Jacques Monod (1910-1976) and his publications in the "Annales de l’Institut Pasteur".

Sandra Legout

To cite this version:


HAL Id: pasteur-00490982
https://hal-pasteur.archives-ouvertes.fr/pasteur-00490982
Submitted on 6 Jul 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Jacques Monod (1910-1976) and his publications in the “Annales de l’Institut Pasteur”

Sandra Legout

Médiathèque Scientifique, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15 France

Received 23 December 2009; Accepted 12 January 2010
Abstract

Between 1942 and 1956, Jacques Monod, Nobel Prize winner in Physiology or Medicine, contributed a number of papers to the *Annales de l' Institut Pasteur*, the ancestor of the journal “Research in Microbiology”. Circumstances that led him to publish in the “Annales” are recalled here.

Keywords: Jacques Monod; Nobel Prize; Annales de l'Institut Pasteur; Diauxic growth; Enzymatic adaptation
1. Introduction

2010 is the centenary anniversary of the birth of Jacques Monod, who together with François Jacob and André Lwoff received the Nobel Prize in 1965 in recognition of their outstanding contribution to molecular biology. There exists abundant literature concerning the various stages of his life and his scientific achievements (1, 5, 6, 8-10), but the early stages of his scientific career are generally not emphasized. It so happens that, between 1942 and 1956, Jacques Monod published 16 articles in the “Annales de l’Institut Pasteur” (3). His first publications in the “Annales” were not symbolic of his work, but they represent a decisive turning point in his intellectual pursuit which was to lead to the most prestigious recognition in the international scientific world.
2. From the Sorbonne to the Institut Pasteur

Monod, who obtained a science degree (licence) in Paris in 1931, was granted a scholarship so as to learn microbiological techniques at Strasbourg University (France), in the laboratory of Edouard Chatton, a specialist in protozoa. The following year he returned to Paris on a Commercy fellowship to join the “Laboratoire d’évolution des êtres organisés” (Laboratory of evolution of living organisms), directed by his former professor at the Sorbonne, Maurice Caullery, and continued working with ciliates. Then, in 1934, he became an assistant in the laboratory of Zoology (Faculty of Sciences, Paris) directed by Charles Perez. It was to be his first paid permanent position. But the job did not suit him well– he worked in a small dilapidated room, with poor facilities and little exchange with his colleagues.

To get away from his dreary laboratory he joined Paul-Emile Victor in a scientific expedition to Greenland on the "Pourquoi pas?" He then had the opportunity of learning genetics. He obtained a Rockefeller grant, in 1936 to work on eye pigmentation genes of Drosophila in the laboratory of Thomas H. Morgan at the California Institute of Technology in Pasadena (Fig. 1). He discovered another way to perform research founded on collaborative work and critical and fruitful discussions. Back in France, he carried on research for a while at the Institute of Physicochemical Biology, where he continued to work on the model developed in USA.

Having kept his position of assistant at the Sorbonne, Jacques Monod came back to work in the laboratory of Charles Perez in 1937, where he began his thesis on bacterial growth using Escherichia coli as a model system. This choice resulted form the influence of two men. As a student in zoology, it was during a training course in the Laboratory of Marine Biology in Roscoff (France) in 1929 that Jacques Monod met Georges Teissier for the first time. The latter was a specialist in biometrics, and oriented Jacques Monod’s research towards the study of the kinetics of the growth of bacteria. It was also in Roscoff that Monod met André Lwoff. Lwoff, who was head of the Service of Microbial Physiology at the Institut Pasteur, was well known for his work on growth factors. He convinced Monod to give up the ciliate model for bacteria and provided him with a culture of E. coli.

Thus, when he decided to begin his thesis, Monod had already acquired wide experience working in many laboratories. This propensity to move from one laboratory to another without settling in reflects the state of mind of Monod at the time, for he was also
tempted by a career in music, for which he was extremely gifted. Jacques Monod took his
time, but finally chose to pursue his career in biological research.

During the Second World War, Monod joined the French Resistance. His laboratory
harbored a secretarial office for printing up anti-Nazi pamphlets. Although his commitment
considerably slowed down his scientific activities, he managed to finalize his thesis
dissertation, which he defended in 1941 under the title "Recherches sur la croissance des
cultures bactériennes". In his memoir published in 1942 (7) he reported on an unknown
phenomenon which he termed “diauxic growth” to account for the fact that when bacteria are
placed in a medium containing both glucose and lactose, growth is continuous until depletion
of glucose; then, after a pause, growth resumes with the use of lactose. André Lwoff then
pointed out to him that this phenomenon was certainly a particular example "of enzymatic
adaptation". This work also led to a publication in the "Annales de l’Institut Pasteur" in 1942
(6). Since he was being spied upon by the Gestapo due to his active role in the French
Resistance, he left the Sorbonne and took refuge at the Institut Pasteur in André Lwoff's
laboratory to study enzymatic adaptation. After the liberation, he engaged in the 1st French
Army of General de Lattre de Tassigny. He officially joined the Institut Pasteur as Head of a
Laboratory in 1945, where he worked until his death in 1976.

3. Publication in the "Annales"

Under what circumstances did Monod choose to publish his work in the "Annales de
l'Institut Pasteur"? The "Association des Microbiologistes de Langue Française" (AMLF),
which later became the French Society for Microbiology, was created in 1938 (2). Scientific
reports presented in the format of research papers (i.e. including methods, tables and figures)
were usually published in the "Annales". During the War, the AMLF had difficulty in
organizing congresses, and the Institut Pasteur held monthly meetings on its premises. André
Lwoff, who was an AMLF member, encouraged Monod to present his data. Until then,
Jacques Monod's works had always been presented during formal sessions of the French
Academy of Sciences. He thus discovered a more casual atmosphere and an audience which
greatly appreciated the originality of his discoveries. This is how 10 of his contributions were
published in the "Annales de l'Institut Pasteur", including a paper with Elie Wollman (Table
1). The initial objective of the "Annales" was to publish research work performed in the
Institut Pasteur laboratories (both on the mainland and overseas) (3). It was thus within this framework that Jacques Monod published 6 other articles (Table 1).

While Monod regularly contributed papers to the "Annales" between 1942 and 1947, only three papers were published in the journal thereafter (Table 1). The explanation for this is simple. French continued to be the main language of the "Annales" and Monod's work, highly specialized in genetics and molecular biology, addressed an international readership. He thus published in Anglo-Saxon journals. Two of those three papers published during the 1950s included results from projects funded by foreign institutions (Table 1: papers 14 and 16). Since the second one was also sponsored by a French institution, it was important to publish the results in a French journal. In the third article, Monod returned to the source of his works: bacterial growth. In that paper, Monod set out the theoretical and experimental bases of a method of continuous culture (Table 1: paper 15). It is understandable that this particular work was published in the Annales, since Monod had been teaching microbiology courses since 1945. The experimental possibilities offered by this new technique were to be widely used thereafter in French and foreign laboratories.

After his death, several of his papers that had been published in the "Annales" were reproduced in a volume of selected papers edited by André Lwoff and Agnes Ullmann (4, Table 1), bearing witness to the importance of his contributions. He himself cited three of the papers published in the "Annales" (Table 1) in his Nobel Lecture (8).

4. Conclusion

Jacques Monod's papers published in the "Annales de l'Institut Pasteur" came just after his work on bacterial growth and were a continuation of his thesis. Since they were at the origin of the scientific work which led him to the Nobel Prize, they constitute pioneering research and are important in understanding the future orientation of his research, which was determinant for the continuation of his career: in particular, the discovery of the transcriptional regulation system, in which he analyzed control of genetic expression in the lac operon, in Escherichia coli and the theory of allosteric interactions (8).

Acknowledgements

The author wishes to thank Prof. Agnes Ullmann for critical reading of the manuscript.
References


Legend
Fig. 1: Jacques Monod (1910-1976) in Pasadena, California in 1936.
<table>
<thead>
<tr>
<th>Type</th>
<th>Authors</th>
<th>Title</th>
<th>Year, volume, pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMLF report</td>
<td>Monod, J.</td>
<td>Influence de l'amide de l'acide nicotinique, de l'aneurine et de l'acide ascorbique sur la croissance d'Escherichia coli</td>
<td>1942 68, 435-438</td>
</tr>
<tr>
<td>7 May 1942</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMLF report</td>
<td>Monod, J.</td>
<td>Sur le phénomène de lyse lié à l'inanition carbonée</td>
<td>1942 68, 445-451</td>
</tr>
<tr>
<td>5 March 1942</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALMF report</td>
<td>Monod, J.</td>
<td>Diauxie et respiration au cours de la croissance des cultures de B. coli</td>
<td>1942 68, 548-540</td>
</tr>
<tr>
<td>2 July 1942 a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMLF report</td>
<td>Monod, J.</td>
<td>Influence de la concentration des substrats sur la rapidité d'adaptation chez le B. coli</td>
<td>1943 69, 179-181</td>
</tr>
<tr>
<td>4 February 1943</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMLF report</td>
<td>Monod, J.</td>
<td>Sur la non-additivité d'action de certains enzymes bactériens</td>
<td>1944 70, 57-59</td>
</tr>
<tr>
<td>1 July 1943</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMLF report</td>
<td>Monod, J.</td>
<td>Remarque sur le problème de la spécificité des enzymes bactériens</td>
<td>1944 70, 60-61</td>
</tr>
<tr>
<td>1 July 1943</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMLF report</td>
<td>Monod, J.</td>
<td>Inhibition de l'adaptation enzymatique chez B. coli en présence de 2-4 dinitrophénol</td>
<td>1944 70, 381-384</td>
</tr>
<tr>
<td>1 December 1943 a,b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMLF report</td>
<td>Monod, J.</td>
<td>Sur la nature du phénomène de diauxie</td>
<td>1945 71, 37-38</td>
</tr>
<tr>
<td>2 December 1943 a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMLF report</td>
<td>Morel, M., Monod, J.</td>
<td>Sur l'utilisation du saccharose par Proteus vulgaris</td>
<td>1946 72, 647-656</td>
</tr>
<tr>
<td>8 November 1945</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research paper a,b</td>
<td>Monod, J., Audureau, A.</td>
<td>Mutation et adaptation enzymatique chez Escherichia coli-mutabile</td>
<td>1946 72, 868-878</td>
</tr>
<tr>
<td>8 November 1945</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research paper a</td>
<td>Monod, J.</td>
<td>Sur une mutation spontanée affectant le pouvoir de synthèse de la méthionine chez une bactérie coliforme</td>
<td>1946 72, 879-890</td>
</tr>
<tr>
<td>8 November 1945</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research paper</td>
<td>Lwoff, A., Monod J.</td>
<td>Essai d'analys edu rôle de l'anhydride carbonique dans la croissance microbienne</td>
<td>1947 73, 323-347</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research paper</td>
<td>Monod, J., Wollman, E. a</td>
<td>L'inhibition de la croissance et de l'adaptation enzymatique chez les bactéries infectées par le bacteriophage</td>
<td>1947 73, 937-956</td>
</tr>
<tr>
<td>3 April 1947</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research paper a,c</td>
<td>Monod, J., Torriani, A.</td>
<td>De l'amylomaltase d'Escherichia coli</td>
<td>1950 78, 65-77</td>
</tr>
<tr>
<td>3 April 1947</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research paper a</td>
<td>Monod, J.</td>
<td>La technique de culture continue: théorie et applications</td>
<td>1950 79, 390-410</td>
</tr>
<tr>
<td>3 April 1947</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research paper a,b,d</td>
<td>Rickenberg, H., Cohen</td>
<td>La galactoside-perméase d'Escherichia coli</td>
<td>1956 91, 829-857</td>
</tr>
</tbody>
</table>
AMLF: Association des Microbiologistes de Langue Française

- Work reproduced in the selected papers (4)
- Work cited in the Nobel lecture (8)
- Work funded by the National Institute of Health
- Work funded by The Rockefeller Foundation, Jane Coffin Child’s Memorial Fund and the “Commissariat à l’Energie Atomique”