A. Lee, C. Kao, and Y. Wang, J99 motility by disturbing the flagellar motor switch and autoinducer-2 production, Helicobacter, vol.94, issue.4, 2017.
DOI : 10.1016/0378-1119(90)90463-2

Y. Zhong, F. Anderl, and T. Kruse, Helicobacter pylori HP0231 Influences Bacterial Virulence and Is Essential for Gastric Colonization, PLOS ONE, vol.296, issue.Suppl 1, p.154643, 2016.
DOI : 10.1371/journal.pone.0154643.s003

URL : https://doi.org/10.1371/journal.pone.0154643

S. Abedrabbo, J. Castellon, and K. Collins, Cooperation of two distinct coupling proteins creates chemosensory network connections, Proceedings of the National Academy of Sciences, vol.11, issue.12, pp.2970-2975, 2017.
DOI : 10.1128/IAI.73.2.803-811.2005

URL : http://www.pnas.org/content/114/11/2970.full.pdf

J. Huang, G. Sweeney, E. Guillemin, and K. , Multiple Acid Sensors Control Helicobacter pylori Colonization of the Stomach, PLOS Pathogens, vol.75, issue.8, p.1006118, 2017.
DOI : 10.1371/journal.ppat.1006118.s019

W. Behrens, T. Schweinitzer, and J. Mcmurry, Localisation and protein-protein interactions of the Helicobacter pylori taxis sensor TlpD and their connection to metabolic functions, Scientific Reports, vol.65, issue.1, p.23582, 2016.
DOI : 10.1007/s004380050677

S. Pelliciari, E. Pinatel, and A. Vannini, Insight into the essential role of the Helicobacter pylori HP1043 orphan response regulator: genome-wide identification and characterization of the DNA-binding sites, Scientific Reports, vol.63, p.41063, 2017.
DOI : 10.1016/S0022-2836(83)80284-8

F. Fischer, M. Robbe-saule, and E. Turlin, Characterization in Helicobacter pylori of a Nickel Transporter Essential for Colonization That Was Acquired during Evolution by Gastric Helicobacter Species, PLOS Pathogens, vol.32, issue.12, p.1006018, 2016.
DOI : 10.1371/journal.ppat.1006018.s010

URL : https://hal.archives-ouvertes.fr/pasteur-01420697

D. Vinella, F. Fischer, and E. Vorontsov, Evolution of Helicobacter: acquisition by gastric species of two histidine-rich proteins essential for colonization Comprehensive mapping of the Helicobacter pylori NikR regulon provides new insights in bacterial nickel responses, PLoS Pathog. Sci Rep, vol.117, p.45458, 2015.

D. Roncarati, S. Pelliciari, and N. Doniselli, Metal-responsive promoter DNA compaction by the ferric uptake regulator Helicobacter pylori adapts to chronic infection and gastric disease via pH-responsive BabA-mediated adherence, Nat Commun. Cell Host Microbe, vol.721, pp.376-389, 2016.

E. Skoog, M. Padra, and A. Aberg, BabA dependent binding of Helicobacter pylori to human gastric mucins cause aggregation that inhibits proliferation and is regulated via ArsS, Scientific Reports, vol.292, p.40656, 2017.
DOI : 10.1078/1438-4221-00205

L. Hansen, P. Gideonsson, and D. Canfield, ABSTRACT, Infection and Immunity, vol.85, issue.6, 2017.
DOI : 10.1128/IAI.00094-17

M. Kable, L. Hansen, and C. Styer, Host Determinants of Expression of the Helicobacter pylori Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA, BabA Adhesin. Sci Rep. Nat Microbiol, vol.72, pp.46499-1716188, 2016.

A. Javaheri, T. Kruse, and K. Moonens, Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs, Nature Microbiology, vol.111, p.16189, 2016.
DOI : 10.1107/S0907444911001314

R. Roy, M. Hoppe, and S. Srivastava, CEACAM6 is upregulated by <i>Helicobacter pylori</i> CagA and is a biomarker for early gastric cancer, Oncotarget, vol.7, issue.34, pp.55290-55301, 2016.
DOI : 10.18632/oncotarget.10528

URL : http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=10528&path%5B%5D=34557

G. Suarez, J. Romero-gallo, and J. Sierra, Virulence Function by Host Carcinogenic Phenotypes, Cancer Research, vol.77, issue.9, pp.2401-2412, 2017.
DOI : 10.1158/0008-5472.CAN-16-2922

R. Barrozo, C. Cooke, and L. Hansen, Functional plasticity in the type IV secretion system of Helicobacter pylori CagY Is an Immune-Sensitive Regulator of the Helicobacter pylori Type IV Secretion System, PLoS Pathog. Barrozo RM Gastroenterology, vol.9151, pp.1003189-221164, 2013.

T. Bonig, P. Olbermann, and S. Bats, Systematic site-directed mutagenesis of the Helicobacter pylori CagL protein of the Cag type IV secretion system identifies novel functional domains, Scientific Reports, vol.170, issue.1, p.38101, 2016.
DOI : 10.1128/jb.170.4.1704-1708.1988

T. Wiedemann, S. Hofbaur, and E. Loell, -induced IL-8 expression, European Journal of Microbiology and Immunology, vol.6, issue.3, pp.186-196, 2016.
DOI : 10.1556/1886.2016.00020

H. Wang, Y. Yao, and B. Ni, Helicobacter pylori CagI is associated with the stability of CagA, Microbial Pathogenesis, vol.99, pp.130-134, 2016.
DOI : 10.1016/j.micpath.2016.07.017

R. Kumari, M. Shariq, and N. Kumar, Cag-type IV secretion system unique component CagU, FEBS Letters, vol.7, issue.3, pp.500-512, 2017.
DOI : 10.1128/mBio.02001-15

W. Sause, D. Keilberg, and S. Aboulhouda, The Helicobacter pylori autotransporter ImaA tempers the bacterium's interaction with alpha5beta1 integrin, Infect Immun, vol.doi, pp.10-112800450, 2017.
DOI : 10.1128/iai.00450-16

URL : http://iai.asm.org/content/85/1/e00450-16.full.pdf

H. Nishikawa, T. Hayashi, and F. Arisaka, Impact of structural polymorphism for the Helicobacter pylori CagA oncoprotein on binding to polarity-regulating kinase PAR1b, Scientific Reports, vol.9, issue.1, p.30031, 2016.
DOI : 10.1038/nmeth.2089

S. Jang, H. Su, and F. Blum, ABSTRACT, mBio, vol.8, issue.1, pp.10-112801779, 2017.
DOI : 10.1128/mBio.01779-16

P. Saju, N. Murata-kamiya, and T. Hayashi, Host SHP1 phosphatase antagonizes Helicobacter pylori CagA and can be downregulated by Epstein-Barr virus CagA phosphorylation in Helicobacter pylori-infected B cells is mediated by the nonreceptor tyrosine kinases of the Src and Abl families, Nat Microbiol. Infect Immun, vol.184, pp.16026-312671, 2016.

C. Sinnett, D. Letley, and G. Narayanan, Helicobacter pylori vacA transcription is genetically-determined and stratifies the level of human gastric inflammation and atrophy, J Clin Pathol

M. Nakano, K. Yahiro, and E. Yamasaki, VacA, acting through receptor protein tyrosine phosphatase ??, is crucial for CagA phosphorylation in human duodenum carcinoma cell line AZ-521, Disease Models & Mechanisms, vol.9, issue.12, pp.1473-1481, 2016.
DOI : 10.1242/dmm.025361

URL : http://dmm.biologists.org/content/dmm/9/12/1473.full.pdf

R. Chaturvedi, M. Asim, and M. Piazuelo, Activation of EGFR and ERBB2 by Helicobacter pylori Results in Survival of Gastric Epithelial Cells With DNA Damage, Gastroenterology, vol.146, issue.7, pp.1739-51, 2014.
DOI : 10.1053/j.gastro.2014.02.005

S. Zaidi, A. Refaat, and Y. Zhou, Induces Serine Phosphorylation of EGFR via Novel TAK1-p38 Activation Pathway in an HB-EGF-Independent Manner, Helicobacter, vol.11, issue.5, pp.381-390, 2015.
DOI : 10.1111/j.1462-5822.2008.01246.x

S. Patel, K. Smith, and D. Letley, Helicobacter pylori downregulates expression of human beta-defensin 1 in the gastric mucosa in a type IV secretion-dependent fashion The innate immune molecule, NOD1, regulates direct killing of Helicobacter pylori by antimicrobial peptides, Cell Microbiol. Cell Microbiol, vol.1512, pp.2080-92626, 2010.

B. Bauer, E. Pang, and C. Holland, The Helicobacter pylori Virulence Effector CagA Abrogates Human ??-Defensin 3 Expression via Inactivation of EGFR Signaling, Cell Host & Microbe, vol.11, issue.6, pp.576-86, 2012.
DOI : 10.1016/j.chom.2012.04.013

J. Muhammad, S. Zaidi, and Y. Zhou, Novel epidermal growth factor receptor pathway mediates release of human beta-defensin 3 from Helicobacter pylori-infected gastric epithelial cells, Pathog Dis, vol.74, issue.3, pp.74-128, 2016.
DOI : 10.1093/femspd/ftv128

URL : http://doi.org/10.1093/femspd/ftv128

J. Sierra, M. Asim, and T. Verriere, -induced epithelial inflammatory responses, DNA damage and gastric carcinogenesis, Gut, vol.35, pp.5480-5488, 2017.
DOI : 10.1136/gutjnl-2016-312888

T. Tahara, S. Tahara, and T. Tuskamoto, Telomere length in the gastric mucosa after Helicobacter pylori eradication and its potential role in the gastric carcinogenesis, Clinical and Experimental Medicine, vol.41, issue.2408???17, 2017.
DOI : 10.1136/gut.41.4.442

D. Raju, S. Hussey, and M. Ang, Vacuolating Cytotoxin and Variants in Atg16L1 That Disrupt Autophagy Promote Helicobacter pylori Infection in Humans, Gastroenterology, vol.142, issue.5, pp.1160-71, 2012.
DOI : 10.1053/j.gastro.2012.01.043

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3336037/pdf

S. Tanaka, H. Nagashima, and T. Uotani, infection, Helicobacter, vol.16, issue.3, 2017.
DOI : 10.1002/ibd.21116

J. Muhammad, S. Nanjo, and T. Ando, promotes gastric carcinogenesis, International Journal of Cancer, vol.29, issue.10, pp.2272-2283, 2017.
DOI : 10.3109/00365529409096833

M. Noormohammad, S. Sadeghi, and H. Tabatabaeian, Upregulation of miR-222 in both Helicobacter pylori-infected and noninfected gastric cancer patients, Journal of Genetics, vol.3, issue.4, pp.991-995, 2016.
DOI : 10.3389/fgene.2012.00294

F. Wang, J. Liu, and Y. Zou, MicroRNA-143-3p, up-regulated in <i>H. pylori</i>-positive gastric cancer, suppresses tumor growth, migration and invasion by directly targeting AKT2, Oncotarget, vol.8, pp.28711-28724, 2017.
DOI : 10.18632/oncotarget.15646

M. Zou, F. Wang, and A. Jiang, MicroRNA-3178 ameliorates inflammation and gastric carcinogenesis promoted by Helicobacter pylori new toxin, Tip-alpha, by targeting TRAF3, Helicobacter, vol.22, issue.2, 2017.
DOI : 10.1111/hel.12348

T. Ando, T. Yoshida, and S. Enomoto, DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: Its possible involvement in the formation of epigenetic field defect, International Journal of Cancer, vol.12, issue.10, pp.2367-74, 2009.
DOI : 10.1097/01.pas.0000213266.84725.d0

T. Murray-stewart, J. Sierra, and M. Piazuelo, Epigenetic silencing of miR-124 prevents spermine oxidase regulation: implications for Helicobacter pylori-induced gastric cancer, Oncogene, vol.63, issue.42, pp.5480-5488, 2016.
DOI : 10.1016/j.eururo.2012.11.030