J. L. Chen, L. D. Attardi, C. P. Verrijzer, K. Yokomori, and R. Tjian, Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators, Cell, vol.79, pp.93-105, 1994.

Y. W. Shieh, Operon structure and cotranslational subunit association direct protein assembly in bacteria, Science, vol.350, pp.678-680, 2015.

J. N. Wells, L. T. Bergendahl, and J. A. Marsh, Operon gene order is optimized for ordered protein complex assembly, Cell Rep, vol.14, pp.679-685, 2016.

A. Halbach, Cotranslational assembly of the yeast SET1C histone methyltransferase complex, EMBO J, vol.28, pp.2959-2970, 2009.

C. D. Duncan and J. Mata, Widespread cotranslational formation of protein complexes, PLoS Genet, vol.7, p.1002398, 2011.

S. Kassem, Z. Villanyi, and M. A. Collart, Not5-dependent co-translational assembly of Ada2 and Spt20 is essential for functional integrity of SAGA, Nucleic Acids Res, vol.45, p.7539, 2017.

N. K. Williams and B. Dichtl, Co-translational control of protein complex formation: a fundamental pathway of cellular organization?, Biochem Soc. Trans, vol.46, pp.197-206, 2018.

A. Shiber, Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling, Nature, vol.561, p.268, 2018.

E. Natan, J. N. Wells, S. A. Teichmann, and J. A. Marsh, Regulation, evolution and consequences of cotranslational protein complex assembly, Curr. Opin. Struct. Biol, vol.42, pp.90-97, 2017.

F. Muller, A. Zaucker, and L. Tora, Developmental regulation of transcription initiation: more than just changing the actors, Curr. Opin. Genet. Dev, vol.20, pp.533-540, 2010.

L. Warfield, Transcription of nearly all yeast RNA polymerase IItranscribed genes is dependent on transcription factor TFIID, Mol. Cell, vol.68, p.5, 2017.

T. Baptista, SAGA is a general cofactor for RNA polymerase II transcription, Mol. Cell, vol.68, p.5, 2017.

D. Helmlinger and L. Tora, Sharing the SAGA, Trends Biochem. Sci, vol.42, pp.850-861, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01875259

S. Fribourg, Dissecting the interaction network of multiprotein complexes by pairwise coexpression of subunits in E. coli, J. Mol. Biol, vol.306, pp.363-373, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02126936

S. Trowitzsch, Cytoplasmic TAF2-TAF8-TAF10 complex provides evidence for nuclear holo-TFIID assembly from preformed submodules, NATURE COMMUNICATIONS |, vol.10, p.6011, 2015.

N. Garreau-de-loubresse, Structural basis for the inhibition of the eukaryotic ribosome, Nature, vol.513, pp.517-522, 2014.

S. Pestka, Inhibitors of ribosome functions, Annu. Rev. Microbiol, vol.25, pp.487-562, 1971.

E. Soutoglou, The nuclear import of TAF10 is regulated by one of its three histone fold domain-containing interaction partners, Mol. Cell Biol, vol.25, pp.4092-4104, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00187766

G. Kramer, D. Boehringer, N. Ban, and B. Bukau, The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins, Nat. Struct. Mol. Biol, vol.16, pp.589-597, 2009.

P. Bardot, The TAF10-containing TFIID and SAGA transcriptional complexes are dispensable for early somitogenesis in the mouse embryo, Development, vol.144, pp.3808-3818, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02130211

F. El-saafin, Homozygous TAF8 mutation in a patient with intellectual disability results in undetectable TAF8 protein, but preserved RNA polymerase II transcription, Hum. Mol. Genet, vol.27, pp.2171-2186, 2018.

D. Metzger, E. Scheer, A. Soldatov, L. Tora, and T. Mammalian, II)30 is required for cell cycle progression and specific cellular differentiation programmes, EMBO J, vol.18, pp.4823-4834, 1999.

N. Tsanov, smiFISH and FISH-quant-a flexible single RNA detection approach with super-resolution capability, Nucleic Acids Res, vol.44, p.165, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01375913

T. Kotani, Identification of highly conserved amino-terminal segments of dTAF II 230 and yTAF II 145 that are functionally interchangeable for inhibiting TBP-DNA interactions in vitro and in promoting yeast cell growth in vivo, J. Biol. Chem, vol.273, pp.32254-32264, 1998.

M. Anandapadamanaban, High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation, Nat. Struct. Mol. Biol, vol.20, pp.1008-1014, 2013.

A. Vannini and P. Cramer, Conservation between the RNA polymerase I, II, and III transcription initiation machineries, Mol. Cell, vol.45, pp.439-446, 2012.

L. A. Pereira, J. A. Van-der-knaap, V. Van-den-boom, F. A. Van-den-heuvel, and H. T. Timmers, TAF(II)170 interacts with the concave surface of TATAbinding protein to inhibit its DNA binding activity, Mol. Cell Biol, vol.21, pp.7523-7534, 2001.

D. Liu, Solution structure of a TBP-TAF II 230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP, Cell, vol.94, pp.573-583, 1998.

D. Jani, Functional and structural characterization of the mammalian TREX-2 complex that links transcription with nuclear messenger RNA export, Nucleic Acids Res, vol.40, pp.4562-4573, 2012.

N. L. Samara, Structural insights into the assembly and function of the SAGA deubiquitinating module, Science, vol.328, pp.1025-1029, 2010.

D. Umlauf, The human TREX-2 complex is stably associated with the nuclear pore basket, J. cell Sci, vol.126, pp.2656-2667, 2013.

F. Gloge, A. H. Becker, G. Kramer, and B. Bukau, Co-translational mechanisms of protein maturation, Curr. Opin. Struct. Biol, vol.24, pp.24-33, 2014.

M. Thommen, W. Holtkamp, and M. V. Rodnina, Co-translational protein folding: progress and methods, Curr. Opin. Struct. Biol, vol.42, pp.83-89, 2017.

C. M. Kaiser, D. H. Goldman, J. D. Chodera, I. Tinoco, and C. Bustamante, The ribosome modulates nascent protein folding, Science, vol.334, pp.1723-1727, 2011.

W. Holtkamp, Cotranslational protein folding on the ribosome monitored in real time, Science, vol.350, pp.1104-1107, 2015.

J. W. Harper and E. J. Bennett, Proteome complexity and the forces that drive proteome imbalance, Nature, vol.537, pp.328-338, 2016.

F. Wruck, A. Katranidis, K. H. Nierhaus, G. Buldt, and M. Hegner, Translation and folding of single proteins in real time, Proc. Natl Acad. Sci. USA, vol.114, pp.4399-4407, 2017.

G. Zhang, M. Hubalewska, and Z. Ignatova, Transient ribosomal attenuation coordinates protein synthesis and co-translational folding, Nat. Struct. Mol. Biol, vol.16, pp.274-280, 2009.

F. Willmund, The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis, Cell, vol.152, pp.196-209, 2013.

K. Doring, Profiling Ssb-nascent chain interactions reveals principles of Hsp70-assisted folding, Cell, vol.170, pp.298-311, 2017.

S. Haldar, R. Tapia-rojo, E. C. Eckels, J. Valle-orero, and J. M. Fernandez, Trigger factor chaperone acts as a mechanical foldase, Nat. Commun, vol.8, p.668, 2017.

L. Ferbitz, Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins, Nature, vol.431, pp.590-596, 2004.

A. Hoffmann, Trigger factor forms a protective shield for nascent polypeptides at the ribosome, J. Biol. Chem, vol.281, pp.6539-6545, 2006.

M. Heiman, R. Kulicke, R. J. Fenster, P. Greengard, and N. Heintz, Cell typespecific mRNA purification by translating ribosome affinity purification (TRAP), Nat. Protoc, vol.9, pp.1282-1291, 2014.

D. Dembele and P. Kastner, Fold change rank ordering statistics: a new method for detecting differentially expressed genes, BMC Bioinforma, vol.15, p.14, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00935627

R. Van-nuland, Quantitative dissection and stoichiometry determination of the human SET1/MLL histone methyltransferase complexes, Mol. Cell Biol, vol.33, pp.2067-2077, 2013.

J. H. Xiao, I. Davidson, H. Matthes, J. M. Garnier, and P. Chambon, Cloning, expression, and transcriptional properties of the human enhancer factor TEF-1, Cell, vol.65, pp.551-568, 1991.

X. Jacq, Human TAFII30 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor, Cell, vol.79, pp.107-117, 1994.

C. Brou, Distinct TFIID complexes mediate the effect of different transcriptional activators, EMBO J, vol.12, pp.489-499, 1993.

S. Ruppert, E. H. Wang, and R. Tjian, Cloning and expression of human TAFII250: a TBP-associated factor implicated in cell-cycle regulation, Nature, vol.362, pp.175-179, 1993.

M. Frontini, TAF9b (formerly TAF9L) is a bona fide TAF that has unique and overlapping roles with TAF9, Mol. Cell Biol, vol.25, pp.4638-4649, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00187538

B. Bell, E. Scheer, and L. Tora, Identification of hTAF II 80? links apoptotic signaling pathways to transcription factor TFIID function, Mol. Cell, vol.8, pp.591-600, 2001.

I. W. Mohan, E. Scheer, O. Wendling, D. Metzger, and L. Tora, TAF10 (TAF II 30) is necessary for TFIID stability and early embryogenesis in mice, Mol. Cell Biol, vol.23, pp.4307-4318, 2003.

D. Dao, CellProfiler Analyst: interactive data exploration, analysis and classification of large biological image sets, Bioinformatics, vol.32, pp.3210-3212, 2016.

F. Mueller, FISH-quant: automatic counting of transcripts in 3D FISH images, Nat. Methods, vol.10, pp.277-278, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01622707