls (upper panel). Bax protein levels were determined by densitometry and plotted as ratios relative to the levels of tubulin. Positions of markers of molecular weight are indicated at the left of panel. The graph shows the mean percentage of Bax expression inhibition in three independent experiments. Error bars represent the standard errors of the mean, *P<0.05* by Student t-test comparing
irrelevant siRNA-transfected to Bax siRNA-transfected MA104 cells (*lower panel*).

B. siRNA-induced silencing of the Bax gene results in reduction of RRV-induced cytochrome c release in MA104 cells. Cells were infected with RRV 48 h post-transfection and cytochrome c was analyzed in cytosolic (C) and heavy membrane fractions (M) by western blotting 14h post-infection. Mock-infected MA104 cells were used as negative controls. Tubulin and Cox IV were used as controls for protein loading of cytosolic (C) and heavy membrane (M) fractions, respectively. Positions of markers of molecular weight are indicated at the left of panel. Cytochrome c protein levels of heavy membrane and cytosolic fractions were determined by densitometry and plotted as ratios relative to the levels of Cox IV and tubulin, respectively (*lower panel*).

C. siRNA-induced silencing of the Bax gene results in reduction of RRV-induced apoptosis in MA104 cells. Cells were infected with RRV 48 h post-transfection and the percentage of apoptosis was determined by flow cytometry after Acridine Orange (AO) staining. MA104 cells transfected with irrelevant siRNA was used as negative control.
Figure 1

A

DNA fragmentation (Enrichment Factor)

Hours p.i

0 4 8 12 14 16 18 20 STS

B

RRV (hours p.i)

Mock 4 8 14 18 22

Pro caspase-3

30 kDa

20 kDa

100 kDa

Caspase-3

PARP

C

Apoptosis (Fold increase)

z-VAD-fmk (10 μM)

z-DEVD-fmk (10 μM)

z-LEHD-fmk (10 μM)
RRV (hours p.i)

<table>
<thead>
<tr>
<th></th>
<th>15 kDa</th>
<th>20 kDa</th>
<th>50 kDa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cytochrome c

Smac/Diablo

Tubulin

Cytosolic fraction (C)

15 kDa

Cytochrome c

Smac/Diablo

20 kDa

Cox IV

Heavy membrane fraction (HM)

Figure 2
Figure 3
Figure 5